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Abstract: In this paper, a novel polarimetric synthetic aperture radar (PolSAR) image classification
method based on multilayer autoencoders and self-paced learning (SPL) is proposed. The multilayer
autoencoders network is used to learn the features, which convert raw data into more abstract
expressions. Then, softmax regression is applied to produce the predicted probability distributions
over all the classes of each pixel. When we optimize the multilayer autoencoders network, self-paced
learning is used to accelerate the learning convergence and achieve a stronger generalization capability.
Under this learning paradigm, the network learns the easier samples first and gradually involves
more difficult samples in the training process. The proposed method achieves the overall classification
accuracies of 94.73%, 94.82% and 78.12% on the Flevoland dataset from AIRSAR, Flevoland dataset
from RADARSAT-2 and Yellow River delta dataset, respectively. Such results are comparable with
other state-of-the-art methods.
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1. Introduction

Polarimetric synthetic aperture radar (PolSAR) has been one of the most important sensors
in remote sensing. In addition to the day–night and all-weather advantages of SAR, PolSAR can
transmit and receive electromagnetic energy in more than one polarization. This allows much richer
characterization of the observed targets than single-polarization SAR. PolSAR has been proven to
be a valuable tool in many areas, such as military, agriculture and environment monitoring [1–4].
PolSAR image classification is one of the most fundamental issues. With a decade of developments in
PolSAR image classification, many effective classification methods have been proposed. Buono et al. [5]
used the two most employed unsupervised classification algorithms, namely, the H/a Wishart and
the Freeman-Durden Wishart approach, to classify coastal areas, and they evaluated the performance
of those classical classifiers over these challenging areas. Xiang et al. [6] presented a new Wishart
classification method that used Wishart supervised classification based on the result of H/a-Wishart
unsupervised classification. This classification method provides good results in coastal zones.
Zhang et al. [7] proposed a supervised PolSAR image classification method that is based on sparse
representation. First, the features are extracted. Then, the feature vectors of the training samples
construct an over-complete dictionary and obtain the corresponding sparse coefficients; meanwhile,
the residual error of the pending pixel with respect to each atom is evaluated and considered as
the criteria for classification, and the ultimate class results can be obtained according to the atoms
with the least residual error. Du et al. [8] proposed a new method called boosted multiple-kernel
extreme learning machines. In this method, Adaptive Boosting was implemented in the training
phase, while multiple output fusion strategies, such as Majority Voting, Weighted Majority Voting,
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MetaBoost, and ErrorPrune were adopted to select the result with the highest overall classification
accuracy. Wang et al. [9] proposed a new classification scheme for mud and sand flats on intertidal
flats. In this method, Freeman-Durden and Cloude-Pottier polarimetric decomposition components as
well as double bounce eigenvalue relative difference were used as features, and random forest theory
was used as classification algorithm. Although the above methods have achieved good performance,
they still have some limitations. The feature vectors utilized by these methods must be manually
constructed, and it is time-consuming to select proper features from various polarization features.
In addition, it is challenging to design an appropriate classifier when different types of land cover
have similar scattering properties.

In recent years, the booming development of deep learning has motivated many scholars to
settle the task by deep learning. Deep learning is fulfilled by a deep neural network (DNN) that has
multiple hidden layers and nonlinear activation functions to learn and represent highly nonlinear
data. There are many deep learning models, such as autoencoder (AE), deep belief network (DBN)
and convolutional neural network (CNN). Xie et al. [10] use the sparse autoencoder (SAE) to extract
features from the coherency matrix for terrain classification. Lv et al. [11] proposed a novel classification
approach based on DBN. By applying the DBN model, effective spatio-temporal mapping features
can be automatically extracted to improve the classification performance. Zhou et al. [12] verify the
suitability and effectiveness of CNN in supervised classification of PolSAR images. However, the
optimization of DNN is time-consuming, and the quality of the network depends largely on the values
in the network initialization. Kumar and Packer et al. [13] have proposed self-paced learning (SPL),
which is inspired by the learning process of humans who learn the easier aspects of the task first and
then gradually involve more difficult aspects in the training process. This learning paradigm has been
empirically demonstrated to be instrumental in accelerating the learning convergence of the network
and in weakening the influence of initialization to achieve a stronger generalization capability [14].

