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Abstract: This paper proposes an automatic target recognition (ATR) method for synthetic aperture
radar (SAR) images based on information-decoupled representation. A typical SAR image of a
ground target can be divided into three parts: target region, shadow and background. From the
aspect of SAR target recognition, the target region and shadow contain discriminative information.
However, they also include some confusing information because of the similarities of different targets.
The background mainly contains redundant information, which has little contribution to the target
recognition. Because the target segmentation may impair the discriminative information in the target
region, the relatively simpler shadow segmentation is performed to separate the shadow region for
information decoupling. Then, the information-decoupled representations are generated, i.e., the
target image, shadow and original image. The background is retained in the target image, which
represents the coupling of target backscattering and background. The original image and generated
target image are classified using the sparse representation-based classification (SRC). Then, their
classification results are combined by a score-level fusion for target recognition. The shadow image
is not used because of its lower discriminability and possible segmentation errors. To evaluate the
performance of the proposed method, extensive experiments are conducted on the Moving and
Stationary Target Acquisition and Recognition (MSTAR) dataset under both standard operating
condition (SOC) and various extended operating conditions (EOCs). The proposed method can
correctly classify 10 classes of targets with the percentage of correct classification (PCC) of 94.88%
under SOC. With the PCCs of 93.15% and 75.03% under configuration variance and 45◦ depression
angle, respectively, the superiority of the proposed is demonstrated in comparison with other methods.
The robustness of the proposed method to both uniform and nonuniform shadow segmentation
errors is validated with the PCCs over 93%. Moreover, with the maximum average precision of 0.9580,
the proposed method is more effective than the reference methods on outlier rejection.

Keywords: synthetic aperture radar (SAR); automatic target recognition (ATR); information-decoupled
representation; score-level fusion

1. Introduction

The interpretation of synthetic aperture radar (SAR) images has important meanings for both
civilian and military applications [1–5]. SAR images are interpreted for sea ice monitoring and
classification in [2]. Gao et al. examined the change detection in SAR images based on deep learning [3].
Bai et al. analyzed SAR images to map earthquake-induced damages [4] and recognized regional
tsunami damages [5] using machine learning techniques. This study focused on the automatic target
recognition (ATR) of SAR images [1], which aims to determine the target type of an SAR image with
unknown label by matching the information in the input SAR image with that in the training samples.
Generally, the information can be divided into three categories: discriminative information, confusing
information and redundant information [6,7]. The discriminative information indicates the portion
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shared by the same target class and different from other classes. The confusing information often
varies in the same class or shares much resemblance with other targets. The redundant information
only contains redundancy and has little meanings from the aspect of target recognition. Therefore, to
improve the SAR ATR performance, the discriminative information in SAR images should be fully
exploited. Meanwhile, the confusing and redundant information must be suppressed.

After preprocessing steps such as clutter rejection and denoising [8,9], a typical SAR image of
a ground target can be divided into three components: target region, shadow and background [10].
The target region describes the electromagnetic scattering characteristics of the target. The shadow
reflects the target’s geometrical information such as physical sizes and shape. The background pixels
represent the responses of the background. Therefore, the background mainly contains the redundant
information, which has little meanings from the aspect of target recognition. Both target region and
shadow contain discriminative information. They also contain some confusing information because
of the similarity shared by different targets. To improve the ATR performance, the discriminative
information should be decoupled for matching. There are two typical methods to decouple the
discriminative information in literatures: image segmentation and feature extraction. In image
segmentation, some methods [11–15] conduct target segmentation first, and only the target region
is used for target recognition. The operation indeed eliminates most of the redundant information
(background) and confusing information in the shadow. However, the discriminative information in
the shadow is also neglected. Moreover, SAR target segmentation remains difficult problem because
of the unclear target contour in SAR images [10,11]. Therefore, the target segmentation may also
lose some discriminative information in the original target region because of possible segmentation
errors. Some researchers use the shadow [16,17] for target recognition. Although they have achieved
good results, the discriminability of shadow is assumed to be notably limited particularly with
the increase of candidate targets [18]. In feature extraction, various kinds of features [19–27] have
been applied to SAR images including geometrical features, projection features and scattering center
features. Typical geometrical features are physical sizes [11], shape [13–15], target contour [16], etc.
They intuitively describe the targets and are discriminative for target recognition. The projection
features can be efficiently extracted by multiplying the original image with a projection matrix.
The principle component analysis (PCA) [19], non-negative matrix factorization (NMF) [20], random
projection [21], etc. are notably effective to reduce the high dimensionality of original SAR images
while retaining the discriminative information for target recognition. The scattering center features
reflect the electromagnetic scattering characteristics of the target. Because of the rich physically
relevant descriptions, the attributed scattering centers have been effectively used for SAR ATR [25–29].
However, most of these features aim to reduce the redundancy in the original SAR images and can
hardly reduce the confusing information.

