
remote sensing  

Article

Onboard Spectral and Spatial Cloud Detection for
Hyperspectral Remote Sensing Images

Haoyang Li 1,*, Hong Zheng 1, Chuanzhao Han 2, Haibo Wang 3 and Min Miao 4

1 School of Automation Science and Electrical Engineering, Beihang University, No.37 Xueyuan Road,
Beijing 100191, China; julyanna@vip.sina.com

2 China Academy of Space Technology (CAST), Beijing 100094, China; eric_hanchuanzhao@163.com
3 China Centre for Resources Satellite Data and Application, No.5 Fengxian East Road, Beijing 100094, China;

bo3861926@sina.com
4 School of Mathematics and Systems Science, Beihang University, No.37 Xueyuan Road,

Beijing 100191, China; miaomin@buaa.edu.cn
* Correspondence: lhyang@buaa.edu.cn; Tel.: +86-10-8231-6970

Received: 15 November 2017; Accepted: 16 January 2018; Published: 20 January 2018

Abstract: The accurate onboard detection of clouds in hyperspectral images before lossless
compression is beneficial. However, conventional onboard cloud detection methods are not
applicable all the time, especially for shadowed clouds or darkened snow-covered surfaces that
are not identified in normalized difference snow index (NDSI) tests. In this paper, we propose a
new spectral-spatial classification strategy to enhance the performance of an orbiting cloud screen
obtained on hyperspectral images by integrating a threshold exponential spectral angle map (TESAM),
adaptive Markov random field (aMRF) and dynamic stochastic resonance (DSR). TESAM is applied
to roughly classify cloud pixels based on spectral information. Then aMRF is used to do optimal
process by using spatial information, which improved the classification performance significantly.
Nevertheless, misclassifications occur due to noisy data in the onboard environments, and DSR is
employed to eliminate noise data produced by aMRF in binary labeled images. We used level 0.5 data
from Hyperion as a dataset, and the average tested accuracy of the proposed algorithm was 96.28% by
test. This method can provide cloud mask for the on-going EO-1 and related satellites with the same
spectral settings without manual intervention. Experiments indicate that the proposed method has
better performance than the conventional onboard cloud detection methods or current state-of-the-art
hyperspectral classification methods.

Keywords: onboard cloud detection; region of interest compression; thermodynamic phase;
spectral angle map; Markov random field; dynamic stochastic resonance

1. Introduction

As hyperspectral remote sensing technologies progress, hyperspectral imaging techniques [1]
are being widely used in many fields such as meteorology, earth observations and military affairs.
Meteorological satellites have obvious advantages in monitoring the continuity, spatiality and
tendency of qualitative changes in the atmospheric environment, providing indispensable information
for the omnidirectional monitoring of global atmosphere state. Unlike meteorological satellites,
earth observation satellites primarily sense changes in earth surfaces due to city planning, geological
prospecting, military reconnaissance and natural disasters. Regardless of the application background,
most remote sensing images contain clouds that, especially in the visible and infrared range, strongly
affect the received electromagnetic radiation. Historically, clouds cover approximately 70% of the
earth’s surface [2] and play a dominant role in the energy and water cycles of our planet. However,
the earth’s radiative budget or aerosol detection as influenced by clouds is not the focus of this paper.
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Typically, a piece of hyperspectral image data contains over 200 spectral bands, presenting challenges
for both data transmission and storage [3]. Future earth exploration missions will face unprecedented
data volumes generated, due to improvements in detector, optics and onboard data processing
technologies. Compared with meteorological satellites, the data sizes of earth observation satellites
are larger due to their higher spatial resolutions and revisiting frequencies. Satellite and ground
links (download speed) are heavily utilized, and readers can refer to the Appendix A for details.
It is given the fact that almost all these sensors have only limited memory capacity and the data
transmission from satellites to ground become inevitable for further data analysis [4]. Additionally,
the large data volumes affect mission requirements for the entire data processing chain, including
onboard digitization, storage, downlink, ground processing and distribution [5]. These bottlenecks
will curtail the instrument duty cycles, reducing science and application yield [6]. Based on the
specific applications, clouds are catalysts for meteorological research [7–9], yet are impediments
for earth observation [10,11]. For meteorological researchers, image data should be fully retained
and transmitted to the ground for further research. For non-meteorological researchers, clouds,
as a disturbance factor for earth explorations, will shaded the surface features of the target region.
As invalid data, data of over cloud regions can be discarded onboard directly. Therefore, removing or
retaining clouds constitutes two kinds of onboard processing strategy.

Data compression is necessary for onboard processing, but lossy compression methods are
unsuitable for hyperspectral images used in cases demanding accuracy, because the images are
intended to be analyzed automatically using computers [12]. Bandwidth constraints have motivated
new advanced lossless compression techniques such as the KLT algorithm [13–15], which has
achieved compression rates of four or greater. Efforts to optimize lossless methods eventually face
theoretical limits, but data size continues to increase, propelling research on other techniques that
can further reduce data volumes while preserving scientific gains. It is likely that only a part of an
entire image carries information of interest in a specific case. At this time, rather than the entire image,
only the region of interest (ROI) needs to be compressed [16]. In this way, higher compression ratios can
be achieved by simply not compressing those invalid data regions. Cloud regions are regarded to be
arbitrarily shaped, and ROI maps encoded using the ARLE [17] algorithm will be applied to describe
the shapes of cloud regions. An ROI map with pixel of 400 × 256 can maximally be compressed
into 3200 bits, achieving a compression ratio of 1:256, 0.002% of the original data size (fairly small).
Excising the cloud region data before compression could significantly reduce data sizes, yet an accurate
algorithm for real-time cloud detection in instrument hardware remains absent.