In this paper, the classification of PolSAR images based on multilayer autoencoders and self-paced
learning (SPLMAE) is proposed. Multilayer autoencoders are a type of unsupervised learning
network that converts raw data into more abstract expressions through non-linear models [15].
Several studies have shown the advantages in feature extraction and processing time when using
multilayer autoencoders [10,16,17]. The essential idea of multilayer autoencoders is to perform a
two-step optimization: pre-training a network layer by layer and fine tuning the network as a classifier.
With this two-step optimization, multilayer autoencoders can not only prevent the network from
overfitting when the number of labeled samples is relatively small but also extract effective features
with its nonlinear mapping ability. Inspired by [18], we use a two-layer autoencoder to learn the
features, and a softmax regression is applied to produce the predicted probability distributions over
all the classes of each pixel. When optimizing the network, SPL is used to accelerate its learning
convergence and achieve a stronger generalization capability.

The remainder of this paper is organized as follows. Section 2 introduces the theory of SPL.
Section 3 describes the proposed method. Experiment results on three real PolSAR images are shown
in Section 4. Lastly, a brief conclusion is discussed.

2. Related Work

In this section, the key idea of SPL is explained. The goal of SPL is to improve the generalization
capability and accelerate the learning convergence through sample selection. Compared with the
traditional machine learning methods that consider all samples simultaneously, SPL presents the
training data in a meaningful order that facilitates learning, and the order of the samples is determined
by the learning difficulty. SPL can trace back to curriculum learning (CL) [19] proposed by Bengio et al.
In CL, the order of the training data is unchanged during the iterations. However, SPL dynamically
generates the order of the training data according to what the learner has already learned. In [20],
Meng et al. ran experiments on various binary classification problems in three University of California
Irvine (UCI) datasets (Monk’s problem, Mammographic Mass and SPECT Heart). The experimental
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results show that the SPL regime can more or less ameliorate the performance (1.63–26.74%) of the
traditional classification methods, including logistic regression and support vector classification.

Specifically, in SPL, a weight variable between 0 and 1 is used to denote the learning difficulty
of the samples, and a gradually increasing pace parameter is introduced to control the pace at which
the model learns new samples. The value of the weight variable is determined by a regularization
term called the self-pace regularization term. The model of SPL is formally elaborated below. Given a
training dataset D = {(xi, yi)}n

i=1, supposed n is the total number of training samples, in which
xi denotes the ith observed sample, and yi represents its label, let Li = (yi, g(xi, w)) denote the loss
function, which calculates the training loss (the cost between the ground truth label yi and the estimated
label g(xi, w)). Here, w represents the model parameter inside the decision function g(xi, w), where
p(w) is the regularization term imposed on the classifier parameters w. Then, a general machine
learning framework can be expressed as

w = argmin
w

n

∑
i=1

L(yi, g(xi, w)) + p(w) (1)

In contrast to Equation (1), the SPL model includes a weighted loss term viL(yi, g(xi, w)) on
all samples and a general self-paced regularization term f (vi, λ) imposed on the sample weights
vi ∈ [0, 1], which is expressed as

w = argmin
w,v

n

∑
i=1

viL(yi, g(xi, w)) + p(w) + f (vi, λ) (2)

where λ is the pace parameter to control the learning process, which will be initialized before training.
Here, f (vi, λ) is a regularization term called the self-paced regularization term, which determines the
value of the weight vi. The weight vi is in conformity with the following two rules:

1. vi is monotonically decreasing with respect to the training loss li = L(yi, g(xi, w)), and it holds
that lim

li−>0
vi = 1, lim

li−>∞
vi = 0.

2. vi is monotonically increasing with respect to the pace parameter λ, and it holds that lim
λ−>0

vi = 0,

lim
λ−>∞

vi = 1.

These two rules provide the axiomatic understanding for SPL. Rule (1) indicates that the model is
inclined to select easy samples (with smaller training losses). Rule (2) indicates that when the pace
parameter λ becomes larger, the model tends to incorporate more complex samples to train. Under this
axiomatic understanding, Meng, Zhao et al. [20] proposed some typical self-paced regularization
terms, and the linear regularization term will be introduced below.

