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Abstract: Airplane detection in remote sensing images remains a challenging problem due to
the complexity of backgrounds. In recent years, with the development of deep learning, object
detection has also obtained great breakthroughs. For object detection tasks in natural images,
such as the PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning) VOC
(Visual Object Classes) Challenge, the major trend of current development is to use a large amount
of labeled classification data to pre-train the deep neural network as a base network, and then
use a small amount of annotated detection data to fine-tune the network for detection. In this
paper, we use object detection technology based on deep learning for airplane detection in remote
sensing images. In addition to using some characteristics of remote sensing images, some new data
augmentation techniques have been proposed. We also use transfer learning and adopt a single deep
convolutional neural network and limited training samples to implement end-to-end trainable
airplane detection. Classification and positioning are no longer divided into multistage tasks;
end-to-end detection attempts to combine them for optimization, which ensures an optimal solution
for the final stage. In our experiment, we use remote sensing images of airports collected from Google
Earth. The experimental results show that the proposed algorithm is highly accurate and meaningful
for remote sensing object detection.

Keywords: airplane detection; end to end; transfer learning; convolutional neural networks

1. Introduction

Object detection in remote sensing images is important for civil and military applications, such
as airport surveillance and inshore ship detection. With the rapid development of high-resolution
satellites, high-resolution remote sensing image data increased dramatically, providing the possibility
for developing a more intelligent object detection system in remote sensing images. Aircraft detection
in remote sensing images is a typical problem of small target recognition under a wide range. Although
it has been studied for years [1,2], most of those methods show low efficiency of large-area airplane
detection and are often limited by a lack of ability to apply them to other objects. In the face of complex
and various object conditions, it is an important and urgent problem to be solved efficiently and to
detect specific targets accurately in object detection applications. In this paper, we mainly focus on
airplane detection around airports, which means that we assume the airport has been located already
by other methods.

In recent years, almost all technologies with outstanding performance in object detection are
based on deep convolutional neural networks, which is attributed to the success of AlexNet [3] in the
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ImageNet [4] Large Scale Visual Recognition Challenge in 2012, which demonstrated that features
extracted by the convolutional neural networks are more robust than hand-crafted features, such as
SIFT (Scale-invariant Feature Transform) [5] and HOG (Histogram of Oriented Gradient) [6]. In the
following years, GoogLeNet [7], VGG (Visual Geometry Group) [8], and ResNet [9] base networks were
designed and greatly improved the accuracy of image classification. Different from image classification,
object detection not only needs to identify the object category, but also needs to give the location of
the object. In 2014, R-CNN (Regions with CNN features) [10] applied convolutional neural networks
in the field of object detection, and continuously made great breakthroughs in this field with great
improvement in detection accuracy and speed. At present, the object detection based on deep learning
can be mainly divided into two categories. One is the two-stage object detection framework combining
region proposal and CNN classification, which is represented by R-CNN, including SPP-NET [11],
Fast R-CNN [12], and Faster R-CNN [13]. The other is the object detection framework with a single
stage. Using a single convolutional neural network, the object detection problem is transformed into a
regression problem, which is represented by YOLO (You Look Only Once) [14] and SSD (Single Shot
MultiBox Detector) [15].

Numerous studies have proved that object detection frameworks based on deep learning are not
only feasible, but also have very good detection effects on natural images. Most of them are highly
ranked in major object detection competitions, such as PASCAL VOC [16] and COCO (Common Objects
in Context) [17]. However, few people directly study deep-learning-based object detection in remote
sensing images. The primary reason for this is that there is a lot of labeled data in natural images,
such as ImageNet, and it is also used widely in natural images. Therefore, deep learning in natural
images has developed even faster. Unlike natural images, remote sensing images have some features
that natural images do not:

1. Resolution information often is given by the remote sensing images, so the size of the object
in the image can be inferred based on some prior knowledge, which is crucial for the object
detection task.

2. The observed field of view changes very slightly. Natural images from different perspectives will
have a great difference, while all the remote sensing images are obtained from a top-down view,
which also makes the visual changes of object usually minimally severe.

3. The object in the remote sensing image is, generally, relatively small when compared with
the background, but the current small object detection is not well solved in the natural image.
Therefore, improvements still need to be made when applying the detection algorithm on natural
images to determine object detection in remote sensing images.