An SAR ATR method is proposed to exploit the discriminative information in SAR images
based on information-decoupled representations in this study. As stated above, the discriminative
information is contained in the target region and shadow. Under standard operating condition
(SOC) [1], where the test images are captured under similar conditions with the training samples, both
target region and shadow contain discriminative information and tend to form consistent decisions.
Hence, the joint use of the two components will contribute to better recognition results. However, under
some extended operating conditions (EOCs) [1], the target region or shadow may be corrupted. Then,
the corrupted part should not be used or weighted less in the recognition. Under these conditions, the
image segmentation is preferred to thoroughly remove the confusing part (target region or shadow).

In this study, the original SAR images are used to generate three information-decoupled
representations: target image, shadow image and target–shadow image. Because of the outstanding
properties of the shadow, which always contains much lower intensity values [15], the shadow
segmentation is much simpler than the segmentation of target region. Moreover, the inaccurateness of
the shadow segmentation will result in a smaller loss of discriminative information. First, the shadow
is first separated from the original SAR image as a binary region. By replacing the shadow region
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with randomly selected background pixels, the target image is generated. Thus, the target image only
contains the target backscattering and background. The target–shadow image is directly represented
by the original SAR image, which is coupled by the target backscattering, shadow and background.
The three components may have different advantages for target recognition. Under SOC, both target
region and shadow contain more discriminability than confusion and tend to share similar similarity
patterns over the training samples. Therefore, their joint usage, i.e., the original image, is preferred to
best embody the discriminative information and suppress the confusing information. Under some
EOCs, the discriminative information in the target image or shadow is weakened, and the confusing
information increases. It is predictable that better results should be achieved when the shadow or
target image is not used or weighted less.

For a particular feature, the decision engine should be carefully designed to exploit its discriminability
to improve the ATR performance [13]. With the fast development of pattern recognition and machine
learning techniques, many advanced classifiers [30–37] have been successfully applied to SAR
ATR, such as the support vector machine (SVM) [28,29], sparse representation-based classification
(SRC) [21,31–33], convolutional neural network (CNN) [35], adaptive boosting (Adaboost) [36] and
discriminative graphical models [37]. Among these classifiers, SRC is notably robust to EOCs such
as noise corruption and partial occlusion [38]. Therefore, SRC is used to classify the original and
target images. Then, the classification results are combined using a score-level fusion [10,39,40] for the
target recognition. The shadow image is not used because of its lower discriminability and possible
segmentation errors. The advantages of the score-level fusion can be analyzed from two aspects. On the
one hand, it is difficult to decide the operating conditions of the test image in practical applications.
Then, little prior information can be used to select the component for recognition. However, the decision
fusion of these components can effectively improve the robustness of the ATR method to various EOCs.
On the other hand, some test samples under SOC may also have different shadows with the training
samples and other samples under EOCs may have similar shadow with the training samples because
of the effects of uncertain factors. Then, the original image and target image complement each other
during the score-level fusion to improve the effectiveness and robustness of the proposed method to
both SOC and various EOCs. To evaluate the proposed method, extensive experiments are conducted
on the Moving and Stationary Target Acquisition and Recognition (MSTAR) [41] dataset under SOC
and typical EOCs, i.e., configuration variance and depression angle variance. Moreover, the proposed
method is tested with possible shadow segmentation errors and outlier confusion. By comparing with
several state-of-the-art SAR ATR methods, we demonstrate that the proposed method is more effective
and robust.

The remainder of this paper is organized as follows. Section 2 introduces the information model
of SAR image and detailed procedure to generate the information-decoupled representations. Then,
in Section 3, the principle of SRC is explained. The detailed implementation of the proposed target
recognition method is also illustrated. Extensive experiments are conducted on the MSTAR dataset
under SOC and typical EOCs to evaluate the performance of the proposed method in Section 4.