The linear regularization term constrains the relationship between vi and li = L(yi, g(xi, w)) into
a linear relationship. When the training loss li of the ith sample is less than the pace parameter λ, the
weight of this sample is a continuous value between 0 and 1. At each iteration, the weighted samples
are used to learn a new parameter vector w. The linear regularization term is expressed as follows:

f (vi, λ) = λ(
1
2

vi
2 − vi) (3)

If we substitute Equation (3) into Equation (2) and simplify, vi can be obtained by

vi = argmin
v

n
∑

i=1
viL(yi, g(xi, w)) + p(w)− λ( 1

2 vi
2 − vi)

= argmin
v

n
∑

i=1
vi

(
1
2 λvi + Li − λ

)
+ p(w)

⇒
{

vi = 1− Li
λ i f Li < λ

vi = 0 i f Li ≥ λ

(4)
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In SPL, the parameter vector w and v = [v1 . . . vi . . . vn] will be calculated iteratively, and the
procedure of SPL is as follows:

• Step 1: Initialize the weights of all samples v and parameter λ.
• Step 2: Fix v, and update w by Equation (2).
• Step 3: Fix w, calculate the training loss L(yi, g(xi, w)), and update v by Equation (4).
• Step 4: If v and w have converged, then go to step 5; otherwise, repeat step 2 and step 3.
• Step 5: Update λ, λ = κλ, κ > 1.
• Step 6: Repeat step 2 to step 5 until the mean of v is equal to or approximately 1. Finally, obtain

the solution of w.

3. Proposed Method

A new method for PolSAR image classification is proposed in this paper. We use multilayer
autoencoders to learn the features for each pixel, and a softmax regression is applied to produce
the predicted probability distributions over all the classes of each pixel. To accelerate the learning
convergence of the network and achieve a better generalization result, the SPL is introduced when
we optimize the multilayer autoencoders network, which learns the easier samples first and then
gradually involves more difficult samples in the training process.

3.1. Multilayer Autoencoders Network

In our method, each pixel is represented by a row vector that is extracted from the multi-look
coherency matrix T of the PolSAR data, and the row vector is used as the input vector of the network.
In the PolSAR data, each pixel is represented as a 2× 2 scattering matrix S:

S =

[
shh shv
svh svv

]
(5)

where h is the horizontal polarization, and v is the vertical polarization. Therefore, shv represents
the scattering coefficient of the horizontally polarized emission and vertically polarized reception.
For the reciprocal backscattering and monostatic radar case, where shv = svh, the coherency matrix T is
obtained by S, which is defined in Equation (6), as follows:

T =

 t11, t12, t13

t21, t22, t23

t31, t32, t33

 =
1
2


〈
|a|2
〉
〈ab′〉 〈ac′〉

〈a′b〉
〈
|b|2
〉
〈bc′〉

〈a′c〉 〈b′c〉
〈
|c|2
〉
 (6)

where ′ is the complex conjugate, a = shv + svv, b = shh − svv, and c = 2shv. The input vector xi is
extracted from the coherency matrix T:

xi = [t11, t22, t33, real(t12), imag(t12), real(t13), imag(t13), real(t23), imag(t23)] (7)

Here, real() and imag() represent the real and imaginary parts of the complex number.
D = {(xi, yi)}n

i=1 is the selected training sample set, with n is the total number of training samples,
in which xi denotes the ith observed sample’s input vector, and yi represents its label. Here, we
construct a two-layer autoencoders neural network to learn the feature vector of each input vector.
Then, a softmax regression is applied to produce the predicted probability distributions over all the
classes of each pixel. The two-layer autoencoders with the softmax regression neural network is shown
in Figure 1a. In this network, the number of input layer neurons is equal to the dimension of the input
vector xi, and the number of autoencoder layers and neurons will be determined in our experiment.
The number of neurons in the output layer is the number of classes. Here, θ(k) and b(k) (k ∈ {1, 2, 3})
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are the parameters of the network. θ(k) represents the weight matrix of the kth layer, and b(k) is the
bias vector of the kth layer. The output vector p is the predicted probability distribution over all the
classes of input vectors.
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3.2. Optimization of Multilayer Autoencoders Network Based on SPL

A two-layer autoencoder with the softmax regression neural network is trained by the following
two steps: pre-training the weights and the biases of the network layer by layer and fine tuning those
parameters with softmax regression [21]. θ(k) and b(k) (k ∈ {1, 2}) are optimized by unsupervised
pre-training, and then, θ(k) and b(k) (k ∈ {1, 2, 3}) are supervised fine-tuned. The details of the two
steps are described as follows.