Most onboard cloud detection methods are based on the radiometric features of clouds. “Classical”
cloud detection applies threshold tests to image spectral properties [18,19]. Pixels whose values fall
outside of valid ranges are marked as clouds. For example, the algorithms corresponding to MODIS
compare the selected visible and near-infrared (VNIR) and near-infrared (NIR) bands to predetermined
thresholds and then aggregate the results in different combinations depending on land type [20–23].
These algorithms use a combination of 14 wavelengths and more than 40 tests. This underscores the
intrinsic difficulty of constructing a universal and complete cloud screening procedure. We focus
on the visible short wave infrared (VSWIR) electromagnetic spectrum from 0.4–2.5 µm. There are
many studies of cloud detection at those wavelengths, and algorithms vary in their assumptions
and complexity. Of direct relevance to this work, onboard cloud detection has been demonstrated
onboard the EO-1 spacecraft [24]. EO-1 cloud detection uses the solar zenith angle to compute the
apparent top-of-atmosphere (TOA) reflectance. It then applies a branching sequence of threshold tests
based on carefully crafted spectral ratios to distinguish clouds and bright landforms such as snow, ice,
and desert sand. EO-1 cloud detection also acts as a data filtering step prior to onboard cryosphere and
flood classification [25,26]. To our knowledge, it is the only previous case of cloud screening performed
on orbit. Another kind of onboard cloud detection algorithms is mainly based on ACCA. They are
used to give cloud-cover (CC) predictions to reduce cloud contamination in acquired scenes [27–29].
These onboard cloud detection methods are based on threshold decision trees (TDT) in general.
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Even more complex algorithms on the ground side have been proposed. Some state of-the-art
cloud-screening techniques estimate optical path from absorption features such as the oxygen
A band, as in Gómez-Chova et al. [30] or Taylor et al [31]. Thermal infrared (TIR) channels can add
brightness temperature information. Minnis et al., predicted clear-sky brightness temperature values
using ambient temperature and humidity and then excised pixels outside those intervals [32].
Texture cues can be utilized to recognize clouds by their high spatial heterogeneity [33]. Martins et al.,
demonstrated that a simple spatial analysis, i.e., the standard deviation of VNIR isotropic
reflectances in a 3 × 3 pixel window, reliably discriminated clouds from aerosol plumes over ocean
scenes [34]. Jin hu Bian et al., proposed a spectral signature and spatiotemporal context method
to distinguish snow from clouds [35]. A Markov random field model was developed to segment
hyperspectral image. Murtagh et al., represented spatial dependency using a prior probabilistic
Markov random field [36]. Haoyang Yu et al., proposed an adaptive MRF method combined with
SVM and achieved a good terrains classification performance [37]. Probabilistic models are another
kind of cloud detection method. Gómez-Chova et al., used a Gaussian mixture model to produce
posterior probabilities. The Bayesian probabilistic model of Merchant et al. combines observational
data with prior predictions from atmospheric forecasts, leading to true probabilistic predictions [38].
David R. proposed the decision theoretic method (DTM) based on a Bayesian probabilistic model.
The DTM achieved negligible false positives in cloud screening [39]. Recently, deep learning has been
widely used in classifications of HSI. Li Wei et al., proposed hyperspectral image classification using
deep pixel-pair features [1]. Bin Pan et al., proposed a kind of vertex component analysis network that
achieved better performance than some state-of-the-art methods [40].

TDT methods have more commission errors that are at high altitudes or at low solar illumination
where snow is misclassified as clouds. The probabilistic model methods and learning-based methods
(such as neural networks or supervised learning) have more omission errors. The omission errors
are associated with optically thin clouds over underlying surfaces because of the incompleteness of
training samples for this kind of cloud. Focusing on these problems, our method uses an exponential
spectral angle map, Markov random field and dynamic stochastic resonance. The rest of this paper is
organized as follows. Section 2 introduces the problems of onboard cloud detection methods in detail.
The proposed methodology for cloud detection is introduced in Section 3. Performance evaluations for
different operation scenarios using a decade-year historical image archive of the “classic” Hyperion
spectrometer is provided in Section 4. Section 5 discusses the advantages, limitations and applicability
of the proposed method. Section 6 presents the conclusions.

2. Related Work

TDT methods are typically used for onboard cloud detection now. Table 1 shows the typically
used bands of several TDT methods, all of which include normalized difference snow index (NDSI).
NDSI tests have difficulties detecting shadowed cloud and darkened snow covered surfaces [41],
as well thin clouds. A detected scene is shown in Figure 1. As presented in Figure 1a,e, it is hard to
completely classify the cloud pixels merely in spectral feature space due to various complex factors.
As the optical thicknesses of clouds differs, some omission errors (the yellow region in Figure 1e
of cloud detection occurred. The three spectral curves in Figure 1b were sampled from the three
crosses marked in (a). The spectral differences between thin and thick clouds are distinct, especially
in NIR bands. The reflectances of the thin cloud were respectively 62.2% and 14.8% of those of the
thick clouds were in the vicinity of 1.25 µm and 1.65 µm, respectively, because the spectrum of thin
clouds was heavily affected by the underlying surface. The large reflectance deviation entailed a
failure to achieve complete cloud detection for one set of parameters. Except for omission errors,
commission errors also exist in cloud detection (the green part in Figure 1e), because the spectral
features of clouds and snow-covered surfaces are sometimes similar under NDSI (differing particles
and illumination generate different reflectances). Figure 1c represents two scenes containing
liquid clouds, mixed phase clouds, ice clouds and snow. The spectral normalization of the four
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materials are shown in Figure 1d, in which the black curve represents the TOA reflectance of a piece of
a thick ice cloud, the cyan curve represents the TOA reflectance of an unknown portion of a mixed
phase cloud, where the ice phase may be dominant, the red curve represents the TOA reflectance of a
piece of a liquid cloud, and the blue curve represents the reflectance of snow. The normalized spectra
of the three cloud types of cloud are highly consistent. The greatest differences among three curves
appear near 1.65 µm. Specifically, liquid clouds share the highest reflectance near 1.65 µm, whereas the
reflectance of mixed phase clouds is lower and that of ice clouds is the lowest. Figure 1d indicates that
the spectral envelope of snow differs from that of clouds near 1.03 µm and 1.38 µm, yet snow and
clouds share almost all the same spectrum near 0.56 µm and 1.65 µm. Unfortunately, the spectrum
at 1.65 µm occurred to be used by NDSI (see the boldfaced characters in Table 1). For the above two
problems of the cloud detection, Figure 1f symbolically illustrates that cloud pixels and ground pixels
cannot be separated completely under a TDT classifier because of the overlap of spectral features.

Table 1. Spectrum used by threshold methods and disadvantage.