2. Information-Decoupled Representation of the SAR Image

2.1. Information Model of SAR Image

It is crucial to understand the information in SAR images; thus, the discriminative information
can be decoupled for target recognition. Figure 1 shows the SAR imaging model. The backscattering of
the target forms the target region and the scattering of the background corresponds to the background
pixels in the SAR image. A portion of the target and background is occluded at a special view angle.
Then, no responses are received from the occluded regions, which results in a dark patch in the SAR
image, i.e., the target’s shadow [15]. In fact, the shadow contains a back projected estimate of the
target’s profile. Based on the analysis, the measured SAR image can be modeled as follow:

S = F( f (θ, f , T) + n) (1)
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In Equation (1), S denotes the measured SAR image; F is the imaging process, which includes
zero padding, windowing, Fourier transformation, etc.; T is the target characteristics; and n is the
background noise. The term f (θ, φ, T) represents the parts related to the target, including the target
region and shadow at elevation θ and azimuth φ. The target region contains the backscattering of the
target, whereas the shadow indirectly reflects the physical sizes of the target. Therefore, both target
region and shadow provide discriminative information for target recognition. However, because of
the change in θ and φ, the images of the same target under different view angles may have notably
different target regions and shadows [37]. Meanwhile, the target regions or shadows of different targets
may share some resemblances. As a result, they also include some confusing information. Because
the original SAR image contains both the target region and shadow, it contains all the discriminative
information. However, it also contains all confusing information.

According to information theory, the amount of information in an SAR image is conveyed by
the distribution of the intensity values, i.e., the entropy [42,43]. Incidents with lower probabilities are
more informative. Figure 2b shows the histogram of the SAR image in Figure 2a, whose intensities
are normalized. In general, the target region contains pixels of high intensities, whereas the shadow
region includes the low intensities. The background region is mainly filled with pixels with medium
intensities. The target region and shadow contain much fewer pixels than the background. Hence,
the background contains little discriminative or confusing information for target recognition. Therefore,
it is not necessary to eliminate the background in SAR images when they share similar backgrounds.
The target region often has a broader intensity range than the shadow which is filled with pixels
with notably low intensities. Consequently, the target region is much more informative than the
shadow. Table 1 qualitatively summarizes the information in SAR images, which includes the source,
main constituent and amount.
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Figure 1. SAR imaging model.
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Table 1. Information in the target region, shadow and background of the SAR image.

Source Main Constituent Amount

Target region Discriminability and confusion High
Shadow Discriminability and confusion Relative high

Background Redundancy Low

2.2. Shadow Segmentation

The shadow always contains much lower intensities than the background and target region, and it
often has a much clearer contour than the target region. Thus, it is much easier to segment the shadow
than the target region. Moreover, the imprecise shadow segmentation will cause less information loss
to the recognition than target segmentation. The main steps of shadow segmentation are as follows:

Step 1 The mean of all normalized image intensities is used as the threshold for the preliminary
segmentation.

Step 2 A 5 × 5 count filter [44] is used to remove the isolated small regions caused by speckle noises in
the background.

Step 3 The morphological closing operation [44] is performed to connect the binary shadow region.
Step 4 The morphological opening operation [44] is used to smooth the contour of the shadow.

Figure 3 illustrates the shadow segmentation of an SAR image of a BMP2 target from the MSTAR
dataset. After the threshold segmentation, t many false alarms from the background remain as shown
in Figure 3b. The count filter eliminates most of the false alarms and produces a disconnected shadow
(Figure 3c). The morphological closing operation connects the shadow region (Figure 3d), and Figure 3e
is the final shadow region after the morphological opening operation.
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Figure 3. Illustration of the shadow extraction: (a) original image; (b) after the threshold segmentation;
(c) after the counter filter; (d) after the morphological closing operation; and (e) after the morphological
opening operation.

2.3. Information-Decoupled Representation

By replacing the extracted shadow with randomly selected background pixels in the original
image, the target image is obtained as Figure 4b. Compared with the original image in Figure 2a,
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the target image represents the coupling of target backscattering and the background with no shadow.
The original image, target image and shadow image reflect the discriminative information from
different aspects. It is theoretically optimal to perfectly fuse the three components for target recognition.
However, the shadow image is not used in this paper because of the following considerations. First,
the shadow contains much less discriminative information than the target region, so it is not efficient
to separately classify it at comparable time consumption with other components. Second, because of
possible shadow segmentation errors, the discriminability of the extracted shadow is actually impaired.
Third, the discriminative information in the shadow is totally conveyed by the shape (or contour).
Thus, it is difficult to design an effective and efficient classifier for shadow recognition [11]. Finally, the
original image can cover much of the shadow discriminability such as the physical sizes of the target.