3.2.1. Unsupervised Pre-Training the Parameters of Each Autoencoder Layer

When pre-training the weights and the biases of the network layer by layer, each autoencoder
layer could be considered as an autoencoder. The autoencoder contains an input layer, an encode layer
and a decode layer (see Figure 1b), and Figure 1b shows the 1st autoencoder layer of Figure 1a.

The encoding step is
hk

i = σ(W(k,1)xi + b(k,1)) (8)

where W(k,1) and b(k,1) denote the weight matrix and bias vector respectively, k represents the kth

autoencoder layer and 1 represents the encode layer, k ∈ {1, 2}. Here, xi denotes the ith feature vector,
and σ is an activation function defined by σ(z) = 1/(1 + e−z) [22]. hk

i is the ith output vector of the
encode layer.

The decoding step is
x̂i = W(k,2)hk

i + b(k,2) (9)

where W(k,2) and b(k,2) are the trainable parameters, k represents the kth autoencoder layer and
2 represents the decode layer, k ∈ {1, 2}. Here, x̂i is the ith output vector of the decode layer.

Therefore, the cost function of the autoencoder network can be defined as follows:

L(W, b) =
1
2
‖xi − x̂i‖2 (10)
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The optimization objective of the autoencoder is to minimize the expectation risk Equation (11)
and solve for the parameters W and b.

(W, b) = argmin
W,b

1
2n

n

∑
i=1
‖xi − x̂i‖2 (11)

Stochastic gradient descent and its variants are probably the most used optimization algorithms
for deep learning, and mini-batch gradient descent enjoys better convergence rates than stochastic
gradient descent in theory. Back propagation algorithm can be used to efficiently compute these
gradients [23]. Therefore, back propagation and mini-batch gradient descent are used to train our
model. In addition, inspired by the SPL, weighted samples are used to learn the parameter vector
in each iteration. Therefore, each sample’s loss L(W, b) is multiplied by a weight vi. Then, the cost
function LSPL(W, b) and optimization objective of SPLMAE of the pre-training can be formulated as in
Equations (12) and (13), respectively:

LSPL(W, b) = viL(W, b) =
1
2

vi‖xi − x̂i‖2 (12)

(W, b) = argmin
W,b

1
2n

n

∑
i=1

vi‖xi − x̂i‖2 + f (vi, λ) (13)

The weight vi represents the ith sample’s learning difficulty in the current iteration, and the easy
samples have relatively large weights. Here, f (vi, λ) is the linear SPL regularization term presented
in Section 2. When vi = 0, the loss incurred by the ith sample is always zero, and when the weight
vi of all samples is equal to 1, Equation (13) can be seen as degenerating to Equation (11). The pace
parameter λ controls the learning process, and it is initialized before training.

There are three variables (W, b and vi) in the objective function in Equation (13), and it is difficult to
optimize these variables at the same time. We can obtain the solution according to the following steps:

• Step 1: initialize the parameters: W(k,1), b(k,1), W(k,2), b(k,2) and λ.
• Step 2: apply the mini-batch gradient descent algorithm based on SPL to optimize the parameters.
• Step 2.1: select a mini-batch sample to optimize the parameters.
• Step 2.2: calculate the output vector and loss function for each input vector through forward

propagation, and then, calculate the weight parameter vi by Equation (4).
• Step 2.3: fix the weight parameter vi, and use back propagation to train the parameters W(k,1),

b(k,1), W(k,2), b(k,2).
• Step 2.4: Update λ, λ = κλ, κ > 1. In general, we need the range of training loss values in

advance to determine the initial value of λ and the step size κ. In our experiment, the initial value
of λ is set to the first quartile of the sample training losses, and κ = 1.1.

