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Abstract: Daily acquisition of large amounts of aerial and satellite images has facilitated subsequent
automatic interpretations of these images. One such interpretation is object detection. Despite the
great progress made in this domain, the detection of multi-scale objects, especially small objects in
high resolution satellite (HRS) images, has not been adequately explored. As a result, the detection
performance turns out to be poor. To address this problem, we first propose a unified multi-scale
convolutional neural network (CNN) for geospatial object detection in HRS images. It consists of a
multi-scale object proposal network and a multi-scale object detection network, both of which share
a multi-scale base network. The base network can produce feature maps with different receptive
fields to be responsible for objects with different scales. Then, we use the multi-scale object proposal
network to generate high quality object proposals from the feature maps. Finally, we use these object
proposals with the multi-scale object detection network to train a good object detector. Comprehensive
evaluations on a publicly available remote sensing object detection dataset and comparisons with
several state-of-the-art approaches demonstrate the effectiveness of the presented method. The
proposed method achieves the best mean average precision (mAP) value of 89.6%, runs at 10 frames
per second (FPS) on a GTX 1080Ti GPU.

Keywords: high resolution satellite images; geospatial object detection; object proposal network;
object detection network

1. Introduction

The rapid development of remote sensing technologies has created a large amount of high-quality
satellite and aerial images for research and investigation. High resolution satellite (HRS) images,
compared to ordinary low- and medium-resolution images, have some special properties: (1) the
structure of geospatial objects is clear; (2) the spatial layout is distinct; and (3) the entire image is a
collection of multi-scale objects [1]. Automated object detection in HRS images is a core requirement
for large range scene understanding and semantic information extraction [2]. Over the past decades,
considerable efforts have been made to develop various methods for the detection of different types of
objects in satellite and aerial images [3], such as buildings [4,5], storage tanks [6,7], vehicles [8,9], and
airplanes [10–12]. Object detection in HRS images determines whether there are one or more objects
belonging to the classes we are looking for and locates the position of each object using a bounding
box. Learning efficient image representations is the core task for object detection [13]. To solve the
object detection problem, the traditional methods based on either coding of handcrafted features or
unsupervised feature learning can only generate shallow to middle features with limited representative
ability [14,15]. Recently, with the rapid development of convolutional neural network (CNN), several
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design variations using region based CNN have generated the state-of-the-art performance against
traditional multi-class object detection benchmarks [16–20]. These benchmark datasets typically
present target objects with “friendly” or dominant scales because those images in a large pool of
available images and objects with significant scales, could be more easily selected [21]. Unlike objects
on these benchmark datasets, objects on HRS images are much smaller, including fixed shape objects
(e.g., airplanes, ships, vehicles, etc.) and diverse shape objects (e.g., harbors, bridges, etc.) that have
vastly different scales, which makes object detection in HRS images a very difficult problem. Besides,
large variations in the visual appearance of objects caused by viewpoint variation, resolution variation,
occlusion, background clutter, illumination, shadow, etc., cause much larger challenges for object
detection in HRS images [3]. Figure 1 gives the object scale comparison of the Pascal Visual Object
Classes 2007 (VOC2007) benchmark with Northwestern Polytechnical University very-high-resolution
10-class (NWPU VHR-10) benchmark and the scale distribution of NWPU VHR-10 benchmarks. We
can find that airplanes on the VOC2007 images occupy a dominant position, while objects on the
VHR-10 benchmark images are much smaller, with significant differences among them. In fact, most
objects have sizes less than 150 pixels, while very small objects such as vehicles as well as large objects
such as track fields make up a large proportion of objects. Despite the progress made in traditional
many-class object detection benchmarks, the complex object distribution makes it difficult to directly
deal with the object detection task in HRS images [22].
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Object detection in HRS images has been extensively studied over recent years [23]. The existing
methods can be generally divided into four main categories: template matching-based methods,
knowledge-based methods, object based image analysis (OBIA)-based methods, and machine
learning-based methods [3]. Template matching-based methods can be further divided into two classes,
i.e., rigid template matching and deformable template matching. Such types of methods usually have
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two steps: template generation and similarity measure [4,24]. For knowledge-based methods, the most
widely leveraged types of knowledge are geometric and context [25–27]. OBIA-based methods mainly
involve two steps: image segmentation and object classification [28]. For machine learning-based
methods, three processing steps are needed: feature extraction, feature fusion dimension reduction, and
classifier training [29,30]. Taking the advantages of the powerful feature extraction and classification
techniques in machine learning area, object detection tasks have been formulated as feature extraction
and classification problems, whose results have been shown to be promising. In the past decade,
various feature extraction approaches have been developed for the representation of objects [31].
Among them, histogram of oriented gradients (HOG) feature, local binary pattern (LBP) feature, bag
of words (BoW) feature and sparse coding based features are four widely used features and have
greatly advanced the development of object detection. HOG feature was first proposed by Dalal and
Triggs, since its edges or gradient structure describes the characteristics of local shape and is very
appropriate for human detection [32]. LBP is an operator used to describe the local texture features
of an image [33]. It has remarkable advantages such as rotation invariance and gray scale invariance.
Face recognition with LBP features has shown superiority and efficiency over some other methods [34].
BoW feature represents the image of a scene by a collection of local regions, denoted as code-words
obtained by unsupervised learning, and each region is represented as a part of a “theme” [35,36].
It has been widely used in geospatial object detection with excellent performance. Sparse coding is a
kind of unsupervised method for learning sets of over-completed bases to represent data efficiently.
Leveraging the mature theory in compressive sensing, sparse coding has been widely used in remote
sensing image analysis, such as image de-noising, image classification and object detection, yielding
promising performance [37–40]. Besides feature extraction, the subsequent classification is also very
important in the process of object detection. A classifier can be trained using many different approaches
by minimizing the misclassification error on the training dataset, including support vector machine
(SVM), k-nearest neighbors (KNN), random forest (RF) and so on [41–43].