In summary, it can be considered that, in natural images, object detection based on deep learning
develops rapidly due to the large amount of data that is annotated. It is also possible to better use
metrics to evaluate algorithm performance due to many publicly-available large datasets. However,
the data acquisition in remote sensing images is relatively difficult, the standard datasets are relatively
few and the application scope is also small. The above reasons are why the research of object detection
in remote sensing images lags behind that of natural images. In theory, both natural and remote sensing
images are pixel matrices, so this does not affect the application of the deep learning framework in
natural images to remote sensing images. The contribution of this paper includes the following points:

1.  We collected samples of the airplanes from Google Earth and labeled them manually. In addition
to the common data augmentation operations in natural images, we also add rotation and
other operations.

2. Using the idea of transfer learning and a limited number of airplane samples for training,
an end-to-end airplane detection framework is achieved, as shown in Figure 1.

3. A method is proposed to solve the size restrictions of the input images, which first divides the
image into blocks and then detects the airplane.
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This paper will be elaborated with the following sections: Section 2 introduces object detection
techniques based on deep learning and airplane detection in remote sensing images. Section 3 describes
our method in detail. Section 4 presents the experimental results and related analyses. Section 5
provides a summary of the paper.
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Figure 1. Airplane detection framework. We add a MultiBlock layer and MapBlock layer based on the
SSD (Single Shot MultiBox Detector). After the MultiBlock layer, each block is resized to 512 x 512.
As is shown, we use VGG (Visual Geometry Group) 16 as the base network. The prediction result of
each block is mapped back to the original image after passing the MapBlock layer.

2. Related Work

In this section, we will review some techniques of object detection based on deep learning and
the related work on airplane detection; this section will also introduce the transfer learning used
in this paper. These algorithms are very prominent in the object detection tasks of natural images.
Some algorithms have high precision, while others win by speed. However, there are some defects
that cannot be neglected when the algorithms are applied to remote sensing images.

2.1. Object Detection with CNNs

The series of R-CNN algorithms have become one of the mainstream techniques in the field of
object detection, which benefits from the success of these algorithms in competitions such as PASCAL
VOC, and COCO. Its idea, region proposal + CNNS, is very easy to accept. The R-CNN series mainly
includes Fast R-CNN and Faster R-CNN. Due to the lack of object size information, a sliding window
search in the early stage is unable to determine the size and search scope of the sliding window when
detecting objects in natural images. This results in extremely low efficiency. The sliding window
algorithm still has high costs, even in remote sensing images with known resolution. Adopting more
effective region proposal algorithms can allow for using more sophisticated classifiers, which is widely
applied in mainstream object detectors [10-12]. This may also improve detection quality by reducing
false positives [18] due to the difference in the number of detection windows. The selective search
algorithm used by R-CNN is an alternative to the sliding window algorithm, which maintains a high
recall rate while calculating at high speed. The variants of the original R-CNN algorithm, SPP-NET,
and Fast R-CNN, inherit this idea. However, the traditional region proposal methods do not perform
well on data with more complicated backgrounds. Most of them, such as selective search, cannot take
advantage of the computational efficiency of the GPU. Additionally, the parameters of these methods
are hard to choose, and are usually determined through a combination of trial and error, and experience.
Settings that work well for one image may not work at all for another. The detection speed and recall
rate are improved further until the Faster R-CNN automatically extracts the region proposal using the
RPN network.

Different from the R-CNN series, the YOLO series adopts the detection method with one stage,
which is skipping the step of extracting the region proposal. It uses the method of dividing the input
image into an S x S grid (YOLO) or setting the default box (SSD) to predict the object category
and location directly, which further simplifies the training and detecting process. YOLO is very fast;
it predicts based on the global information of the image, which is different from the object detection
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algorithm based on region proposal. However, YOLO has poor prediction of the object position, and the
detection effect on small objects and dense objects is not good. YOLO can reduce the probability of
predicting the background as an object, but it also leads to a lower recall rate.

Our network framework is based on the SSD detection model. SSD combines Faster R-CNN's
anchor with YOLO's single convolutional neural network. The difference is that the SSD sets anchors
on multiple feature maps (called the default box in SSD), which locates the objects more accurately.
At the same time, SSD output is a series of fixed-size bounding boxes defined in advance. It is
superior to the method of extracting region proposals in terms of speed. Extracting features at different
resolutions is also due to the different expression of convolutional neural networks at different layers,
the top layer being closer to the semantic information and the bottom layer holding more details of
the image. The combination of information in multiple layers can obtain a good detection effect for
different object sizes.