• Step 2.5: repeat step 2.2 to step 2.4 until the value of v is approximately 1 (all the samples of the

current iteration have been completely learned). Here, v is defined as v = 1
n

n
∑

i=1
vi.

• Step 2.6: a new mini-batch sample is selected to optimize the parameter until all the samples
are learned.

• Step 3: repeat step 2 until the number of epochs achieve a predefined threshold, and then, obtain
the parameters W(k,1) and b(k,1).

3.2.2. Supervised Fine-Tuning Those Parameters with Softmax Regression

The W(k,1) and b(k,1) obtained by pre-training are used as the initial parameters of the two-layer
autoencoders network shown in Figure 1a. θ(1) and θ(2) are initialized by the values of W(1,1) and
W(2,1), respectively. Here, b(1,1) and b(2,1) are used to initialize b(1) and b(2), respectively. Then, apply
supervised fine tuning of the multilayer autoencoders network to update the parameters θ(k) and b(k)
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(k ∈ {1, 2, 3}). The output layer is a softmax regression classifier, and the number of its neurons is
equal to the number of classes. The value of the output vector can be obtained as follows:

P(h(i)
2 ) =

1
c
∑

j=1
eθT

j h(i)2

[
eθT

1 h(i)2 , eθT
2 h(i)2 , . . . , eθT

c h(i)2

]T
(14)

where P(h(i)
2 ) denotes the predicted probability distributions over all of the classes of the ith sample,

and h(i)
2 is the 2nd layer autoencoder’s output vector of the ith sample. Here, c represents the number

of classes, and θT
j (T is the transpose operator) denotes the weight vector of the jth neuron of the

output layer. To accelerate the learning convergence and obtain a better locally optimal solution, the
optimization objective based on SPL can be formulated as follows:

(θ(k), b(k)) = arg min
θ(k),b(k)

− 1
n

 n

∑
i=1

c

∑
j=1

vi1{y(i) = j} log(
eθT

j h(i)2

c
∑

k=1
eθT

k h(i)2

) + f (vi, λ)

 (15)

where y(i) is the true label of the ith sample, when y(i) = j, 1
{

y(i) = j
}

is equal to 1. A two-layer
autoencoder with a softmax regression output layer is trained by back propagation and mini-batch
gradient descent. The procedure is similar to the pre-training of each autoencoder layer.

4. Experiments

In this section, three real PolSAR data sets are used to validate the performance of the proposed
method. In addition, the proposed method is compared with three typical PolSAR classification
methods, including SVM [24], Wishart classifier (WC) [25], and Sparse Representation-based
classification (SRC) [26]. For the SVM and SRC methods, three polarimetric parameters (entropy,
anisotropy and mean scattering angle) extracted by Cloude-Pottier decomposition [27] are used as
features. The WC method does not need to extract features, and the coherency matrix is used to
classify. For the SVM method, the radial basis function (RBF) kernel is used, the parameter gamma
for RBF is 1, and the tolerance of the termination criterion and the cost factor are 0.00001 and 100,
respectively. In our experiment, the results of SVM are obtained by the libsvm-3.2 toolbox [28].
For the WC method, the training samples are used to calculate the Wishart centers of each class, and
the Wishart distance is used to classify each pixel without iterations. For the SRC method, we use
the K-Singular Value Decomposition (K-SVD) [29] algorithm to train an over-complete dictionary.
The sparse representation of the test samples is obtained by the orthogonal matching pursuit (OMP) [30]
algorithm. In addition, to validate the effectiveness of SPL in neural network optimization, the
two-layer autoencoder network without SPL called MAE is used as a comparison algorithm. MAE is
also optimized by back propagation and mini-batch gradient descent. All the experiments were
performed on an Intel i5-6500 CPU 3.2 GHz, and the code was written with the MATLAB R2015b
development environment.