Method Spectra Utilized Disadvantage

ACCA [41]

0.45–0.52 µm, 0.52–0.6 µm,
0.62–0.69 µm, 0.76–0.96 µm,
1.04–1.25 µm, 1.55–1.75 µm

They use the NDSI = (ρ0.56−ρ1.65)/(ρ0.56 + ρ1.65)
index which contains spectral bands near 1.65 µm
to discriminate snow and clouds.
However, sometimes snow covered surfaces and
clouds cannot be classified clearly under NDSI
because the reflectance features of clouds and
snow particles sometimes are similar in
particular spectra.

HCC [24]
0.55 µm, 0.66 µm, 0.86 µm,
1.25 µm, 1.38 µm, 1.65 µm

DCC-ASE [25]

0.43 µm, 0.56 µm, 0.66 µm,
0.86 µm, 1.25 µm, 1.38 µm,
1.65 µm

(a)

(c)

(e)

(b) (d) (f)

Figure 1. Cloud detection results under the TDT method. (a) Original image; (b) spectra of thick clouds,
thin clouds and surface features that were sampled from red, blue and green crosses in (a); (c) Two
scenes that contain liquid clouds, mixed phase clouds, ice clouds and snow, which are labelled in the
figure; (d) spectra of liquid clouds, mixed phase clouds, ice clouds and snow sampled from the regions
in the boxes of (c) correspondingly; (e) cloud detection results under the TDT method (red denotes the
extracted correct cloud region, yellow denotes the omission errors and green denotes the commission
errors); (f) Diagrammatic sketch of the misclassification of ground and cloud pixels under TDT method.



Remote Sens. 2018, 10, 152 5 of 24

The influence of clouds on solar radiation is due to the reflectance, absorption and scattering of
radiation by cloud particles. It depends strongly on the dimensions, altitude, opacity, thickness and
composition of the clouds. The World Meteorological Organization (WMO) classifies clouds by altitude
and divides the troposphere vertically into three levels; low, middle, and high. Low-level clouds
are primarily constituted by water due to evaporation of water. Ice crystals constitute high-level
cloud because temperature is low high altitude. Middle-level clouds are composited by water
particles and ice particles. There are different types of clouds with different dimensions, opacities and
other properties that depend on several parameters and result in different effects on solar radiation.
Clouds are divided into ten types as seen in Table 2 . Ice crystals and water drops have different
impacts on the absorption and scattering of solar radiation especially in SWIR. According to statistics
from 184 scenes of Hyperion level 0.5 data, the solar reflectances of the 10 cloud types and different
ground types can be seen in the electromagnetic spectrum from 0.4–2.5 µm, as shown in Figure 2.
Different clouds may have different amplitudes of reflectance. After normalization, the envelopes of
the spectral curves are roughly the same, as shown in Figure 2a. However, different surface features
have different spectral reflectance, as shown in Figure 2b. In this paper, we paimarily focus on how to
detect cloud pixels rather than recognizing different types of clouds.

The pure threshold method is a simple, efficient, and practical approach for cloud detection,
but it is sensitive to background and cloud conditions, which makes it impractical for general
use [42]. Compared with the threshold method, spectral angle maps (SAM) have better cloud detection
performance because they take advantage of more spectral information. In this paper, we demonstrate
a cloud detection algorithm that mainly uses a threshold exponential spectral angle map (TESAM),
adaptive Markov random field (aMRF) and dynamic stochastic resonance (DSR). To obtain an accurate
cloud cover region, we present the TESAM-aMRF-DSR method for cloud detection. The following
sections describe the algorithm’s theoretical method.

Table 2. Characteristic of 10 cloud types.

Thermodynamic
Phase

Cloud
Type Region Altitude Characteristic

Water cloud
(low)

Cumulus (Cu); Stratus (St) frigid zone ground-2km

Composed of water droplets.Stratocumulus (Sc) Temperate zone ground-2 km

Cumulonimbus (Cb) Tropical region ground-2 km

Mixed phase
cloud

(middle)

Altocumulus (Ac) frigid zone 2–4 km Composed primarily of water droplets;
however, they can also be composed of
ice crystals if T is low enough.

Altostratus (As) Temperate zone 2–7 km

Nimbostratus (Ns) Tropical region 2–8 km

Ice cloud
(high)

Cirrus (Ci) frigid zone 3–8 km Typically thin and white in appearance,
but can appear in various colours when
the sun is low on the horizon.

Cirrocumulus (Cc) Temperate zone 5–13 km

Cirrostratus (Cs) Tropical region 6–18 km
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(a)

(b)

Figure 2. Spectral curve statistics of cloud and ground reflectance. (a) Normalized spectral reflectance
curve of different cloud types; (b) Normalized spectral reflectance curve of different materials.

3. Proposed Method

A new method is proposed to address the above-mentioned problems. The general framework
of the proposed methods is shown in Figure 3a. The hyperspectral images are processed by TESAM.
Initially, hyperspectral images were proposed by TESAM, which provided the basic classification result,
and aMRF was then used based on the classification. The output of aMRF was then used as the input
of DSR. Finally, the reference spectrum was refreshed in accordance with the final classification.
The flow of the above process is as follows. TESAM is composed of TDT and ESAM. Uncertainties in
illumination angle and thermodynamic phase will entail misclassifications when using TDT methods.
As shown in Figure 3b, certain part of the snow-covered ground and the ground whose spectrum
overlapped with the cloud spectrum were misclassified as cloud under TDT. Nevertheless, the TDT
method could still be used to obtain the preliminary area of the cloud region, ESAM was instrumental in
calculating the distance between two spectral vectors because it was robust to illumination variations.
Representing the composition of the spectral reflectance in the form of vector. ESAM calculates
the cosines of the angles between the target spectrum and the reference spectrum. The histogram
was then obtained from the calculated cosines of the angles. From the acquired preliminary cloud
area and histogram, we can identify whether the pixel is a cloud pixel. A distinctive feature of
cloudy pixel is that the non-absorbing 0.44 µm–0.96 µm wavelengths were sensitive to cloud optical
thickness (COT), and most absorbing channels within 1.03 µm–2.4 µm were sensitive to cloud effective
particle radius (CER). Having taken advantage of these bands, TESAM produced little misclassification.
The aMRF described the interaction between adjacent pixels by employing energy index, which is
jointly determined by spectral dimension and spatial dimension. The relations among eight adjacent
pixels in the spatial dimension were taken into consideration. The aMRF chose 1.38 µm–1.39 µm
and 1.46 µm–1.55 µm, which primarily took advantage of vapour reflectance bands. Although the
spectra of some thin cloud pixels and dark cloud pixels deviated from the threshold range, the aMRF
classification results bore a small error range. The omission and commission errors were both reduced
upon iterative processing using minimum energy. The aMRF was primarily applied for optimization.
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However, the onboard processing data were level-0.5, indicating that radiometric calibration of images
was absent. Therefore, as shown in the lower right part of Figure 3b, some points whose energies
had been mutated were be misclassified during the aMRF process. These misclassified points were
regarded as noisy points in the binary cloud mask. DSR eliminated those noisy points by using a
double-well model. By integrating attributes of adjacent pixels, DSR transferred isolated noisy points
from one state to another, acting as a refinement tool.