With the recent rapid development of deep learning, CNNs have become a new approach
for feature representation and greatly improved the performance of object detection [44]. Current
CNN-based object detection algorithms could be roughly divided into two streams: the region-based
CNN (R-CNN) methods (e.g., R-CNN, Fast R-CNN and Faster R-CNN) and the region-free methods
(e.g., you only look once (YOLO) and single shot multi-box detector (SSD)) [16–20]. For each input
image, R-CNN firstly extracts around 2000 region proposals using selective search algorithm. Then, it
computes features for each proposal using a large CNN, followed by classifying each region using
class-specific linear SVMs [16]. Since CNN could extract deep features, the R-CNN outperforms other
handcrafted features-based methods by a large margin on the ImageNet Large Scale Visual Recognition
Challenge 2013 (ILSVRC2013). Fast R-CNN builds on R-CNN, but replaces the SVM classifier with a
region of interest (RoI) pooling layer and some fully connected (FC) layers to classify region proposals
and adjust the position of region proposals, which not only improves training and testing speed,
but also increases detection accuracy [17]. Faster R-CNN uses region proposal network (RPN) to
generate high-quality region proposals. Then, these region proposals are used by Fast R-CNN for
detection. RPN shares full image convolutional features with the detection network, thus enabling
nearly cost-free region proposal generation [18]. The region-based methods utilize a classifier to
perform object detection. By contrast, the region-free methods such as YOLO frame object detection as
a regression problem so that a single network could predict bounding boxes and associated classes
directly [19]. This method is extremely fast. SSD also considers object detection as a regression
problem, but small convolutional filters are applied to feature maps to predict category scores and box
offsets rather than fully connected layers. Besides, feature maps of different scales are used to make
predictions of multi-scales, so the detection accuracy is greatly improved compared with YOLO [20].

It is important to note that these CNN-based object detection methods were designed somewhat
specifically for general object detection challenges, which is not suitable for geospatial object detection
in HRS images [45]. Besides, to handle the problem of multi-scale objects and small objects, some
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methods like Fast R-CNN and Faster R-CNN achieve this by up-sampling the input image at training
phase or testing phase. It significantly increases the memory occupation and processing time. In this
paper, we propose a multi-scale CNN for geospatial object detection. The main contributions of this
paper are summarized as follows:

(1) A unified multi-scale CNN is proposed for geospatial object detection in HRS images. Objects with
extremely different scales could be more efficiently detected than the state-of-the-art methods.

(2) A modified base network is designed to generate feature maps with high semantic information at
each layer. Since feature maps of different layers can be assigned to objects of specific scales, the
detection performances at all scales are correspondingly improved.

(3) An optimized object proposal network is presented to produce better object proposals. By adding
multi-scale anchor boxes to multi-scale feature maps, the network could generate object proposals
exhaustively, which could improve the recall rate of the detection. By adding proposal score
layers behind the multi-scale feature maps, the network could suppress most of the negative
samples, which could improve the precision of the detection.

The proposed method is evaluated on a publicly available remote sensing object detection dataset
and then compared with several state-of-the-art approaches. The experimental results demonstrate the
effectiveness and superiority of our method.

The rest of this paper is organized as follows. Section 2 presents the methodology of our
multi-scale CNN, which consists of the multi-scale object proposal network and the multi-scale object
detection network. Section 3 presents the dataset description and experimental details. Sections 4
and 5 present the analysis of the experimental results and a discussion of the results, respectively.
Finally, the conclusions are drawn in Section 6. Important terms and their abbreviations are provided
in Table 1.

Table 1. Important terms and their abbreviations.

HRS High Resolution Satellite

CNN convolutional neural network
FPS frames per second

VOC2007 the Pascal Visual Object Classes 2007
NWPU VHR-10 Northwestern Polytechnical University very-high-resolution 10-class

OBIA object based image analysis
HOG histogram of oriented gradients
LBP local binary pattern
BoW bag of words
SVM support vector machine
KNN k-nearest neighbors

RF random forest
R-CNN region-based CNN
YOLO you only look once

SSD single shot multi-box detector
ILSVRC2013 the ImageNet Large Scale Visual Recognition Challenge 2013

RoI region of interest
FC fully connected

RPN region proposal network
FCN fully convolutional network
IoU intersection-over-union
AP average precision

PRC precision-recall curve
mAP mean AP

TP true positive
FP false positive

SSCBoW spatial sparse coding BoW
COPD collection of part detectors

RICNN rotation-invariant CNN
NMS non-maximum suppression
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2. Methodology

Figure 2 provides an overview of the technical workflow, which displays the components of
the multi-scale CNN. The proposed network consists of a multi-scale object proposal network and a
multi-scale object detection network, both of which share a multi-scale base network for feature map
generation. Details of these networks are provided in the following content.