4.1. Network Architecture Analysis

For the multilayer autoencoders network, the numbers of neurons and layers are vital; they
affect the quality of the network recovered by the training process and its ability to classify the test
dataset [18]. To obtain better classification results, the numbers of neurons and layers are determined
by the experiments. This experiment is conducted on the Flevoland dataset from AIRSAR, and this
dataset will be described in detail in Section 4.2. In this experiment, we fix the same number of
neurons for all layers and train the network by varying the numbers of neurons and layers. The overall
accuracy (OA) of the Flevoland dataset obtained by the network with different parameters is shown
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in Figure 2. In Figure 2, the x-axis and y-axis represent the number of neurons and OA, respectively.
The red line represents the single layer autoencoder network; the blue line and black line represent the
2-layer and 3-layer autoencoder network, respectively. The number of neurons ranges from 10 to 130.
As shown in the figure, the 2-layer autoencoder network with 90 neurons obtains the highest accuracy
(approximately 0.94). The single layer autoencoder network with any number of neurons cannot
obtain a good accuracy due to its poor fitting capability. With the increase in the autoencoder layer, the
network has better fitting capability. However, the larger the number of network layers, the larger the
number of labeled samples that are needed. The black line shows that the 3-layer autoencoder network
is worse than the 2-layer autoencoder network. This finding could be due to the overfitting problem
because the number of training samples with labels is relatively small. In the synthesis of the factor,
the numbers of layers and neurons are set to 2 and 90, respectively.
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4.2.1. Convergence Analysis of Our Algorithm

Figure 4 shows that the average training loss of all the training samples (y-axis) varies with the
number of epochs (x-axis) in the fine tuning process. The red line represents the optimization process of
SPLMAE, and the blue line is the optimization process of MAE. As shown in the two curves, SPLMAE
converges faster than MAE. The average training loss is below 0.5 at approximately the 1200th epoch in
the red line, but the MAE requires 1500 epochs. In addition, the training loss of the proposed method
eventually converges to a lower value than the MAE. In time, as shown in Table 1, SPLMAE reduces
the time-consumption slightly compared with MAE. However, both SPLMAE and MAE spend more
time in training than SVM and SRC.

Remote Sens. 2018, 10, 110  9 of 17 

 

 
(a) 

 Stembeans   Rapeseed   Bare soil   Potatoes 

 Wheat 3     Lucerne    Barley     Water

 
(b) 

 Wheat   Grasses   Beet   Wheat 2   Peas 

 Forest

Figure 3. (a) Pauli RGB; (b) Ground truth; white area denotes unlabeled pixels. 

4.2.1. Convergence Analysis of Our Algorithm 

Figure 4 shows that the average training loss of all the training samples (y-axis) varies with the 
number of epochs (x-axis) in the fine tuning process. The red line represents the optimization process 
of SPLMAE, and the blue line is the optimization process of MAE. As shown in the two curves, 
SPLMAE converges faster than MAE. The average training loss is below 0.5 at approximately the 
1200th epoch in the red line, but the MAE requires 1500 epochs. In addition, the training loss of the 
proposed method eventually converges to a lower value than the MAE. In time, as shown in Table 1, 
SPLMAE reduces the time-consumption slightly compared with MAE. However, both SPLMAE and 
MAE spend more time in training than SVM and SRC.  

 

Figure 4. The convergence analysis of the Flevoland dataset from AIRSAR. 

Table 1. The accuracies of the Flevoland dataset from AIRSAR. AA: average accuracy; OA: overall accuracy. 

Class SVM SRC WC MAE SPLMAE 
Stembeans 0.9719 0.9642 0.9508 0.9842 0.9801 
Rapeseed 0.7351 0.6049 0.7484 0.8487 0.9003 
Bare soil 0.9802 0.9211 0.9920 0.9039 0.8649 
Potatoes 0.9811 0.6631 0.8775 0.9858 0.9815 

Beet 0.9541 0.9561 0.9513 0.9679 0.9713 
Wheat 2 0.7875 0.7797 0.8272 0.8582 0.8559 

Peas 0.9258 0.9396 0.9628 0.9664 0.9676 
Wheat 3 0.9288 0.8226 0.8864 0.9732 0.9749 
Lucerne 0.9292 0.9513 0.9293 0.9553 0.9608 
Barley 0.9365 0.9322 0.9526 0.9738 0.9795 
Wheat 0.8128 0.7610 0.8622 0.9656 0.9592 

Grasses 0.8373 0.6284 0.7246 0.8203 0.8555 
Forest 0.7562 0.9797 0.8791 0.9601 0.9707 

Figure 4. The convergence analysis of the Flevoland dataset from AIRSAR.