(a)

(b)

Figure 3. General framework and flowchart of the proposed method. (a) General framework of the
proposed method; (b) all the models of the proposed method and flowchart.

3.1. T-ESAM

SAM calculates the angle θ(x,y), where x and y are N-dimensional spectral, {xi}N
i=1,

and {yi}N
i=1, respectively:

θ(x, y) = arccos(
〈x, y〉
‖x‖ · ‖y‖ ), 0 ≤ θ ≤ π

2
(1)

where 〈x, y〉 is the scalar product between x and y

〈x, y〉 =
N

∑
i=1

xi · yi (2)
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and || · || represents the Euclidean norm, i.e.,
∥∥x2
∥∥ = 〈x, x〉. x represents the target spectral vector,

and y represents the referenced spectral vector.
TDT methods for onboard cloud detection such as the ACCA algorithm [27] for multispectral

and HCC algorithm [24] for hyperspectral and appear to be good discriminators for most cases.
The performances of these cloud detection algorithms are not good enough (75% of the ACCA scores
were within 10% of the actual cloud cover content) [27]. This situation can be improved under SAM.
In addidtion, we encapsulated the SAM metric inside an exponential function to produce the ESAM
function, which is a positive semi-definite function. The ESAM function is defined as

ESAM(x, y) = exp(−θ(x, y) · k) (3)

where k is the gain parameter. The resolution of ESAM decreases with decreasing k. Generally, k is set
to 0.5 (between 0 and 1). ESAM amplifies the angular distance between two vectors.

After the 3-D original hyperspectral image I[L,W,H] processing using ESAM, we can obtain a 2-D
computing result. The lowest value indicates the most similar spectrum. These data are probably a
cloud region if there are clouds in the image. Simultaneously, threshold algorithms also have been
used to detect cloud region results. We then can obtain the classifier by combining ESAM with
TDT, as shown in Figure 4. Employing the TDT method, we can obtain the number of cloud pixels
nTDT which is the solid red line. The cumulative frequency curve can be drawn when the histogram
of an image has been calculated. The intersection between nTDT and the cumulative frequency curve
locates the threshold value “a” of the ESAM histogram.

Figure 4. combination of ESAM with TDT.

g(n)

∑
i=g(min)

histogram(ESAM(I, y) = i) ≤ nTDT (4)

g(n+1)

∑
i=g(min)

histogram(ESAM(I, y) = i) ≥ nTDT (5)

where “histogram(ESAM(I,y) = i)” means the histogram statistics of the ESAM results between a
hyperspectral image and referenced spectrum that equals to “i”. g(min) and g(n) indicate the frequencies
corresponding to the minimum gray level and gray level n respectively. We then can obtain a classifier
parameter g(n) which coarsely detects the cloud region when g(n) jointly satisfies Equations (4) and (5).
The cloud detection coarse classifier is defined as

f (x) =

{
c1, i f ESAM(x, y) < g(n)

c2, i f ESAM(x, y) ≥ g(n)
(6)

The observed spectrum of instrument data forms a vector x with multiple spectral channels per
pixel. The cloud-screen decision maps those pixel brightness values to a binary classification c = f(x) :
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Rd → {c1, c2}, where c1 represents that there is a cloud present and c2 represents the event that clear
sky is observed. Classifier f (x) coarsely detects the cloud.

The pseudocode for the TDT algorithm combined with the ESAM algorithm, abbreviated as TDT
assisted ESAM, is shown in Algorithm A1 which is in Appendix B.

3.2. aMRF Model

The MRF model provides an accurate feature representation of pixels and their neighbourhoods.
The basic principle of aMRF is to integrate spatial correlation information into the posterior probability
of the spectral features. Based on the maximum posterior probability principle, the classic MRF model
can be expressed as follows:

p(xi) = −
1
2

ln|ΣK| −
1
2
(xi −mk)

TΣ−1
K (xi −mk)− γi ∑

αi
[1− δ(ψki, ψεi)] (7)

where mk and ΣK are the mean vector and covariance matrix of class k, respectively. The neighborhood
and class of pixel i are represented by εi and ψk, respectively. Equation (6) separates the pixels of
a remote sensing image into 2 classes: ground pixels and cloud pixels. The parameter γi is the
weight coefficient, which is used to control the influence of the spatial term.

To obtain the local spatial weight coefficients γi, Chien-I Chang [43] among others used the
noise-adjusted principal components (NAPC) transform. It can be uesd to obtain the first principal
component to calculate the γi:

γi = γ0 · RHIi = γ0 ·
vark
vari

(8)

where vark represents the class-decision variance of the neighbourhood of pixel i as determined by
majority voting rules and vari is the local variance of pixel i [44]. When RHIi is high, it can be
concluded that pixel i is located in a homogeneous region. By contrast, pixel i is on a boundary when
RHIi is low. The local spatial weight coefficient when vari = vark; usually, γ0 = 1.

According to Equation (7), the aMRF model can be divided into two components: the energy
of spectral term ai(k) and the energy of spatial term bi(k). Thus, Equation (7) can be represented in
the form

p(xi) = ai(k) + γi · bi(k) (9)

where δ(ψki, ψεi) is the Kronecker delta function, which is defined as

δ(ψki, ψεi) =

{
1, ψki = ψεi

0, ψki 6= ψεi
(10)

The pseudocode for the TESAM algorithm combined with the aMRF algorithm,
abbreviated TESAM-aMRF, is shown in Algorithm A2 which is in Appendix C.