Remote Sens. 2018, 10, 131 5 of 21 

 

The rest of this paper is organized as follows. Section 2 presents the methodology of our multi-
scale CNN, which consists of the multi-scale object proposal network and the multi-scale object 
detection network. Section 3 presents the dataset description and experimental details. Sections 4 and 
5 present the analysis of the experimental results and a discussion of the results, respectively. Finally, 
the conclusions are drawn in Section 6. Important terms and their abbreviations are provided in Table 
1. 

2. Methodology 

Figure 2 provides an overview of the technical workflow, which displays the components of the 
multi-scale CNN. The proposed network consists of a multi-scale object proposal network and a 
multi-scale object detection network, both of which share a multi-scale base network for feature map 
generation. Details of these networks are provided in the following content. 

 
Figure 2. Architecture of the unified multi-scale CNN. 

2.1. Shared Multi-Scale Base Network 

The coverage of multi-scale is an important problem for object detection [46]. R-CNN based 
methods (such as R-CNN, Fast R-CNN and Faster R-CNN) choose the output of the last layer as 
reference set of feature maps [3–5]. However, the single scale feature maps have a fixed receptive 
field of the input image, which can be mismatched to small or large objects [47]. SSD uses feature 
maps from multiple layers of the CNN [20]. As the semantic information in the low-layer is shallow, 
the detection result for small objects is relatively poor. To produce feature maps that have strong 
semantics at all scales, we propose a new shared multi-scale base network which combines high 
semantic information from higher layers with fine details from lower layers, as shown in Figure 3. 
The proposed base network produces feature maps through multiple branches, starting from the last 
layer of bottom-up feedforward network, which has very high semantic information but poor 
localization performance due to the coarseness of the feature maps [48,49]. Then, the feature maps of 
the last layer are transmitted back by the top-down network. Bottom-up feature maps at middle 
layers are combined with the top-down feature maps to produce final feature maps via lateral 
connections [50,51]. As the final feature maps are composed of feature maps from the top-down 
network and the bottom-up network, it can capture both pertinent fine details and high-level 
semantic information. We use modified VGG-16 as the bottom-up network, which is a standard 
architecture used for high quality image classification [52]. Because of the large range of HRS imagery 
and small size of geospatial objects on it, we do not use feature maps after conv1, conv2 and conv3 
for lateral connections due to its weak semantic information and large memory overhead. Moreover, 
we discard feature maps after conv6, conv7, conv8 and conv9 because their feature maps are too 
small to distinguish objects on them. To ensure the number of feature maps with different sizes, we 
use feature maps after conv4, conv5, fc6 and fc7 to produce final feature maps. To use arbitrary size 
input images, we convert fc6 and fc7 to convolutional layers similar to the network architecture used 
in fully convolutional network (FCN) as the fc layers can be viewed as convolutional with kernels 
that cover the entire input regions [53]. After the bottom-up feedforward network, several feature 

Figure 2. Architecture of the unified multi-scale CNN.

2.1. Shared Multi-Scale Base Network

The coverage of multi-scale is an important problem for object detection [46]. R-CNN based
methods (such as R-CNN, Fast R-CNN and Faster R-CNN) choose the output of the last layer as
reference set of feature maps [3–5]. However, the single scale feature maps have a fixed receptive field
of the input image, which can be mismatched to small or large objects [47]. SSD uses feature maps from
multiple layers of the CNN [20]. As the semantic information in the low-layer is shallow, the detection
result for small objects is relatively poor. To produce feature maps that have strong semantics at all
scales, we propose a new shared multi-scale base network which combines high semantic information
from higher layers with fine details from lower layers, as shown in Figure 3. The proposed base
network produces feature maps through multiple branches, starting from the last layer of bottom-up
feedforward network, which has very high semantic information but poor localization performance
due to the coarseness of the feature maps [48,49]. Then, the feature maps of the last layer are transmitted
back by the top-down network. Bottom-up feature maps at middle layers are combined with the
top-down feature maps to produce final feature maps via lateral connections [50,51]. As the final
feature maps are composed of feature maps from the top-down network and the bottom-up network,
it can capture both pertinent fine details and high-level semantic information. We use modified
VGG-16 as the bottom-up network, which is a standard architecture used for high quality image
classification [52]. Because of the large range of HRS imagery and small size of geospatial objects on
it, we do not use feature maps after conv1, conv2 and conv3 for lateral connections due to its weak
semantic information and large memory overhead. Moreover, we discard feature maps after conv6,
conv7, conv8 and conv9 because their feature maps are too small to distinguish objects on them. To
ensure the number of feature maps with different sizes, we use feature maps after conv4, conv5, fc6
and fc7 to produce final feature maps. To use arbitrary size input images, we convert fc6 and fc7 to
convolutional layers similar to the network architecture used in fully convolutional network (FCN) as
the fc layers can be viewed as convolutional with kernels that cover the entire input regions [53]. After
the bottom-up feedforward network, several feature maps with different scales are produced. Then, in
the top-down layers and lateral connection layers, a de-convolutional layer and a 3× 3 convolutional
kernel are applied separately to guarantee the outputs of the top-down layers and lateral connection
layers have the same size and dimension. Then, the two corresponding feature maps are merged by
element-wise addition to produce the final multi-scale feature maps. In detail, feature maps from four
different branches are produced. For convenience, we denote these feature maps as {F4, F5, F6, F7} for
conv4, conv5, fc6, and fc7 outputs, which can be seen in Figure 3. As the stride of each max pooling
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layer in VGG-16 is 2, these output feature maps have receptive field of {8, 16, 32, 64} pixels with respect
to the input image, with a size of H