Table 1. The accuracies of the Flevoland dataset from AIRSAR. AA: average accuracy; OA: overall accuracy.

Class SVM SRC WC MAE SPLMAE

Stembeans 0.9719 0.9642 0.9508 0.9842 0.9801
Rapeseed 0.7351 0.6049 0.7484 0.8487 0.9003
Bare soil 0.9802 0.9211 0.9920 0.9039 0.8649
Potatoes 0.9811 0.6631 0.8775 0.9858 0.9815

Beet 0.9541 0.9561 0.9513 0.9679 0.9713
Wheat 2 0.7875 0.7797 0.8272 0.8582 0.8559

Peas 0.9258 0.9396 0.9628 0.9664 0.9676
Wheat 3 0.9288 0.8226 0.8864 0.9732 0.9749
Lucerne 0.9292 0.9513 0.9293 0.9553 0.9608
Barley 0.9365 0.9322 0.9526 0.9738 0.9795
Wheat 0.8128 0.7610 0.8622 0.9656 0.9592

Grasses 0.8373 0.6284 0.7246 0.8203 0.8555
Forest 0.7562 0.9797 0.8791 0.9601 0.9707
Water 0.8213 0.8002 0.5175 0.7981 0.9434

AA 0.8827 0.8360 0.8616 0.9258 0.9404
OA 0.8708 0.8231 0.8504 0.9304 0.9473

Train + Test time (s) 1.3 + 17 84 + 155 130 1539 + 3.4 1495 + 3.5

4.2.2. Classification Results

Figure 5 shows the visual classification results of the Flevoland dataset, and the accuracies for
each class are listed in Table 1. The SVM method is an effective algorithm in the field of classification.
It obtains a notably good result with an overall accuracy of 0.8708. As shown in Figure 5a–c, there is
less misclassification in the Potatoes, Wheat 3 and Grasses categories in the result obtained from SVM
than from SRC and WC. The results of SRC show that most of the Rapeseed, Potatoes and Grasses are
misclassified to other categories. The result of the MAE method, shown in Figure 5d, is better than
those of SVM, SRC and WC, because the features learned by the multilayer autoencoder network from
raw data are better than the shallow features extracted by polarization decomposition. The proposed
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method SPLMAE has the highest overall accuracy, 0.9473, among all the algorithms, and this result has
better performances on most classes, including Rapeseed, Grasses, and Water. In the Water category (see
red circles in Figure 5), the compared methods misclassify some Water pixels to Bare soil. Our proposed
approach outperforms MAE, which validates the effectiveness of SPL in helping the network to achieve
a stronger generalization capacity. The running times for each method are listed in Table 1. MAE and
SPLMAE spend more time on training than SVM and SRC. However, SVM and SRC need more time on
testing and the extra time of SVM and SRC on feature extraction is not included in Table 1.
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4.3. Flevoland Dataset from RADARSAT-2

The Flevoland Dataset from RADARSAT-2 is C-band single-look fully PolSAR data with a resolution
of 10 × 5 m and was obtained at fine quad-mode in 2008. A sub-region with 1200 × 1400 pixels was
selected, as shown in Figure 6a, and the ground-truth datum is shown in Figure 6b, with the ground
truth obtained from [32]. There are four main types of terrain as follows: (1) forest; (2) cropland; (3) water;
and (4) urban area. Approximately 5% of the labeled samples are randomly selected to train the network.
The SPLMAE and MAE are trained by mini-batch gradient descent with an adaptive learning rate, and
the batch size is 256. The algorithm converges more readily in the second experiment than in the first,
and therefore, the number of epochs was set to 50. The initial learning rate is 1, and after each iteration,
the new learning was equal to the learning rate multiplied by 0.999.