Both the R-CNN series and YOLO series of object detection algorithms have requirements for the
size of the input image. Faster R-CNN needs to fix the size of the shortest edge of the input image,
while scaling the other side. YOLO and SSD both require a fixed size input, so the image will be scaled
directly to the required input size. These direct scaling operations are certainly catastrophic for large
remote sensing images with small objects. In response to the drawback, we added a MultiBlock layer
before the input layer of the network in the testing phase. Specifically, based on the information of
the remote sensing image, including width, height, and resolution, the image is divided into multiple
blocks, and there is some overlap between the blocks to avoid the object not being detected due to
being divided. Meanwhile, after the Detection Output Layer, a MapBlock layer is added to map the
object detected in the block back to the position in the original image. It is a simple and effective idea
that makes the prediction of large-sized images possible, while not losing detection precision.

2.2. Airplane Detection Method

The robustness of features extracted from convolutional neural networks has far exceeded that
of manual design, and the features have achieved great success regarding object classification and
detection in natural images. Many researchers have already applied these technologies to the related
work of airplane detection in remote sensing images. Wu et al. [19] used a method based on BING [20]
and CNN to detect airplanes. They extracted region proposals using BING and classified region
proposals using CNNs. This is an R-CNN-based detection method (R-CNN uses the selective search).
In the step of extracting region proposals, there are EdgeBoxes [21], CPMC (Constrained Parametric
Min-Cuts) [22], MCG (Multiscale Combinatorial Grouping) [23], and Objectness [24], in addition to
BING and selective search. Hosang et al. [18] analyzed the performance of these region proposal
algorithms in detail and found that these algorithms have low repeatability; they are not robust to
noise and disturbance.

Due to the perspective of remote sensing images, most of the objects are rotationally invariant.
Training a rotational invariant classifier is crucial. To take advantage of this nature of airplane,
Zhang et al. [25] proposed a method that uses extending histogram oriented gradients to obtain new
rotationally-invariant features. Wang et al. [26] proposed a rotation-invariant matrix (RIM) to obtain the
rotational invariance of features, which incorporates partial angular spatial information. Liu et al. [27]
proposed a feature extraction method based on sparse coding for airplane detection. Although these
algorithms can both obtain the rotational invariance of the airplane to a certain extent, and improve
detection performance, they are not very scalable to other objects. We also take advantage of the rotational
invariance in this paper, but we only use it as a means of data augmentation and then use convolutional
neural networks to learn this property directly, just as in learning other features of the airplane.

2.3. Transfer Learning

Transfer learning is a research problem in machine learning that focuses on storing the knowledge
gained in solving a problem and applying it to different but related problems [28]. Transfer learning is
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a very important and effective technology in deep learning. The purpose of transfer learning is to not
discard useful information from previous data and apply previously learned knowledge to solve new
problems, which can solve problems faster and better.

Fine tuning is one of the most important tools in transfer learning. A large number of image
classification and object detection experiments use fine tuning because of the lack of data in a specific
task. Many have also experimentally confirmed that fine-tuning convolutional neural networks is
better than training from scratch. For example, there have been object detection frameworks based on
deep convolutional neural networks in recent years, in which the base network is taken as an important
part, such as ZF, GoogLeNet, VGG, and ResNet. These pre-training models are obtained by being
applied to image classification tasks. ImageNet is a large visual database used for studying visual
object recognition software. Almost all base networks are trained on this dataset. The VGG network
we use in our experiments is also trained on this dataset, and then fine-tuned using our dataset to
enable this network to recognize the airplane. As shown in Figure 2, by transfer learning, we can
achieve object detection in natural images or remote sensing images.

Classification Detection

X ‘J'l-
- . Nl

Airplane Detection

(b) C(©

Figure 2. Transfer learning. The model trained by classification tasks can be used as our base network,
and then the object detection framework in the natural image can be used to detect the airplane in the
remote sensing image. (a) ImageNet dataset used for classification [4]; (b) the object detection result of
a natural image, using YOLO (You Look Only Once); and (c) airplane detection in this paper.

3. Methods

3.1. Data

We did much data labeling work for training and testing. The data is collected from satellite
images of the world’s top 30 airports in Google Earth, such as Hartsfield-Jackson Atlanta International
Airport (United States), Beijing Capital International Airport (China), and other airports. Most of them
are city airports; the resolutions of airports may be different, ranging from 0.98 m to 10 m, and the
frame size is between 2000 x 2000 and 8000 x 8000. Fifteen of these airports were randomly selected
as training and validation data for the convolutional neural networks, and the remaining 15 airports
were a test set. At such a resolution, a complete satellite image of the airport is more than 5000 x 5000
in size, which is obviously not suitable for display. We crop the image into slices due to training and
testing needs; the size of these slices is 500 x 500 to 1200 x 1200. The final data distribution is shown
in the Table 1.