8 ×
W
8 , H

16 ×
W
16 , H

32 ×
W
32 and H

64 ×
W
64 , respectively.
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2.2. Multi-Scale Object Proposal Network

Figure 4 gives the architecture of the RPN, which introduces novel anchor boxes that serve as
object proposals at multiple scales and aspect ratios [5]. An RPN inputs feature maps of the same
layer and outputs a set of rectangular anchor boxes, each with two objectness scores that estimate the
probability of being an object or not and four coordinates encoding the position of the object. At each
sliding-window location, RPN simultaneously predicts multiple region proposals, where the number
of predicted region proposals is denoted as k. In Faster R-CNN, there are three scales and three aspect
ratios, leading k = 9. anchor boxes at each sliding position. As shown in Section 2.1, we have obtained
multi-scale feature maps {F4, F5, F6, F7} with different receptive field of {8, 16, 32, 64} pixels. There
is no need to let an anchor box with a big receptive field match to a small object. Anchor boxes of
different scales can be assigned to feature maps of different scales. Thus, SSD uses a single scale anchor
box at feature maps of different scales. Moreover, SSD imposes five different aspect ratios for the
default sliding position rather than three in the Faster R-CNN method. The experimental result of
SSD shows that using a variety of default anchor box shapes achieves better prediction. However, as
we can see that Faster R-CNN using a single scale feature map with multi-scale anchor boxes could
detect most of the objects on images. In other words, a single scale feature map could be responsive for
multi-scale objects with the help of multi-scale anchor boxes. Thus, we add multi-scale anchor boxes
to multi-scale feature maps to improve the accuracy of detection. We tried four different options, as
shown in Table 2. RFmin(3× 8 = 24 pixels) is the receptive field of sliding window in F4 feature maps.
Table 3 shows the detection accuracy of the four different options. We can see that Option 2 is the best.Remote Sens. 2018, 10, 131 7 of 21 
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Table 2. Options for Anchor boxes.

Receptive Field of
Anchor Boxes F4 F5 F6 F7

1 (Single Scale) RFmin 3RFmin 5RFmin 7RFmin

2 (Two Scale) RFmin, 2RFmin 3RFmin, 4RFmin 5RFmin, 6RFmin 7RFmin, 8RFmin

3 (Three Scale) RFmin, 2RFmin,
3RFmin

3RFmin, 4RFmin,
5RFmin

5RFmin, 6RFmin,
7RFmin

7RFmin, 8RFmin,
9RFmin

4 (Four Scale) RFmin, 2RFmin,
3RFmin, 4RFmin

3RFmin, 4RFmin,
5RFmin, 6RFmin

5RFmin, 6RFmin,
7RFmin, 8RFmin

7RFmin, 8RFmin,
9RFmin, 10RFmin

Table 3. The Mean AP values of the four different options.

Options 1 2 3 4

Mean AP 86.2% 89.6% 87.2% 77.9%

The architecture of the proposed multi-scale object proposal network is shown in Figure 5.
We consider anchor boxes with two scales and five aspect ratios at each feature map, resulting in a
total number of about 8000 anchor boxes. However, only a small part of the anchor boxes contains
objects. This leads to a significant imbalance between the positive and negative samples. It is difficult
for the object detector to suppress most of the negative samples and give a reasonable score and an
appropriate position for the positive samples at the same time. Thus, we train a classifier to help the
object detector suppress the negative samples. Instead of using all the anchor boxes for detection, we
add a proposal score layer behind the feature maps to execute positive samples selection. A 3× 3
convolutional layer followed by a softmax function layer is used to predict the proposal score of each
anchor box. During training phase, an anchor box is assigned a positive label 1 if it has the highest
Intersection-over-Union (IoU) for a given ground truth bounding box or an IoU over 0.5 with any
ground-truth bounding box, and a negative label 0 if it has IoU lower than 0.3 for all ground truth
bounding box. All the positive samples are used for backward propagation. Then, we randomly select
the negative samples for backward propagation until the ratio between positive and negative samples
is at least 1:3 [17,54]. As 0.5 is the median of the output of the softmax function, we use 0.5 as the
threshold. Anchor boxes whose proposal scores are higher than 0.5 will be used for detection.
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During the training process, the parameters W of the multi-scale object proposal network are
learned from a set of training samples S = {(Xi, Yi)}N

i = 1, where Xi is a training image and Yi = (yi, bi)

is the combination of its class label yi ε {0, 1} and corresponding ground truth bounding boxes
coordinates bi =

(
bx

i , by
i , bw

i , bh
i

)
. This is achieved with a multi-task loss

Lpro(W) =
4

∑
f=1

α f l f (Xi, Yi|W), (1)

where f stands for the feature map used to produce anchor boxes, α f stands for the weight of object
proposal loss l f . The loss for each feature map is

l(Xi, Yi|W) = ∑
i ε S

Lpro(p(Xi), yi), (2)

where p(Xi) = (p0(Xi), p1(Xi)) is the anchor box’s probability distribution over being an object or
background. Lpro(p(Xi), yi) is the cross-entropy loss.