Comparing Figures 2a and 4a, we observe that the original image and target image share a large
common area. However, they have different information. When the shadow in the original image
is replaced by the background pixels, the intensity distribution of the target image is different from
the original one. A comparison of the histograms in Figures 2b and 4b shows that the target image
has much fewer pixels with notably low intensities. When the test image is captured under SOC,
both backscattering in the target region and shape information in the shadow are discriminative for the
target recognition. For EOCs, where the target backscattering or shadow shape is distorted, the use of
only the target image is more suitable to avoid the confusion from the shadow. For example, the image
captured at a low depression angle has a much larger shadow than that at the larger depression
angle [45]. Under this condition, the shadow should not be used because it may introduce more
confusing information than the discriminative information. The original image and target image can
provide different discriminabilities, which can complement each other for a robust target recognition.
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3. Score-Level Fusion for Target Recognition

3.1. Sparse Representation-Based Classification (SRC)

The SRC assumes that a test sample y from class i lies in the same subspace with its truly
corresponding class [38]. Consequently, it can be recovered from the sparse representation with respect
to the global dictionary of individual classes. We denote the dictionary constructed by training samples
from C classes as A = [A1, A2, · · · , AC] ∈ Rd×N , where Ai ∈ Rd×Ni (i = 1, 2, · · · , C) includes the
samples from the ith class; d is the dimension of the training sample; and N is the total number of all

the training samples: N =
C
∑

i=1
Ni. Then, the sparse coefficients are solved as follows [21,38]:

α̂ = arg min
α
‖α‖0
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s.t. ‖y− Aα‖2
2 ≤ ε (2)

where α is the sparse coefficient vector, and ε is the permitted error tolerance. Because of the non-convex
`0-norm objective, the optimization problem in Equation (2) is an NP-hard problem. Typical approaches
to solve the problem are either approximating the original problem with `1-norm based convex
relaxation such as an `1-minimization [38] or resorting to greedy schemes such as orthogonal matching
pursuit (OMP) [21,34,39,40]. The detailed implementation of the OMP algorithm to solve Equation (2)
is presented in Algorithm 1 [46], which will be used in the following target recognition.

After the sparse coefficient vector α̂ is solved, the SRC decides the identity of the test sample as
the class with the minimum reconstruction error [21,34,39,40].

r(i) = ‖y− Aiα̂i‖2
2(i = 1, 2, · · · , C)

identity (y) = arg min
i

(r(i)) (3)

where α̂i and r(i) denote the corresponding coefficients reconstruction error to the ith(i = 1, 2, · · · , C)
class. The SRC is more robust to noise corruption and partial occlusion than other prevalent classifiers
such as SVM [38], which is also a motivation to use it in this paper.

Algorithm 1 Orthogonal matching pursuit (OMP) [46]

1. Input: The global dictionary A, test sample y and permitted error tolerance ε.
2. Initialization: Initialize k = 0, and set

• Initial solution α0 = 0
• Initial residual r0 = y− Aα0

• Initial solution support S0 = Support{α0} = ∅
3. Main iteration: Increment k by 1 and perform the following steps:

• Sweep: Compute the errors τ(j) = minzj‖ajzj − rk−1‖2
2 for all j using the optimal choice

z∗j = aT
j rk−1/‖aj‖2

2.

• Update Support: Find minimizer j0 of τ(j): ∀j /∈ Sk−1, τ(j0) ≤ τ(j), and update Support{α} = Sk.

• Update Provisional Solution: Compute αk, the minimizer of ‖Aα− y‖2
2 subject to Support{α} = Sk.

• Stopping Rule: if ‖rk‖2 < ε, stop. Otherwise, apply another iteration.

Output: The proposed solution αk obtained after k iterations.

3.2. Target Recognition via Score-Level Fusion

Based on the decisions from the original and target images, a score-level fusion is performed to
combine the two results. As an effective strategy of decision fusion, the score-level fusion can produce
more robust recognition results [10,39,40]. In the framework of SRC, the residual of a certain class
reflects the distance from the test image to the manifold spanned by the training samples of that class.
A smaller minimum residual indicates a more reliable decision [10]. Thus, it is reasonable to evaluate
the similarities of the test sample with individual classes based on the residual of each class. For a
consistent comparison, a normalized score is used to evaluate the classification results as follow:

NS(i) =
1/r(i)

C
∑

j=1
1/r(j)

(i = 1, 2, · · · , C) (4)

To fuse the two scores, a linear combination is performed according to Equation (5).