Table 1. The dataset division.

Number of Samples Number of Airplanes
Training set 253 2578
Validation set 52 383

Test set 276 2344
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In this paper, the only object we want to detect is an airplane, so we only labeled the airplane’s
location during annotation. The schematic of the annotating sample is shown in Figure 3. The annotated
sample is input directly to the convolutional neural networks for training to realize end-to-end training.

Figure 3. The annotated airplane samples.

3.2. The Network Framework

Our airplane detection framework is based on SSD, which is a single convolutional neural
network that incorporates feature maps from different layers with fast detection speed and high
accuracy. These advantages are suitable for our application scenarios. The first few layers are standard
architectures for image classification and were commonly used in the object detection framework,
which is also called the base network. We use the VGG16 for the base network. The VGG16's design
philosophy is easy to understand and suited for fine tuning, which is also the base network that most
researchers use for object detection experiments comparison. After the base network, an additional
secondary network structure is added, which replaces the fully-connected network behind the VGG16
and continues adding convolutional layers.

Figure 4 shows the network structure we used during the training phase. As the spatial resolution
of the feature map keeps decreasing, the position information of the object is continuously lost. We,
therefore, use the shallow features of more complete location information to predict the location and
category of objects, since the spatial resolution is higher at this time. Meanwhile, the deep feature map
does not lose the estimated position of the object, although it lost more spatial information of the detail.
Additionally, the deeper features have more abstract semantic features. Therefore, the shallow features
are used to detect small objects, and deep features are used to detect large objects, which can solve the
impact of the object scale changes.
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Figure 4. The network architecture. For speeding up training, we do not use MultiBlock and MapBlock
in the training phase.
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3.3. Training

In this paper, all the experiments we have done are based on an open-source deep learning
framework called Caffe [29]. Caffe is used extensively in this area of deep learning, so there are many
pre-training models that are based on Caffe. This is very important for our transfer learning, and we
directly use the models that have been validated in other areas for fine tuning. The training process is
described in the following three concepts.

3.3.1. Data Augmentation

For data in the training phase, the original image is included, as well as the crop of the image,
random flip, and the image with added padding after being shrunk. This helps to detect small objects.
In addition, a random rotation of an angle added in this paper increases the sample’s diversity.

Unlike data augmentation in natural images, most of the objects in a natural image can only
be rotated by a relatively small angle, whereas airplanes in remote sensing images can be rotated
at any angle. In addition, to increase the robustness of the detector, we also randomly added noise
to the training data. The airplane in remote sensing images is not only white in color; we jitter the
airplane to increase non-white airplane samples. We also perform affine transformations to the training
data due to the different perspectives of remote sensing images. These data augmentations can boost
the performance to different degrees. Our experiments show that rotation, affine transformation,
and random crops are better than adding noise and jittering. The reason is that the model has a certain
degree of anti-noise ability, and the model is not very sensitive to color in this dataset.

3.3.2. The Selection of Positive and Negative Samples

We set six levels of aspect ratios (1, 2/1, 3/1, 1/2, 1/3) for the default box to make the object
scalable. In the process of training, the default box is first matched with the ground truth before
selecting positive and negative samples. The method of matching is to find a specific default box for
each ground truth box with which it has the largest IoU, so that each ground truth box is assigned to
a single default box. Then, the remaining non-matched default boxes are matched with any ground
truth box. If the IoU of the two is greater than the threshold (set at 0.5 in this paper, which has
proved effective in other datasets [16]), it is considered to be matched. After the matching is completed,
the matched default box becomes a positive sample, while the non-matched becomes a negative sample.
In general, the number of negative samples is much larger than the positive samples, which leads to
an imbalance of categories. Therefore, the default box will be sorted according to the confidence of
the prediction, and those with high confidence are selected for training. The ratio of the positive and
negative samples is controlled at 1:3. In the testing phase, the default box with higher confidence will
be selected when performing the network forward computation on the input data.