2.3. Multi-Scale Object Detection Network

The positive and negative samples obtained in Section 2.2 could be used to train our multi-scale
object detection network, shown in Figure 2. We use two 3× 3 convolutional layers on feature maps to
obtain the classification and bounding box regression result, which can be changed into a hierarchy
of convolutional layers or more advanced blocks like residual or inception units. For simplicity, we
only use two 3× 3 convolutional layers. We have training samples S f = {S+

f , S−f } for each feature

map. The subscript f indicates the feature map used for training. S+
f = {S+1

f , S+2
f , S+3

f , · · · , S+M
f },

S−f = {S−1
f , S−2

f , S−3
f , · · · , S−N

f }. M is the number of positive samples and N is the number of negative

samples in feature map f. For each sample Si
f = {(Xi, Yi)}M+N

i=1 , Xi is the input image of sample i and
Yi = (yi, bi) is the combination of class label yiε{0, 1, 2, 3, · · · , K} (0 stands for negative samples and K
is the number of classes) and coordinates bi of ground truth bounding boxes. The loss for learning the
object detection parameters can be expressed as

Lobj(W) =
4

∑
f=1

M+N

∑
i=1

β f l f (Xi, Yi|W), (3)

where β f stands for the weight of object detection loss l f . The loss for each sample is

l(Xi, Yi|W) = Lcls(p(Xi), yi) + µ[yi > 0]Lloc(bi, b), (4)

where p(Xi) = (p0(Xi), p1(Xi), p2(Xi), · · · , pK(Xi)) is sample’s probability distribution over each
class, µ is a trade-off coefficient for balancing the weight of classification loss and bounding box
regression loss, Lcls(p(Xi), yi) is the cross-entropy loss, b is the regressed bounding box, and Lloc(bi, b)
is a smoothed loss. In accordance with the above definitions, the overall loss function for our method
can be given by

L(W) = Lpro(W) + Lobj(W) (5)

By stochastic gradient descent, we can learn the optimal parameters Wopt for the whole network.

3. Experiments

Remote Sensing datasets from Google Map have received extensive research attention in the recent
years and are recognized as a valid source for remote sensing research [55]. To evaluate the performance
of the proposed multi-scale CNN, we performed ten-class object detection experiments on a publicly
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available dataset: NWPU VHR-10 dataset acquired from Google Earth [56]. The dataset description,
evaluation metrics, baseline methods and implementation details are described in this section.

3.1. Dataset Description

The NWPU VHR-10 dataset is a ten-class geospatial object detection dataset used for multi-class
object detection. This dataset contains airplanes, ships, storage tanks, baseball diamonds, tennis courts,
basketball courts, ground track fields, harbors, bridges, and vehicles. It contains a total of 800 very high
resolution satellite images, with 715 images acquired from Google Earth with a resolution of 0.5–2.0 m,
and 85 pan-sharpened color infrared images with a resolution of 0.08 m. Two image sets are contained
in this dataset: a positive dataset, with 650 images each containing at least one target to be detected,
and a negative dataset of 150 images, without any targets of the given classes to be detected. From
the positive image set, 757 airplanes, 302 ships, 655 storage tanks, 390 baseball diamonds, 524 tennis
courts, 150 basketball courts, 163 ground track fields, 224 harbors, 124 bridges, and 477 vehicles were
manually annotated with bounding boxes used for ground truth. For the comparison with baseline
method, we divide the positive dataset into 20% for training, 20% for validation and 60% for testing,
namely 130 images for training, 130 images for validation and 390 images for testing.

3.2. Evaluation Metrics

We incorporate the widely used average precision (AP) and precision-recall curve (PRC) to
quantitatively evaluate the performance of the proposed multi-scale CNN. The AP computes the
average value of the precision over the interval from recall = 0 to recall = 1, i.e., the area under the PRC;
hence, the higher the AP, the better the performance [8]. In addition, mean AP (mAP) computes the
average value of all the AP values for all the classes. The precision metric measures the proportion of
detections that are true positives, and the recall metric measures the proportion of positives that are
correctly detected. The precision and recall metrics can be formulated as follows:

Precision =
TP

(TP + FP)
(6)

Recall =
TP

(TP + FN)
(7)

A detecting anchor box is considered to be true positive (TP) if the area IoU between it and the
ground truth is larger than 0.5, otherwise, it will be considered as false positive (FP). In addition, if the
area overlap ratio between several detecting anchor boxes and the ground truth are bigger than 0.5,
only the bounding box with the largest area IoU is considered as TP, others are considered as FP.

3.3. Baseline Methods

To evaluate the proposed multi-scale CNN quantitatively, we compared it with three
state-of-the-art methods and four state-of-the-art CNN-based methods: (1) the BoW feature based
method in which each image region is represented as a histogram of visual words generated by the
k-means algorithm [57]; (2) the spatial sparse coding BoW (SSCBoW) feature based model in which
visual words are generated by the sparse coding algorithm [36]; (3) the collection of part detectors
(COPD) based method which is composed of 45 seed-based part detectors trained in HOG feature space.
Each part detector is a linear SVM classifier corresponding to a particular viewpoint of a particular
object class, hence, the collection of them provides an approximate solution for rotation-invariant
object detection [58]; (4) a transferred CNN model fine-tuned from AlexNet, which is used as a
universal CNN feature extractor [59]; (5) a rotation-invariant CNN (RICNN) model which considers
rotation-invariant information with a rotation-invariant layer and other fine-tuned layers [59]; (6) the
SSD model with an input image size of 512× 512 pixels; and (7) the faster R-CNN model with an input
image size about 1000× 600 pixels.
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3.4. Implementation Details