FS(i) = ω1NS1(i) + ω2NS2(i) (i = 1, 2, · · · , C) (5)
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where NS1 and NS2 are the normalized scores of the original image and target image, respectively;
and ω1 and ω2 are the corresponding weights with a summation of 1. By adjusting the weights,
disproportional importance is put on different components.

As a decision fusion strategy, the score-level fusion is demonstrated effective in several relevant
literatures [10,39,40]. In the proposed classification scheme for the information-decoupled representations,
the merit of SRC, such as good robustness to noise corruption and partial occlusions, can be inherited.
Moreover, the score-level fusion can effectively combine the advantages of the original and target
images. Therefore, it is predicable that the proposed method can improve the effectiveness and
robustness of the SAR ATR. The detailed procedure of the proposed method is illustrated in Figure 5.
Considering the high dimensionality of the original image and target image, random projection [21,33,47]
is used to reduce the dimension. As indicated in [47], the random projection is a good “partner” for
“compressive classification” including SRC. To solve the sparse coefficients, the OMP algorithm is
used, which is demonstrated to be effective in SAR ATR [21,34,39,40].
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Figure 5. Illustration of the proposed target recognition method. 
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Figure 5. Illustration of the proposed target recognition method.

4. Experiment

4.1. Data Preparation

The MSTAR dataset is used for performance evaluation in this paper, and includes the SAR
images of ten classes of ground targets collected by the X-based SAR sensors. The SAR images have a
resolution of 0.3 m × 0.3 m, covering the full azimuths from 0◦ to 359◦ at two depression angles of 15◦

and 17◦. The optical images and corresponding SAR images of the ten targets are shown in Figure 6.
Available samples of the ten targets in the training and test sets are summarized in Table 2.

To quantitatively evaluate the proposed method, several state-of-the-art SAR ATR methods are
compared, including SVM [30] and CNN [35]. Meanwhile, SRC is performed on the segmented target
image, which is denoted as Segment-SRC. The target segmentation method was proposed in [36].
However, the target segmentation errors will impair the recognition performance [10,13]. For fair
comparison, the random projection is used to reduce the dimensionality of the original SAR images in
SVM and Segment-SRC in consistency with the proposed method. The performances of individual
information-decoupled representations by SRC are also compared. The SRCs performed on the original
image and target image are denoted as Original-SRC and Target-SRC, respectively. According to the
experimental results, the selected weights for the original image and target image 0.5 and 0.5 to
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indicate identical importance on both components. The dimensionality of the random projection is
set to be 1024 [33]. In the remainder of this section, the experiment is first conducted under SOC,
i.e., a 10-class recognition problem. Then, the proposed method is tested under several typical EOCs,
i.e., configuration variance and depression angle variance. Moreover, the proposed method is tested
with shadow segmentation errors to evaluate its robustness. Finally, the outlier rejection performance
of the proposed method is evaluated.
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Table 2. Training and test sets in the experiments.

Class BMP2 BTR70 T72 T62 BDRM2 BTR60 ZSU23/4 D7 ZIL131 2S1

Training
Set

(17◦)

233(Sn_9563)
233

232(Sn_132)
299 298 256 299 299 299 299232(Sn_9566) 231(Sn_812)

233(Sn_c21) 228(Sn_s7)

Test
Set

(15◦)

195(Sn_9563)
196

196(Sn_132)
273 274 195 274 274 274 274196(Sn_9566) 195(Sn_812)

196(Sn_c21) 191(Sn_s7)

4.2. Recognition under SOC

In this experiment, the 10-class samples in Table 2 are used for algorithm evaluation and comparison.
The images captured at 17◦ depression angle are used for training, and the images at 15◦ depression
angle are tested. For BMP2 and T72 with three different serial numbers, only the serials, Sn_9563 for
BMP2 and Sn_132 for T72 are used for training. As shown in the confusion matrix in Table 3, T62 and
BDRM2 can be recognized with a probability of correct classification (PCC) of 100% by the proposed
method. BMP2 and T72 suffer the lowest PCCs (below 90%) mainly because of the configuration
variations between the training set and test set.