3.3. Dynamic Stochastic Resonance (DSR) Model

The DSR model here is used to denoise the cloud mask. In analogy to Benzi’s double-well model,
the binary image pixel value is treated as the position of a particle in a double well. The addition of
stochastic energy affects its transition to the strong signal state, just as a particle makes a transition
from one well to another. Such a change in the state of a pixel under noise can be modelled by the
Brownian motion of a particle placed in a double-well potential system, such as that shown in Figure 5.
Particle A is located in the left well. The state of particle A may or may not turn over in the double
well after providing stochastic energy to A. The location of particle A may be at point B if it does not
turn over or at point C if it turns over. The left and the right wells represent the black and white pixels
of a binary cloud mask, respectively.
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Figure 5. SR in a double-well potential valley.

A classic 1-D nonlinear dynamic system that exhibits SR is modelled with the help of the Langevin
equation of motion is given below

m · d2x(t)
dt2 + γ · dx(t)

dt
= −dU(x)

dx
+
√

D · ξ(t) (11)

This equation describes the motion of a particle of mass m moving in the presence of friction,
γ. The restoring force is expressed as the gradient of a bistable potential function U(x). In addition,
there s an additive stochastic force ξ(t) of intensity D.

If the system is heavily damped, the inertial m d2x(t)
dt2 term can be neglected. Rescaling the system

in (11) with the damping term γ gives the stochastic overdamped Duffing equation, which is frequently
used to model non-equilibrium critical phenomena as given in (12)

dx(t)
dt

= −dU(x)
dx

+
√

D · ξ(t) (12)

where U(x) is a bistable quartic potential given by

U(x) = −a · x2

2
+ b · x4

4
(13)

Here, a and b are positive bistable double-well parameters. The double-well system is stable at

xm = ±
√

a
b separated by a barrier of height ∆U = a2

4b and when ξ(t) is zero. The Langevin equation
describes the motion of particle in a general double-well.

The pseudocode for the aMRF algorithm combined with the DSR algorithm, abbreviated as
aMRF-DSR, is shown in Algorithm A3 which is in Appendix D.

4. Feasibility Study

4.1. Dataset

In this section, we evaluate the performance of the proposed algorithms by employing the widely
used hyperspectral data from the Hyperion EO-1 sensor. The data used in onboard processing are level
0.5 and were downloaded from the USGS website. The dataset contains city, ocean, forest, mountain
range, desert, snow and cryosphere terrains. The time spans include spring, summer, autumn, winter,
morning, noon and dusk of the years of the most recent decade. The span of latitudes contains tropical,
subtropical, temperate, frigid and polar zones. Geographical distribution of the selected scenes is
spread all over the world. The season distribution included all seasons but primarily focused on winter.
The statistics of the test dataset are shown in Figure 6.
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(a) (b)

(c)
(d)

Figure 6. Test dataset description. (a) Geographical distribution of the selected scene; (b) Distribution
of seasons for the selected scene; (c) Time distribution of the selected scene; (d) Number of Scenes for
each terrain.

In meteorological research, clouds are labelled pixel by pixel using particle scattering models.
The single scattering properties of liquid water clouds are calculated from Mie theory [45] and
are integrated over a Modified Gamma droplet size distribution. The single scattering properties
of ice clouds are obtained from Yang et al. [46]. Computed single scattering properties (single
scattering albedo, asymmetry parameter, extinction efficiency, phase function) for both ice and liquid
water clouds are stored in the LUT. However, for earth observed satellites, resolution is higher than
that for meteorological satellites. Particle scattering models cannot guarantee that each cloud pixel
has been labelled using just the spectrum. Cloud ground truth is determined by manual labelling
using the Visual Cloud-Cover Assessment method (VCCA). This method was used as a measure of the
true cloud cover in the scene. Photoshop’s magic wand and freehand lasso tools were used to isolate
clouds. The wand employs a seed-fill threshold algorithm to compute regions of brightness similarity
based on a mouse click on a single pixel. The algorithm compares the selected pixel’s brightness
values to those of all other pixels and retains those within a selectable tolerance threshold. Additional
cloud pixels were added by using the wand repeatedly until the cumulative selection of visible clouds
had essentially zero possibility of VCCA omission errors. Snowfields and other unwanted bright
features were then manually subtracted using the lasso tool to reduce VCCA commission errors.
All this work was undertaken by well-trained professional persons. After the VCCA scores were
established, the result was a binary cloud mask that allowed a cloud cover percentage computation
that served as the cloud “truth” for validating the accuracy of our proposed method. The manual
labelling uncertainty is the border of thin clouds and cirrus clouds which are floating above the snow
especially in visible bands. Therefore, it is necessary to use infrared bands to assist with labelling cloud
pixels, but choosing which bands to separate cloud pixels from ground pixels maximally depends on
surface features which yields another kind of uncertainty.

4.2. Accuracy Accessment

Three different accuracies measures, precision, recall and FPR, were used to assess the accuracy
of the algorithm results. True Positive (TP) is defined as the number of cloud pixels correctly labelled
as clouds by the algorithm, the False Negatives (FN) measure is defined as the number of pixels
incorrectly labelled as non-clouds , and the True Negatives (TN) measure is defined as the number of
non-cloud pixels that are labelled as non-clouds. The precision, recall and FPR are then defined as

Recall = TP/(TP + FN) (14)
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Precision = TP/(TP + FP) (15)

FPR = FP/(FP + TN) (16)

In the cloud case, precision denotes the proportion of correctly detected cloud pixels in the cloud
detection results, whereas recall is the proportion of all pixels detected as clouds that are actually
clouds in the image. Precision and recall, better reflect cloud classification errors than overall accuracy.