Our method is trained end-to-end on the NWPU VHR-10 trainval dataset, and tested on NWPU
VHR-10 test dataset. To make the model more robust to various input object sizes and shapes, each
training image is randomly sampled by one of the following options: (1) using the original/flipped
input image; and (2) randomly sampling a patch whose edge length is 0.4, 0.5, 0.6, 0.7, 0.8 or 0.9 of the
original image. We keep the patch only if at least one object’s center is in the sampled patch. During
the training phase, we initialize the same parameters with VGG-16 by the model pre-trained with
ImageNet dataset. For other newly added layers, we initialize the parameters by drawing weights
from a zero-mean Gaussian distribution with standard deviation of 0.01. The learning rate is 10−3 for
the first 30,000 iterations and then decayed to 10−4 for other 10,000 iterations. We use a weight decay
of 0.0005 and a momentum of 0.9. We resize the input image so that it has an input size of 320× 320
at the training stage and an input size of 512× 512 at the testing stage as detection often requires
fine-grained visual information [19]. The hyper-parameters α f , β f , and µ in Section 2 are set to 1 in all
experiments. We adopt stochastic gradient descent with a mini-batch of 10 images.

4. Results

Figure 6 shows airplanes, tennis courts, basketball courts, baseball diamonds and vehicles detected
by using our method, Faster R-CNN and SSD. The predicted bounding boxes that match the ground
truth bounding boxes with IoU > 0.5 are plotted in green color, while the false alarms and missing
targets are plotted in yellow and red color, respectively. Our method is better in the given scenes, since
it successfully detects all the objects with a small number of false alarms, while Faster R-CNN detects
most of the objects with a small number of false alarms and missing targets, and SSD with many false
alarms and missing targets. The detection results for vehicles and tennis courts show that our method
could generate better bounding boxes that cover most of the objects even when they are closely aligned
and with a small size. The detection results for airplanes and vehicles show that our method could
exclude most of the false bounding boxes and detects with a small number of false alarms. This is
because our method could generate better bounding boxes that cover most of the objects by using
multi-scale base network. Moreover, our method could suppress most of the false alarms by using
positive samples selecting.
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More results of our method on images from the VHR-10 test dataset are shown in Figure 7. It 
can be seen that objects with extremely small scales could also be detected well, e.g., the storage tanks 
in Figure 7b and the vehicles in Figure 7f. Besides, the detection performance for other objects, like 
airplanes, ships and baseball diamonds are also very promising. However, when objects are small 
and closely aligned, there may be some false positives, as shown in Figures 6b and 7b,g. This is 
because we add multi-scale anchor boxes to multi-scale feature maps to improve the accuracy of 
detection. Although our method could cover most objects, there exist a small number of repeated 
bounding boxes that cannot be suppressed by non-maximum suppression (NMS) operator. If we 
decrease the threshold of non-maximum suppression operator, more repeated bounding boxes will 
be restrained, but at the same time, some small objects will also be missed. To solve this problem, we 
replace the traditional NMS operator by a Soft NMS operator. Figure 8 shows some detection results 
using our method with NMS and Soft NMS, respectively. It could be seen that these false alarms are 
suppressed. 
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More results of our method on images from the VHR-10 test dataset are shown in Figure 7. It can
be seen that objects with extremely small scales could also be detected well, e.g., the storage tanks
in Figure 7b and the vehicles in Figure 7f. Besides, the detection performance for other objects, like
airplanes, ships and baseball diamonds are also very promising. However, when objects are small and
closely aligned, there may be some false positives, as shown in Figures 6b and 7b,g . This is because
we add multi-scale anchor boxes to multi-scale feature maps to improve the accuracy of detection.
Although our method could cover most objects, there exist a small number of repeated bounding
boxes that cannot be suppressed by non-maximum suppression (NMS) operator. If we decrease the
threshold of non-maximum suppression operator, more repeated bounding boxes will be restrained,
but at the same time, some small objects will also be missed. To solve this problem, we replace the
traditional NMS operator by a Soft NMS operator. Figure 8 shows some detection results using our
method with NMS and Soft NMS, respectively. It could be seen that these false alarms are suppressed.
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detecting more targets, while the precision evaluates the quality of detecting correct objects rather 
than containing many false alarms. In this figure, we can see that our multi-scale CNN achieves the 
best recall for almost all classes except bridges. It shows that our multi-scale object proposal network 
could produce anchor boxes which cover most objects. In particular, the recall rates of small objects 
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Quantitative comparisons of the eight different methods are shown in Tables 4 and 5, and Figure 9.
The PRC over 10 testing classes are plotted in Figure 9. The recall ratio evaluates the ability of
detecting more targets, while the precision evaluates the quality of detecting correct objects rather
than containing many false alarms. In this figure, we can see that our multi-scale CNN achieves the
best recall for almost all classes except bridges. It shows that our multi-scale object proposal network
could produce anchor boxes which cover most objects. In particular, the recall rates of small objects
like storage tanks and vehicles increase more than other objects, which further illustrate the good
performance of our methods for small objects detection. On the other hand, it can be seen that our
method can usually achieve higher precision than other methods, in detecting airplanes, ships, storage
tanks and so on. This is because we have made use of an object proposal score layer to execute positive
samples selection, which means that our anchors boxes have a higher probability of predicting the
correct bounding boxes. At the same time, it decreases the number of bounding boxes, so the recall
rate on bridges decreased. Table 3 lists the AP and mAP for each method. Based on these statistical
data, we can see that the proposed multi-scale CNN obtains the best mAP value of 89.6% among all
the object detection methods. In addition, it obtains the highest AP values for almost all classes except
storage tanks. Compared with the second best method of Faster R-CNN, there is a 4.97% increase
for airplanes, a 11.79% increase for ships, a 42.68% increase for ships, a 1.78% increase for baseball
diamonds, a 10.87% increase for tennis courts, a 3.23% increase for basketball courts, a 6.17% increase
for ground track fields, a 17.54% increase for harbors, a 25.04% increase for bridges, and a 10.41%
increase for vehicles. Table 4 presents the average testing time per image for each method. It is seen
that the computation time needed in our method is a little bit more than SSD, but much less than
Faster R-CNN.
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Table 4. The AP values of the eight object detection methods.