Table 4 compares the performance of the proposed method with the reference methods including
the average PCC and time consumption to recognize a single MSTAR image. The proposed method
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achieves the highest PCC among all methods. Moreover, the proposed method has more than 1%
improvement in PCC over SVM. The PCC of CNN is only slightly lower than that of the proposed
method. The possible reason is that the CNN is trained by the intensity images with no loss of
information caused by the random projection. The score-level fusion of the original image and target
image contributes to the higher PCC of the proposed method compared to the Original–SRC and
Target–SRC. It is also noticeable that the original image achieves better performance than the target
image because the shadow also provides discriminative information for correct recognition under SOC.
Compared with the Segment–SRC, SRC achieves a slightly higher PCC on the target image probably
because the target segmentation errors impair the performance. The original image and target image
are fused to complement each other to better handle the differences between the training and the test
samples, i.e., 2◦ depression angle variance and the configuration variance in BMP2 and T72. In detail,
some test samples under SOC may have different shadows with the training ones. For these samples,
the target image is more appropriate for correct classification. Using the score-level fusion, the target
image provides complementary discriminability for the original image to improve the recognition
performance. Therefore, the proposed method achieves the best performance. The confusion matrices
of the reference methods are displayed in Figure 7 for detailed comparison. All the methods consume
approximately 77 ms to recognize a single MSTAR image. With such time consumption, all of them
can satisfy the demand of real-time processing.
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Table 3. Recognition results of the proposed method under SOC. (PCC: probability of correct classification).

Class BMP2 BTR70 T72 T62 BDRM2 BTR60 ZSU23/4 D7 ZIL131 2S1 PCC (%)

BMP2 487 38 46 0 0 0 11 0 5 0 82.96
BTR70 0 196 0 0 0 0 0 0 0 0 100

T72 24 22 508 12 0 1 12 0 3 0 87.29
T62 0 0 0 274 0 0 0 0 0 0 100

BDRM2 0 0 0 0 274 0 0 0 0 0 100
BTR60 0 0 0 1 10 260 0 1 0 1 95.24

ZSU23/4 2 0 0 3 0 0 190 0 0 0 95.44
D7 0 0 1 0 1 0 0 272 0 0 99.27

ZIL131 1 0 0 0 2 0 3 0 268 0 97.81
2S1 1 0 0 0 5 2 0 0 0 266 97.08

Average 94.88%

Table 4. Recognition performance of the proposed method under SOC.

Method Proposed SVM [28] CNN [33] Segment-SRC Original–SRC Target–SRC

PCC (%) 94.88 93.85 94.82 92.85 93.66 93.16
Time Consumption (ms) 78.25 76.56 79.12 77.56 77.24 77.33

4.3. Recognition under EOCs

In real-world scenarios, many cases of SAR ATR are performed under EOCs. Therefore, it is important
that the designed SAR ATR algorithms can handle various EOCs [1,37,48,49]. In this subsection,
the proposed method is tested under two typical EOCs: configuration variance and depression
angle variance.

4.3.1. Configuration Variance

A certain class of military target may have different configurations for different applications.
Therefore, it is meaningful to test the ATR algorithms in terms of configuration variance. Table 5
presents the dataset for this experiment with four targets: BMP2, T72, BTR60 and T62. BMP2 and
T72 have three serial numbers. The serials Sn_9563 for BMP2 and Sn_132 for T72 at 17◦ depression
angle are used for training, and the remaining configurations (Sn_9566, Sn_c21, Sn_812 and Sn_s7)
at 15◦ depression angle are tested. Therefore, the configurations of BMP2 and T72 for testing are not
contained in the training set. Table 6 compares the performances of different methods in terms of
configuration variance. Similar to the results under SOC, the fusion of the original image and target
image contributes to the improved performance of the proposed method. With the highest PCC,
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the proposed method has the best robustness to configuration variance. The configuration variance
changes some local structures of the target but the physical sizes and shape of the entire target are
maintained. Therefore, the shadows of different configurations remain notably similar, which provides
discriminability for the target recognition. Consequently, the original image performs better than
the target image. Similar to the SOC target recognition, the proposed method can handle possible
discordances between training and test sets using the score-level fusion.

Table 5. Dataset with configuration variance.

BMP2 T72 BTR60 T62

Training set (17◦) 233(Sn_9563) 232(Sn_132) 256 299

Test set (15◦) 196(Sn_9566)
196(Sn_c21)

195(Sn_812)
191(Sn_s7) 195 273

Table 6. Performances of different methods in terms of configuration variance.