4.3. Detection Results

Figure 7 shows the cloud detection results for different terrains. We can see that a sheer visual
comparison of the results and the false colour composites shows that the algorithm developed in
this study scored favourable achievements when detecting cloud pixels. Figure 7a represents a
summer image of cirrostratus over desert acquired on 8 August 2013. The detection results reveal
that the proposed algorithm is well qualified in excluding clouds from desert, even though the
clouds were so thin that their spectra were mixed with that of the desert pixels. Figure 7b is a
winter image acquired on 3 June 2013 of dark stratus over the ocean and coast. Clouds contain
water droplets that have the same materials as the ocean in that season; however, water in the
ocean is in the form of liquid, and water in clouds is in the form of an aerosol. The spectra of the
same material is differ as form or temperature differs. The omission error rate were approximately
1.73% in the yellow region, which is different from manually labelled cloud mask of the border
of the thin clouds. Figure 7c shows an image of cumulus and stratocumulus acquired at noon in
the spring on 22 May 2012 around the Himalayan mountains, and Figure 7d shows an image of
altocumulus over mountains acquired at dusk in the winter on 3 January 2007, the omission error rate
of which was 0.62%. Compared with Figure 7d, Figure 7c seems to show lighter due to the smaller
sun zenith angle. However, both images show favourable cloud detection results, even if the darkened
clouds can also be detected. Figure 7f shows an image of cumulus over Haerbin, Heilongjiang
Province acquired on 28 March 2005. Given that both the freezing river and city highlights were
classified as clouds, there was approximately 0.23% commission errors. In the suspected cloud region,
there was 0.16% omission errors. Figure 7e,i,j show images of clouds over snow or ice. The image
of stratocumulus clouds over a snowfield in the cryosphere shown in Figure 7e was acquired on
12 May 2012, and approximately 4.8% of cloud pixels in the entire image are indistinguishable by the
naked eye. These pixels are floating over the snow field. The commission error rate was 0.41% when
compared with the classification of the manually labelled cloud mask. Figure 7i presents a spring image
acquired on 17 March 2007 of altostratus clouds over a snow-covered mountain. Because altostratus
clouds lack clear outlines in visible bands, the edges of the altostratus clouds look quite similar to
the ground edges. Although approximately 2.97% of the cloud pixels are hard to distinguish by the
naked eye in the visible bands, they were properly classified using the proposed method. The spring
image shown in Figure 7j, which was obtained on 28 March 2005, shows cumulus clouds over a forest
covered by frozen lake. Most of the cumulus clouds are floating over the ice. They share 0.21% of the
omission errors.
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Figure 7. Cloud detection results for different kinds of ground. (a) Desert with thin cirrostratus and
cloud detection result; (b) Ocean with dark stratus and cloud detection result; (c) Mount Qomolangma
with stratocumulus and cloud detection result; (d) Mountain with dark altocumulus and cloud
detection result; (e) Snow cover with straocumulus and cloud detection result; (f) Highlight city
with frozen lake scene and cloud detection result; (i) Mountain with thin altostratus and cloud
detection result; (j) Frozen field with cumulus and cloud detection result. (Red denotes extracted
correct cloud regions (TP), yellow denotes missed cloud regions (omission errors/FN) and green
denotes non-cloud regions misjudged as cloud regions (commission errors/FP)).

4.4. Cloud Detection Performance of Each Stage

Depicting the cloud condition of EO-1 Hyperion images from four different states, Figure 8
presents the performance of the proposed algorithm performance at each processing stage. By visually
comparing the results with the false colour composites, we observe that there were FN classifications
in the light cloud region under the TDT method because various reflectances shared fixed parameters,
as shown in Figure 8h. Contrarily, TESAM was able to correctly classify the cloud regions that were
misclassified under the TDT method, as shown in Figure 8i. In addition, various reflectances did not
exert much influence over cloud detection. Compared with TDT, TESAM seems to be conservative,
abstaining from ambiguous classification to prevent mixtures of heterogeneous spectra for the aMRF
procedure. The ambiguous classification is shown in the yellow circle of Figure 8k. These region
were not labelled as clouds under TESAM, as shown in Figure 8l. After TESAM detection, the cloud
regions detected using TESAM worked as seed regions during aMRF. By comparing the yellow
circles of Figure 8d,e, we can identify that after aMRF detection, some cloud regions grew more
fuller. In addition, because aMRF is fault-tolerant, the TN regions regained to ground pixels. Detailed
introduction of the iterative process of aMRF will be presented later. Nevertheless, the spectra of some
individual pixels were quite similar to those of clouds under selected bands for aMRF. Therefore, even
if the neighbours’ contributions were considered, the energy of those pixels under aMRF remained
weak. Those cloud mask pixels were taken as noisy points by DSR. A comparison of Figure 8m,n
uncovers that DSR turned the binary properties of those noisy points over. As presented in Figure 8n,
the vertical line and some isolated pixels in Figure 8m were eliminated after DSR processing.
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Figure 8. Comparison of cloud detection results. (a) A winter image acquired on 7 December 2013,
with obvious clouds over the entire image; (b) Manually labelled image result; (c) Cloud detection result
using TDT method; (d) Cloud detection result using the TESAM method; (e) Cloud detection based on;
(d) using the aMRF method; (f) Cloud detection based on (e) using DSR; (g–i) show the original picture,
TDT labelled and TESAM labelled images of the cloud region respectively. (g–i) correspond to the
red boxes in (a,c,d) respectively; (j–l) correspond to the original picture, TDT labelled and TESAM
labelled iamges of cloud region respectively.(j–l) correspond to the orange boxes in (a,c,d) respectively;
(m) is the result of aMRF processing and corresponds to the purple box in (e); and (n) was processed
using DSR based on (e) and corresponds to the purple box in (f).

A detailed example of the aMRF iterative process is shown in Figure 9. The cloud regions that
were detected using the TDT method and TESAM were rather limited (0.02% and 0.12% of TP were
within 18.3% of the actual cloud cover content). Only a few detected cloud pixels existed in the mask,
as seen in Figure 9a,b. The TESAM detection result was treated as an initial classification for aMRF.
Comparing Figure 9c–h, the aMRF method was obviously strongly robust when the spectrum of the
initial seed region (seed region) was pure enough. The initial classification of each time of iteration was
the result of the previous iteration, and after the 8th iteration, the classification was in good agreement
with the real cloud region. In addition, the image tended to be convergent at the 16th iteration.

Figure 9. The detailed aMRF iteration results. (a) Original image; (b) TESAM classification result ;
(c–h) The 1st, 2nd, 4th, 8th, 16th and 30th aMRF iteration results respectively.