Methods BoW SSC
BoW COPD Transferred

CNN RICNN SSD Faster
R-CNN

Multi-Scale
CNN

Airplane 0.2496 0.5061 0.6225 0.661 0.8835 0.957 0.946 0.993
Ship 0.5849 0.5084 0.6887 0.569 0.7734 0.829 0.823 0.920

Storage tank 0.6318 0.3337 0.6371 0.843 0.8527 0.856 0.6532 0.832
Baseball diamond 0.0903 0.4349 0.8327 0.816 0.8812 0.966 0.955 0.972

Tennis court 0.0472 0.0033 0.3208 0.350 0.4083 0.821 0.819 0.908
Basketball court 0.0322 0.1496 0.3625 0.459 0.5845 0.860 0.897 0.926

Ground track field 0.0777 0.1007 0.8531 0.800 0.8673 0.582 0.924 0.981
Harbor 0.5298 0.5833 0.5527 0.620 0.6860 0.548 0.724 0.851
Bridge 0.1216 0.1249 0.1479 0.423 0.6151 0.419 0.575 0.719
Vehicle 0.0914 0.3361 0.4403 0.429 0.7110 0.756 0.778 0.859

Mean AP 0.2457 0.3081 0.5458 0.597 0.7263 0.759 0.809 0.896

Table 5. The average testing time of the eight object detection methods.

Average
Testing
Time

BoW SSC
BoW COPD Transferred

CNN RICNN SSD Faster
R-CNN

Multi-Scale
CNN

5.32 40.32 1.07 5.24 8.77 0.09 0.16 0.11

Remote Sens. 2018, 10, 131 13 of 21 

 

performance of our methods for small objects detection. On the other hand, it can be seen that our 
method can usually achieve higher precision than other methods, in detecting airplanes, ships, 
storage tanks and so on. This is because we have made use of an object proposal score layer to execute 
positive samples selection, which means that our anchors boxes have a higher probability of 
predicting the correct bounding boxes. At the same time, it decreases the number of bounding boxes, 
so the recall rate on bridges decreased. Table 3 lists the AP and mAP for each method. Based on these 
statistical data, we can see that the proposed multi-scale CNN obtains the best mAP value of 89.6% 
among all the object detection methods. In addition, it obtains the highest AP values for almost all 
classes except storage tanks. Compared with the second best method of Faster R-CNN, there is a 4.97% 
increase for airplanes, a 11.79% increase for ships, a 42.68% increase for ships, a 1.78% increase for 
baseball diamonds, a 10.87% increase for tennis courts, a 3.23% increase for basketball courts, a 6.17% 
increase for ground track fields, a 17.54% increase for harbors, a 25.04% increase for bridges, and a 
10.41% increase for vehicles. Table 4 presents the average testing time per image for each method. It 
is seen that the computation time needed in our method is a little bit more than SSD, but much less 
than Faster R-CNN. 

(a) Airplane (b) Ship 

(c) Storage tank (d) Baseball diamond 

Figure 9. Cont.



Remote Sens. 2018, 10, 131 14 of 21

Remote Sens. 2018, 10, 131 14 of 21 

 

(e) Tennis court (f) Basketball court 

(g) Ground track field (h) Harbor 

(i) Bridge (j) Vehicle 

Figure 9. Precision versus recall curve for each method. 

  

Figure 9. Precision versus recall curve for each method.

The bounding box quality is evaluated in Table 6, which lists the AP and mAP for our method,
Faster R-CNN and SSD under different IoU for all the test images. It can be easily seen from the table
that the AP for each method drops when IoU increases. When IoU is equal to 0.3, we can see that
our method obtains mAP value of 92.8%, and it obtains the highest AP values for all classes even for
storage tanks. Figure 10 shows the different detection results of storage tanks using our method when
IoU is set as 0.3 and 0.5. We can see that our method obtained a lower AP of storage tanks because
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many bounding boxes with targets inside it are considered as false alarms. If with a small IoU, the
AP increased greatly. For fair comparison, we set IoU as 0.5 in this paper, the same as the IoU values
in the baseline methods. However, these baseline methods are not for multi-scale geospatial objects
detection in HRS imagery. As it is very important to determine a suitable IoU before detection, we can
set a lower IoU in real remote sensing applications.

Table 6. The AP values of the three object detection methods under different IoU.