Method Proposed SVM [28] CNN [33] Segment-SRC Original–SRC Target–SRC

PCC (%) 93.15 91.01 91.54 90.61 91.17 90.69

4.3.2. Depression Angle Variance

The robustness of an ATR method to a depression angle variance is also crucial because the
test SAR images may be captured at a notably different depression angle from the training samples.
Therefore, in this experiment, we evaluate the proposed method under depression angle variance.
As summarized in Table 7, the dataset includes images of three targets (2S1, BRDM2 and ZSU23/4) at
4 depression angles (15◦, 17◦, 30◦ and 45◦). The samples at 17◦ depression angle are used for training
and the remaining ones are tested. Figure 8 shows the images of 2S1 target at different depression
angles. The detailed recognition results of the proposed method under different depression angles
are presented in Table 8. When the depression angle variance is not significant, the recognition is
performed under SOC. Therefore, it is predictable that the test samples at 15◦ and 30◦ depression
angles can be recognized with notably high PCCs. However, a drastic change in the depression angle
(from 17◦ to 45◦) will modify the global properties such as the random projection features of the images,
which results in ungraceful performance degradation.

Table 7. Dataset with depression angle variance.

Depression Angle 2S1 BDRM2 ZSU23/4

Training set 17◦ 299 298 299

Test set
15◦ 274 274 274
30◦ 288 287 288
45◦ 303 303 303
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Figure 8. SAR images of 2S1 at different depression angles: (a) 15◦; (b) 17◦; (c) 30◦; and (d) 45◦.
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Table 8. Recognition results of the proposed method under depression variance.

Depression Angle Class
Results

PCC (%) Average (%)
2S1 BDRM2 ZSU23/4

15◦
2S1 272 1 1 99.27

99.39BDRM2 0 272 2 99.27
ZSU23/4 1 0 273 99.64

30◦
2S1 285 1 2 98.96

99.07BDRM2 1 284 2 98.95
ZSU23/4 1 1 286 99.31

45◦
2S1 199 73 31 65.68

75.03BDRM2 18 227 58 74.92
ZSU23/4 12 35 256 84.49

The proposed method is compared with the reference methods in Table 9, which achieves the
highest PCC at each depression angle. In addition to the proposed method, Segment-SRC and
Target-SRC also achieve PCCs over 70% at 45◦ depression angle. The large depression angle variance
causes a severe deformation of the shadow shape as shown in Figure 8. Therefore, it is beneficial to
improve the recognition performance without using the shadow under this condition. The proposed
method can effectively inherit the discriminability of the target image. Moreover, the original image is
fused to provide some complementary discriminability for target recognition because some test samples
under a large depression angle variance have similar shadows with the training ones. Consequently,
the proposed method achieves the best robustness to depression angle variance.

Table 9. Comparison with reference methods for different depression angles.

Method
PCC (%)

15◦ 30◦ 45◦

Proposed 99.39 99.07 75.03
SVM [28] 99.01 98.42 66.01
CNN [33] 98.88 97.42 64.17

Segment–SRC 99.01 98.58 70.24
Original–SRC 98.97 98.01 64.74
Target–SRC 99.25 98.96 74.14

4.4. Robustness to Shadow Segmentation Errors

Shadow segmentation is the basis for the following generation of information-decoupled
representations. In this section, the proposed method is evaluated with possible shadow segmentation
errors to evaluate its robustness.

4.4.1. Region Deformation

First, the morphological erosion operation [43] is used to deform originally extracted shadow.
Several structuring elements are designed to simulate different extents of shadow deformation
as follows:

S1 =

[
1 0
0 1

]
S2 =

[
1 1
1 1

]
S3 =

 1 1
0 0
1 1

S4 =

[
1 0 1
1 0 1

]
S5 =

 1 1 1
1 1 1
1 1 1

 (6)

Figure 9 shows the distorted shadows after the erosion operations. The region and contour
distribution vary under different structuring elements. In comparison, the Segment-SRC is tested
under deformations of the target region, which are also obtained by eroding the segmented target
region using the structuring elements in Equation (6). Table 10 displays the PCCs of the proposed
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method and Segment-SRC under different extents of segmentation errors. The distortion of the target
region will cause a big loss to the target backscattering. As a result, the performance of Segment-SRC
sharply decreases. The results indicate that the recognition methods performed on the target regions
are notably sensitive to the segmentation errors. For the proposed method, the shadow distortion
hardly degrades the performance. On the one hand, the shadow is not classified for recognition, so the
shadow segmentation errors are not directly passed to the recognition results. On the other hand,
according to the generation of information-decoupled representations, when the extracted shadow can
cover most of the truth, the target image can be properly constructed. As shown in Figure 8, most of
the true shadow region is maintained in the erosion results. Therefore, the generated target image can
continue to work with high effectiveness for the target recognition.
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Figure 9. Distorted shadow under different structuring elements: (a) original shadow; (b) S1; (c) S2;
(d) S3; (e) S4; and (f) S5.