Figure 10 shows a comparison of the cloud detection performance of some methods. The terrains
from the first row to the last row are ocean, mountain, city, desert, ice and cryosphere. It can be
observed that the proposed method produced the best precision ratio and recall ratio and its error
was lower thatn those of the other methods. ACCA had high FN for ordinary terrain and high FP for
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special terrain due to the lack of the thermal infrared band. HCC had difficulty detecting thin or dark
clouds. The Decision Theoretical Method(DTM) classified the majority of the thin clouds as ground.
It had a high FP under DTM. The support vector machine adaptive Markov random field (SVM-aMRF)
and rolling guidance filter and vertex component analysis network(R-VCANet) had higher recall ratios
and precision ratios than those of the previous two. Nevertheless, they still produced classification
errors for thin clouds primarily because thin clouds are mixed with other spectra that cannot be learned
sufficiently. The ROC and precision/recall curves are shown in Figures 11 and 12.

Origin ACCA HCC SVM-aMRF R-VCANet TESAM-aMRF-DSR

Figure 10. Cloud detection performance comparasion. (Red denotes the extracted correct cloud
regions (TP), yellow denotes the missed cloud regions (omission error/FN) and green denotes the
non-cloud regions misjudged as cloud regions (commission error/FP)).
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(a) (b)

Figure 11. Comparison of the performances of the different algorithms. (a) ROC curve of cloud
detection performance for each method; (b) Precision performance curves corresponding to recall for
each method.

(a)

(b)

Figure 12. Statistics of each iteration results of aMRF and DSR. (a) over all accuracy of aMRF
iteration results; (b) over all accuracy of DSR iteration results.

5. Discussions

5.1. The Effectiveness of Combining the Threshold Decision Tree and Spectral Angle Map

Spectral Angle Maps are widely used due to their simplicity and geometrical interpretability.
SAMs are invariant to the (unknown) multiplicative scaling of spectra due to differences in illumination
and angular orientation. The invariance of multiplicative scaling constitutes one of the most
important properties of spectral angle distance. Due to the invariant nature of angles among
linearly scaled variations, the spectral angle between two pixels is more sensitive to the shape of
the spectral signatures than absolute intensities. Traditional TDT methods sometimes overestimate or
underestimate cloud regions because fixed parameters were unsuitable for changing illumination and
angular orientation. In theory, the TESAM method could reduce the misclassification.

5.2. The Usefulness of Spatial Information for Cloud Detection

For still existing wrong classification pixels after TESAM, aMRF was used to employed all the
spectral and spatial information into an energy index to identify the class attribute at the regional scales.
In general, the optimal status was recorded when the energy was stable, and the iteration was then
terminated accordingly. The aMRF mainly chose vapour reflection bands (1.38 µm∼1.39 µm and
1.46 µm∼1.55 µm). Although the spectra of thin cloud pixels and dark cloud pixels deviated from
the threshold, aMRF was able to again recognize those cloud pixels. The cloud mask from aMRF
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contained noisy points because the data processed onboard were level 0.5 and had not been fully
calibrated. The radiance and reflectance values for level 0.5 SWIR bands should be considered as
pseudo-radiances and pseudo-reflectances. DSR could eliminate those noisy points in the binary
mask, which is a refinement process for cloud detection. The iteration results for the aMRF and DSR
detection accuracies are presented in Figure 12, for which we randomly selected parts of the dateset.
The aMRF iteration accuracy each time results is shown in Figure 12a. The 0th iteration represents the
overall accuracy of TESAM. During aMRF iteration, the detection accuracy increased more or less each
time. The differing improvements in the level of detection accuracy under aMRF iteration resulted
primarily from cloud conditions. The termination condition for aMRF iteration was that the rate of
pixel attributes changed over two adjacent iterations was within 0.5% of the overall pixels. The DSR
iteration accuracy is shown in Figure 12b. The 0th iteration represents the overall accuracy of aMRF.
During the DSR iteration, the accuracy of each iteration increased slightly, yet it eliminated numerous
isolated noise-points, greatly benefiting ROI compression. The DSR iteration termination condition
was that the rate of pixel attributes changed over two adjacent iterations was within 0.005% of the
overall pixels.

5.3. Error Sources of the Proposed Method

In brief, the cloud detection results uncover that the proposed method scored favourable
achievements when detecting clouds in EO-1 images. However, two sources of error that might
influence algorithm accuracy should also be noted. The first is that the cloud region detected using the
TDT algorithm was larger than its actual size, which may have resulted from unsuitable parameters.
Correspondingly, TESAM overestimated the area of the cloud region in that the size of the cloud region
was jointly by TDT and TESAM histogram. In that manner, the FPR region of TESAM results was also
increased because impure cloud spectra may lead to classification errors for large areaa under aMRF.
The second is that the selected bands for aMRF might not be the best choice for all types of surface
features. In this case, the advantage of high spectral purity in the seed region will be lost when the
contribution from the neighbour is insufficient.

5.4. Effect of Compression Based on Cloud Detection

The compression effect is worth mentioning. The cloud region is filled by optimal values after
obtaining the cloud mask, and the cloud region data can then be removed through compression.
For a Hyperion image with a cloud cover rate 30.12%, the data size of the filled-value compression is
71.27% of that for the original lossless compression. The difference between the lossless compression
ratios for the ground and clouds should be considered, and non-filling cloud regions contribute
less to compression than the filled cloud regions. According to statstics, the relationship between
compression quantity and cloud ratios is shown in Figure 13. The regression line reveals that the ratio
of compression data volumes between filled and non-filled cloud regions is approximately proportional
to the cloud cover ratio. The tendency shapes linear. In addition, the closer it gets to 1:1, the better
the compression performance of filling-value is. Certain points exceeding 1 indicate that those scenes
contained small thin clouds, whereas some points close to zero revealed that the scene was completely
covered by cloud.
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Figure 13. Statistics of cloud cover and ratio of compression quantity between filled and non-filled
cloud regions.

5.5. Applicability of the Developed Methods in the Feature

The proposed method is highly automatic and efficient when processing huge volumes of
real-time images. It can easily be implemented on parallel processors, such as FPGAs. External storage
devices or architectures such as ping-pong structures are in demand because they can restore
data for supporting the use of spatial context. Moreover, classifiers instantiated in hardware
logic have achieved in the implementation of arccosine [47], exponentials [48,49] functions,
and even floating-point operations, supporting numerous classifiers and the simple operations of
nonlinear classifiers. Additionally, real-time for processing is required. The bandwidth of multi DDRs
could satisfy Gb/s algorithm throughputs using a small fixed number of arithmetic operations on
locally available data. The proposed method can also be applied to images acquired by similar satellite
instruments that have similar spectral bands and temporal resolutions. The method presented in this
paper is general and further tests will be conducted in other regions with different environments.