Methods SSD Faster R-CNN Multi-Scale CNN

IoU 0.3 0.4 0.5 0.3 0.4 0.5 0.3 0.4 0.5

Airplane 0.963 0.961 0.957 0.952 0.950 0.946 0.993 0.993 0.993
Ship 0.829 0.829 0.829 0.853 0.853 0.823 0.922 0.920 0.920

Storage tank 0.898 0.893 0.856 0.861 0.763 0.6532 0.951 0.936 0.832
Baseball diamond 0.966 0.966 0.966 0.964 0.960 0.955 0.972 0.972 0.972

Tennis court 0.854 0.847 0.821 0.860 0.857 0.819 0.924 0.918 0.908
Basketball court 0.887 0.887 0.860 0.897 0.897 0.897 0.926 0.926 0.926

Ground track field 0.743 0.662 0.582 0.924 0.924 0.924 0.981 0.981 0.981
Harbor 0.608 0.600 0.548 0.814 0.747 0.724 0.897 0.891 0.851
Bridge 0.454 0.454 0.419 0.733 0.716 0.575 0.827 0.735 0.719
Vehicle 0.782 0.782 0.756 0.824 0.814 0.778 0.884 0.876 0.859

Mean AP 0.798 0.788 0.759 0.868 0.848 0.809 0.928 0.915 0.896
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5.1. Performance Analysis of the Proposed Multi-Scale CNN in Large Range HRS Imagery

To demonstrate the effectiveness of the proposed multi-scale CNN in large range HRS imagery
application, we collect some large scale HRS images using the Google Earth and have done a great
number of experiments on it. For simplicity, we choose one image and show the experimental results
below. The image is collected from Charles de Gaulle International Airport in Paris, with a resolution
of 0.597 m and a size of 8000× 24,000 pixels. Considering the limited GPU memory and processing
speed, each image is cropped into several contiguous image blocks whose size is 1000× 1000 pixels for
testing. During the cropping phase, we set an overlap of 200 pixels for each contiguous image blocks,
which is larger than the average airplane length, to ensure that an airplane at the boundary is not be
ignored. After each image block is processed individually, the contiguous image blocks are spliced
together according to their original position. For overlapping of the adjacent image blocks, we use a
NMS operator to eliminate redundant bounding boxes.

Figure 11 shows the detection results of the proposed multi-scale CNN in large range HRS imagery.
Table 7 displays the performance of the proposed method accordingly. It can be seen that our method
can achieve superior performance in large range HRS imagery. Figure 12 shows some typical false
alarms and missing targets for analyzing the characteristics of false alarms and missing targets. Some
false alarms are similar to true positive targets, others are brought by splicing of image blocks. As for
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missing targets, we can see that there is a big color difference between them and true positive targets.
Thus, they are missed.
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5.2. Sufficiency Analysis of the Proposed Multi-Scale CNN

To address the problem of detecting objects at multiple scales, we propose the multi-scale CNN to
learn multiple classifiers by making use of multiple feature maps at different layers. Although great
progress has been made in the field of multi-scale object detection in high resolution remote sensing
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images, we are interested in solving this problem more effectively. We discuss this problem in this
section with two extra strategies to our algorithm.

There are two simple strategies to address the problem of detecting objects at multiple scales.
The first is to learn a single classifier at the training stage and rescale the image multiple times at the
testing stage, so that objects at all possible scales can be matched by the classifier, then a non-maximum
suppression operator is applied to eliminate redundant bounding boxes, as shown in Figure 13. This
strategy requires feature computation at multiple image scales, which tends to be very time-consuming.
An alternative approach is to learn multiple classifiers by using multi-scale training at the training
stage, and then use a single-scale image at the testing stage, as shown in Figure 14. It avoids the
repeated computation of the feature map, but it is time-consuming to learn multiple classifiers and
hard to produce good detectors with a single scale feature map. Here, we discuss the sufficiency of
our algorithm by combining our algorithm with the two simple but useful strategies. The multi-scale
CNN uses an input size of 320× 320 at the training stage and an input size of 512× 512 at the testing
stage as detection often requires fine-grained visual information [19]. With multi-scale training, we
change the resolution to sizes of {256, 320, 384, 448, 512} at the training stage. We also change the input
resolution to sizes of {256, 320, 384, 448, 512} at the testing stage with multi-scale testing. The AP value
and testing time are listed in Tables 8 and 9. It can be seen that the Mean AP has no improvement, but
it decreases in multi-scale training or multi-scale testing. We can draw the conclusion that our method
is sufficient to solve the problem of multi-scales objects detection in HRS images.
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Table 8. The AP values of the object detection strategies.

Airplane Ship Storage
Tank

Baseball
Diamond

Tennis
Court

Basketball
Court

Ground
Track Field Harbor Bridge Vehicle Mean

AP

Our method 0.993 0.920 0.832 0.972 0.908 0.926 0.981 0.851 0.719 0.859 0.896

Our method with
multi-scale training 0.968 0.885 0.756 0.973 0.906 0.937 0.990 0.876 0.725 0.846 0.886

Our method with
multi-scale testing 0.987 0.928 0.774 0.974 0.903 0.883 0.980 0.880 0.786 0.846 0.894

Table 9. The average running time of the object detection strategies.

Time (s) Our Method Our Method with
Multi-Scale Training

Our Method with
Multi-Scale Testing

0.11 0.11 0.40

6. Conclusions

A multi-scale CNN for geospatial object detection in HRS images is proposed in this paper. The
special design of the multi-scale CNN, i.e., the shared multi-scale base network and the multi-scale
object proposal network, enables production of feature maps with high semantic information at
different layers and generation of anchor boxes that cover most of the objects with a small amount
of negative samples. Experiments on NWPU VHR-10 dataset and comparisons with state-of-the-art
approaches demonstrate the effectiveness and superiority of the proposed method. Further, the
proposed multi-scale CNN is evaluated and shown to be effective in dealing with large range HRS
imagery. With the use of multi-scale training and multi-scale testing, our proposal is shown to be
sufficient in detecting multi-scale objects. In our future work, we plan to investigate more refined
network to produce anchor boxes with better locating capacity.
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