Table 10. The PCCs under segmentation errors (%).

Structuring Element S1 S2 S3 S4 S5

Proposed method 94.66 94.63 94.54 94.51 94.50
Segment–SRC 91.41 90.85 89.01 89.14 87.57

4.4.2. Performance under Different Thresholds

In the proposed shadow extraction method in Section 2.2, the threshold is set to be the mean of the
entire intensities. The change of the threshold will cause irregular deformations to the extracted shadow.
For the experimental evaluation, the threshold is set to be 50%, 70%, 90%, 110%, 130% and 150% of
the original one, and then the PCC of the proposed method is calculated at each threshold. Figure 10
shows the results of shadow segmentation at different thresholds. Unlike the morphological erosion
results in Figure 9, the shadow deforms nonuniformly with change of the threshold. The average PCCs
of the proposed method at different thresholds are plotted in Figure 11, in which the x coordinate
represents the proportion of the original threshold. At a notably low threshold, some of the shadow
pixels are not correctly segmented. Then, the generated target image still contains many shadow pixels,
which causes some degradation to the proposed method. In contrast, at a notably high threshold,
some target and background pixels will be segmented as the shadow region, which also results in the
incorrectness of the target image. However, the PCCs at different threshold can remain higher than
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93%, which indicates the robustness of the proposed method to changing thresholds. The performance
of the proposed method is related to the precision of the generated target image. Although some
background pixels are segmented as the shadow, as shown in Figure 10f, the target image can be
properly generated. Then, there is only a small decrease in the PCC. In comparison, when more
shadow pixels are not correctly separated out (e.g., Figure 10a), the generated target image has lower
precision. However, because of the fusion of original image and target image, the proposed method
can maintain good performance.
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4.5. Outlier Rejection

The outlier rejection performance is also crucial for an SAR ATR method, which can effectively
reduce the false alarms during target recognition. Following the preceding works [37,50], three targets
(BMP2, BTR70 and T72) are used as the training set while two confuser targets (2S1 and D7) to be
rejected are included in the test set. It must be noted that the samples of confuser targets are not used
in the training phase. Each method decides the test sample to be an “in-class” target [50] or outlier
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according to the preset threshold on the decision value. Then, the probability of detection (Pd) and
probability of false alarm (Pf) are computed based on the correct decisions. By varying the threshold in
a certain range, the receiver-operating characteristics (ROC) curves are generated, which is one of the
most widely used approaches to assess the capability of outlier rejection.

As shown in Figure 12, when the Pf is lower than 0.4, the Pd obtained using the proposed method
is significantly higher than the ones obtained using the reference methods. To quantitatively evaluate
the outlier rejection performance, the area under the ROC curves is calculated as the average precision
(the numbers in the brackets in Figure 11). With the maximum average precision, the proposed method
is demonstrated most robust on outlier rejection. The score-level fusion of the original and target
images effectively enhances the separability between the “in-class” targets and outliers. Therefore,
the proposed method is more capable of rejecting outliers.
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5. Conclusions

This paper proposes a target recognition method for SAR images by exploiting the discriminative
information contained in SAR images. The original image is used to construct information-decoupled
representations: target image and shadow image. The original image and target image are classified
by SRC whose results are combined using a score-level fusion. Experiments conducted under SOC
and various EOCs demonstrate the excellent performance of the proposed method. The comparison
with some state-of-the-art methods further validates its superiority. Based on the experimental results,
several conclusions can be drawn. (1) According to the results under SOC and configuration variance,
the shadow can actually provide discriminability for target recognition. Therefore, merely using the
target region without shadow will cause information loss; (2) According to the results under depression
angle variance, the shadow may bring more confusion when it is severely deformed. The combination
of the original and target images can effectively improve the robustness to large depression angle
variance; (3) The score-level fusion can promote the recognition performance including PCC and
robustness to various EOCs; (4) The proposed method is insensitive to the shadow segmentation errors,
including both uniform and nonuniform ones, whereas the methods based on target segmentation are
closely related to the segmentation precision; (5) The proposed method has good capability of rejecting
outliers to reduce the false alarms during target recognition.

As future work, more classification schemes and fusion strategies can be applied to the proposed
information-decoupled representations. Moreover, some efficient and robust shadow classification
methods may be employed to incorporate the shadow image into the fusion framework.
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