6. Conclusions

TESAM-aMFR-DSR is an innovative approach for onboard cloud detection. Different from
classical hyperspectral cloud detection algorithm, the proposed method combines TDT with ESAM.
As the initial seed region of cloud for aMRF, it improves spectral purity. The aMRF method uses
an energy index by combining spectral features with spatial information. It is robust to shadowed
regions of clouded areas, thin clouds and misclassified ground pixels. There are noisy points that are
misclassified during the aMRF process due to the use of onboard processing data that are not fully
calibrated. DSR then eliminates those noisy points using a double-well model. The cloud detecion
results obtained in this study demonstrate the performance of the proposed method. The performances
of this method were evaluated using EO-1/Hyperion images. Agreements were found between
detection results and a manually labelled image, with an overall accuracy of 96.28%. By using spatial
information, approximately 8.35% of the misclassified cloud pixels from the initial spectral tests were
excluded. The compression quantity ratio between the filled and non-filled scenes is approximately
proportional to cloud cover ratio. The tendency is linear. Filled cloud regions improve compression
performance. In conclusion, the proposed method exhibited high accuracy for clouds recognition
using EO-1 Hyperion images and was an improvement over traditional spectral-based algorithms.
The proposed method can also be adapted for images acquired by the satellite instruments with similar
spectral bands and temporal resolutions.
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Abbreviations

The following abbreviations are used in this manuscript:

ACCA Automatic Cloud Cover Algorithm
aMRF adaptive Markov Random Field
CC Cloud Cover
DCC-ASE Detection of Cryospheric Change Automonous Sciencecraft Experiment
DSR Dynamic Source Resonance
DTM Decision Theoretic Method
EO-1 Earth Observing-1
ESAM Exponential Spectral Angle Map
FL Fast Lossless
FN False Negative
FP False Positive
FPR False Positive Rate
HCC Hyperion Cloud Cover
HSI Hyperspectral Image
LUT Look Up Table
MRF Markov Random Field
MODIS Moderate-resolution Imaging Spectroradiometer
NAPC Noise-adjusted Principle Components
NDSI Normalized Difference Snow Index
NIR Near Infrared
ROC Receiver Operating Characteristic Curve
ROI Region of Interest
R-VCANet Rolling Guidance filter and Vertex Component Network
SAM Spectral Angle Map
SVM Support Vertor Machine
SVM-aMRF Support Vector Machine adaptive Markov Random Field
TDT Threshold Decision Tree
TESAM Threshold assisted Exponential Spectral Angle Map
TIR Thermal Infrared
TN True Negative
TOA Top of Atmosphere
TP True Positive
USGS United States Geological Survey
VNIR Visible and Near Infrared
VSWIR Visible and Short Wave Infrared
WMO World Meteorological Organization
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Appendix A Some Parameters for Meteorological Satellite and Earth Observation Satellite

Table A1. Meteorological satellite vs. Earth observation satellite.

Satellite The Used Sensor Image Resolution Data Size Download Speed

Meteorological

satellite

FY-3A MERSI 1100 m 4GB 93 Mb/s

Noaa18 AVHRR 1100 m / 138 Mb/s

GMS-5 VISSR 1250 m / 14 Mb/s

Meteosat VISSR 1000 m / 3.2 Mb/s

Meteor-m2 KMSS 1000 m / 665 kb/s

Earth

observation

satellite

EO-1 Hyperion 30 m / 120 Mb/s

NEMO(HRST) AVIRIS 20 m 227 GB 150 Mb/s

QuickBird QuickBird 0.6 m 128 GB 320 Mb/s

LANDSAT8 OLI/TIRS 15 m 400 GB 330 Mb/s

EROS B1 Panchromatic 0.82 m / 280 Mb/s

Resurs dk1 ESI 1 m 768 GB 330 Mb/s

Appendix B Pseudocode for the TESAM Model

Algorithm A1 TDT assisted ESAM

Input: the remote sensing image data I with K pixels, each pixel is N-dimentional spectral vectors

X={xi}N
i=1, the referenced spectrum Y={yi}N

i=1
Output: the class labels map M

step1:
for k=1 to K do

E_I=ψ(XK, Y) (ψ computes the exponential spectral angle according to Equations(1)-(3)).
end
for k=1 to K do

nTA_I=φ(Xk) (φ computes the number of cloud pixels according to TDT)
end

step2:
Computes the histogram of E_I

step3:
for k=1 to n do

g(n)_I = Ω(E_I) (Ω computes the threshold for ESAM according to Equations(4)-(5))
end

Step4:
for k=1 to K do

f (x)_I=Υ(E_I) (Υ determine the binary class label according to Equations(6))
end
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Appendix C Pseudocode for the aMRF Model

Algorithm A2 TESAM-aMRF

Input: the remote sensing image data I with K pixels, each pixel is n-dimentional spectral vectors X =

{xi}n
i=1, the referenced spectrum Y={yi}n

i=1, the class labels map M.
Output: the class labels map M′

step1: Computes the labels map M (results of TDT-ESAM) according to Algorithm 1;
step2: Computes the mk and Σk according to class labels map and I; (k=2);
step3: Computes the p(xi) according to Equations (7)-(10), where computing the Equations (10) with

class labels map;
step4: Refresh the class labels map M with minimal class of p(xi);
step5: Iterate the procedure of step2-step4;

Appendix D Pseudocode for the DSR Model

Algorithm A3 aMRF-DSR

Input: the class labels M′

Output: the class labels M f inal
step1:

for k=1 to K do
Ck = ζ (M′(k)=cloud), Gk = ζ (M′(k)=ground) (ζ computes the pixel number of 8-neighborhood

around pixel k that belongs to ground and cloud respectively);
compare Ck and Gk , designating the number of bigger one to ξ(t);
Refresh x according to Equations (12)-(13);

end
step2: Refresh M′

step3: Iterate the procedure of step1-step2;
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