3.3.3. Loss Function

The loss function uses the SSD approach because airplane detection includes classification and
regression. Combining the confidence of the scores with the accuracy of the location forms a multi-task
loss. Our loss function is defined as Equation (1):

1
L(x,c18) = 3 (Laons () + aLioe(x,1,g) ) M

where N is the number of matched default boxes and « is the balance of two types of losses. The first
loss, Loy, f(x, c) is the loss of confidence, which is actually the Softmax loss. The definition is given by
Equation (2):

el =~ 35 ies(r) - () s = P

@
i€Pos i€Neg Zp exp (C- )
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where xfj = {1, 0} denotes whether the i-th default box matches the j-th ground truth box of class p,
cf denotes the confidence that the i-th default box belongs to class p. In this paper, p = {0, 1}, and when
p is 1 it means that it is an airplane (Pos.); when p is 0 it means that it is the background (Neg.).
The second item of multi-task loss is the loss of location, which is actually the Smooth L1 loss as shown
in Equations (3)—(6).

N

Lioe(x,1,g) =} Y,  xijsmoothy (llm - §71> 3)
i€Pos me{cx,cy,w,h}

cy cy

A
§' =" & =" (4)

1 1

. AN g
() € =108( ) o

1

0.5x%  if x| <1
|x| —0.5 otherwise

smoothyy(x) = { (6)

Here, ( 6¢*,8Y, 6%, o) represents the ground truth box, (d<*,d",d®,d") represents the default
8j 18488 ) TP g id;,dy,di ) rep

box, and (lf" , ll.cy S, f‘) represents the offset of the predicted box relative to the default box. The curve

of the Smooth L1 loss is shown in Figure 5, which has the advantage of being less sensitive to outliers
than the L2 loss.
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Figure 5. The curve of the Smooth L1 loss.

3.4. Test

3.4.1. MultiBlock and MapBlock Layers

In the testing phase, in order to address different size of input images, we propose a MultiBlock
layer and a MapBlock layer. The MultiBlock layer divides the input image into multiple blocks; it is
added before the input layer. The MapBlock layer maps the prediction result of each block back to
the original image; it is added after the detection output layer. As shown in Figure 6, resizing large
images directly will reduce the object information, resulting in decreases in detection performance.
The MultiBlock layer and MapBlock layer are proposed to prevent such situations. In this paper, the
focus of our research is mainly on the airplane detection of the airport; our research assumes that the
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airport has been located. The input size of the data to be tested is more flexible when the MultiBlock
and MapBlock layers are applied to the detection architecture.

Original image Resized image
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Figure 6. Resizing the original image with a large size. The part marked with the blue box in the figure
is enlarged and displayed below it. It can be seen that the resolution of the image is reduced. Since the
image is resized directly, the object contour is blurred, which will reduce detection precision.

In this paper, the network input is still 512 x 512, so images that do not meet the requirements
will be resized. However, the MultiBlock layer does not divide the input image into multiple blocks of
512 x 512 size, but divides them into multiple blocks around the size of 512 x 512 and then resizes
them to 512 x 512 when they are input in the network. The advantage of this approach is to reduce
the loss of small objects caused by directly resizing large images. At the same time, because of the
robustness of the convolutional neural network, the very small resizing of the image will not have a
large impact on the final prediction result, so it also has some flexibility in the division of the block.

After the image is processed by the MultiBlock layer, the number of blocks in the vertical and
horizontal directions is, respectively, m and n, and the total number is m x n. The calculation formula
is shown in Equations (7) and (8):

_ Height — Overlap
m= [Block Height — Overlap—‘ @
n— Wzdt}.z — Owerlap ®)
Block Width — Overlap
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where Height and Width are the height and width of the original image respectively, and Overlap is the

overlap distance between the blocks, which can be set according to the resolution of the remote sensing
image. In this paper, Overlap is 100. Block Height and Block Width are, respectively, the height and width
of the block to be generated. The MapBlock layer maps the detection results of multiple blocks back to
the original image to realize the detection for large images. As shown in Figure 7, after a 2000 x 2000
image passes through the MultiBlock layer, nine partially-overlapping blocks are obtained according to the
selected parameters: Overlap = 100, Block Height = 800 and Block Width = 800. When passing through
the MapBlock layer, the detection results in each block are merged and mapped back to the original image
to obtain the final detection result. In detail, we calculate the position of objects in the original image
according to the parameters of the MultiBlock layer and the detection results in each block.

Figure 7. The MultiBlock layer. The input image is divided into nine overlapped blocks after the
MultiBlock layer is applied.

3.4.2. Non-Maximum Suppression

We noticed that the SSD performed a non-maximum suppression (NMS) operation when in
prediction mode. However, the SSD resizes the input image directly and does not perform NMS
operations in the original image size, which is obviously not reasonable for small objects, such as
airplanes. Using SSD for airplane detection, we find that there are often two bounding boxes in the
same location in our experiment, which can be prevented by adding an NMS operation again.
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3.5. Implementation

Our implementation details are listed in this section. In the training phase, we used SGD with
a mini-batch size of 32. We used a weight decay of 0.0005 and a momentum of 0.9. We trained our
model for up to 100,000 iterations. The learning rate started from 0.001 and was divided by 10 on the
50,000th iteration and the 80,000th iteration. Our training process was run on a GTX 1080 Ti with 11GB
of memory. In order to simplify the training process, we did not use the MultiBlock and MapBlock
layer method in the training phase. Cropped training data can be considered as blocks of a large-sized
image, so training with different cropped images is equivalent to training with multiple block images.
In the testing phase, we added the MultiBlock and MapBlock layer for the improvement of small object
detection performance and the convenience of practical application.

4. Results and Discussion

4.1. Results

In this paper, we used mean average precision (mAP) as the criteria for airplane detection.
In multiple class object detection, we can draw a curve based on recall and precision for each class,
where AP is the area under the curve and mAP is the average of multiple categories’ APs. Since we
only detect airplanes, the area under the PR curve for airplane detection is our evaluation index.

As shown in Figure 8, our method has a mAP value of 96.23% on the test set, which is higher
than the 86.28% from the SSD method. With precision higher than 90%, recalls have also reached
more than 90%. During the test phase, the GPU we used is NVIDIA GeForce 940 M, and the average
prediction time of SSD is 513.76 ms for each image. Since we use MultiBlock and MapBlock layers for
large images, the average time for each image we test on the test set is 1934.63 ms. Due to the better
adaptability of our method to the image size, the single convolutional neural network guarantees the
detection speed and has good detection performance.

1
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Figure 8. The Precision-Recall (PR) curve. The blue curve is the result of our method on the test set
and the red one is the SSD. It can be seen that with the same precision, our method has an obvious
advantage in the recall rate.

Figure 9 is the result of our method on some test images. The airplane detection algorithm based
on transfer learning adapts to the background very well. First, the false alarm rate is greatly reduced,
and, second, the object recall rate is significantly improved. Certainly, this also benefits from increasing
the network depth, which makes the extracted features more robust.
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Figure 9. Cont.



Remote Sens. 2018, 10, 139 13 of 15

(8)

Figure 9. The results of airplane detection. (a—f) are detection results of different small input images;
and (g) is a large image; it is clearly seen that the small objects are detected accurately.

4.2. Discussion

First, we describe the several primary ways in which we combat overfitting. Training data is a
crucial component of deep learning tasks. It is easy to overfit if only a limited number of samples
are used to train a deep convolutional neural network. In this paper, however, we have taken these
measures to prevent overfitting: according to transfer learning, we initialize our network using
pre-trained models rather than random initialization to address the problems caused by small sample
sizes. In the process of training, we also create adequate data augmentation to increase sample
diversity. By analyzing the trend of training loss, we use early stopping to avoid over-learning. In our
proposed method, the choice of hyper-parameters is also an important factor. Like most prevalent
object detection frameworks, this method requires much experimental verification.

Finally, our approach is extensible in two main aspects. First, when it is necessary to detect
other objects, such as ships or vehicles, we can achieve good results in new detection tasks by only
replacing the data set. Additionally, the proposed MultiBlock and MapBlock layers can be added to
other network architecture, such as GoogLeNet and ResNet, as well as self-designed networks. In this
paper, we choose VGG16 for balance between model performance and training speed.
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5. Conclusions

In this paper, we propose an airplane detection algorithm based on a single convolutional neural
network. Through transfer learning and the airplane samples we collected from Google Earth, we have
implemented an end-to-end trainable airplane detection framework. We add a rotation operation to
increase the diversity of training samples during data augmentation. When dealing with remote sensing
images of large size for input, we propose the MultiBlock layer and MapBlock layer, which effectively
solves the problem of small object loss caused by directly resizing the image. The airplane detection
framework we propose is very effective because it is also applicable to other object detection tasks in
remote sensing image processing. Due to the single convolutional neural network, the detection speed is
superior to that of the two-stage approach. At the same time, the training process is simplified and easy
to converge due to the advantages of the end-to-end trainable framework. Our experimental results also
show that the proposed airplane detection algorithm in this paper has good detection performance.
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