Figure 7 shows the descent curve of the average training loss of Flevoland dataset from
RADARSAT-2. This dataset is not especially challenging, and most areas such as forest, water and
cropland are homogeneous regions, and their scattering characteristics have obvious differences.
When optimizing this dataset, our model converges at the 30th epoch. Therefore, to clearly show
the descent curve of the training loss, the x-axis represents the number of iterations (the number of
parameter updates) and not epochs. As shown in this figure, the SPLMAE converges faster than MAE.
Both SPLMAE and MAE could eventually converge to a low training loss. Figure 6c–g shows the
visual classification results, and Table 2 shows the accuracies for each class. The proposed method
SPLMAE has the best visual effect and the highest overall accuracy, 0.9482, compared with other
algorithms. The accuracy benefits from the better performances on the urban areas (see white circles
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in Figure 6c–g). The urban areas have a mixed scattering mechanism that is more difficult to classify
than the other categories. The results of SVM, SRC and WC show that most of the Urban areas are
misclassified to Forest. However, when employing the features that are learned by our network,
it can effectively classify this area, as in Figure 6f,g. This dataset is not especially challenging, and
the scattering characteristics of different categories have obvious differences. Therefore, the result of
SPLMAE is a slight improvement against the result of MAE.
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Class SVM SRC WC MAE SPLMAE

Urban 0.8051 0.7579 0.6022 0.8712 0.8921
Water 0.9693 0.9779 0.9854 0.9878 0.9870
Forest 0.9207 0.9195 0.8479 0.9537 0.9468

Cropland 0.9372 0.8759 0.8071 0.9327 0.9408
AA 0.9080 0.8828 0.8107 0.9363 0.9417
OA 0.9229 0.8978 0.8382 0.9449 0.9482

Train + Test time (s) 1+ 11.7 26 + 436 87.5 51 + 5 42 + 4.7

4.4. Yellow River Delta Dataset from ALOS-2

To validate the performance of the SPLMAE on scenes that are characterized by several types of
land cover with similar scattering properties, an ALOS-2 fully PolSAR image acquired on 9 May 2015
over the Yellow River Delta, China (see Figure 8a) is also considered. The size of the image is
23,210 × 7496 pixels. The pixel spacing is 3.125 m. The study area is a coastal region that is covered
with different land-use types. The regions of interest include coastal shoal, alkali soil, wetland,
plantation, pond, and river (see Figure 8b). Classifying different types of land cover in coastal zones
using SAR imagery is a challenge because many types of coastal zone have similar backscattering
characteristics. Most of the classification algorithms are based on the intensity of the image, and
they do not perform well in different coastal zone types [33,34]. Considering the limited memory, we
intercept the sub-areas that have different land-use types in the image, as is shown in the red rectangle
of Figure 8a,b, where the size of the sub-image is 2000 × 5000.

The classification results of this sub-image are shown in Figure 9. Table 2 shows the accuracies
and running time for each method. SVM can classify the pond, alkali soil and coastal shoal well but
not the plantation and river (see the red circles in Figure 9b). However, SRC cannot classify most of
the categories and the result contains a lot of noise. The result of WC (see Figure 9d) is quoted from
referenced [5]. WC has the ability to recognize wetland and plantation but pond, alkali soil, coastal
shoal and river are classified into the same class. Different land cover in this dataset have similar
scattering characteristics, and it is more difficult to distinguish them. SPLMAE and MAE achieve better
results in each class than the other methods, which shows that the features extracted by multilayer
autoencoders are effective over these challenging areas. In addition, according to Figure 9e,f and the
accuracies of SPLMAE and MAE (Table 3), we can conclude that the network optimized under SPL
regime can obtain a better solution. The running times of each method are listed in Table 3. MAE and
SPLMAE spend more time on training than SVM and SRC. However, SVM and SRC need more time
on testing and the extra time of SVM and SRC on feature extraction is not included in Table 3.
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Table 3. The accuracies of the Yellow River Delta. AA: average accuracy; OA: overall accuracy.

Class SVM SRC WC MAE SPLMAE

Pond 0.8540 0.3680 – 0.9230 0.9132
Alkali Soil 0.8498 0.4681 – 0.8350 0.8523

Coastal Shoal 0.7192 0.4912 – 0.7798 0.7758
Wetland 0.5544 0.2311 – 0.5908 0.6678

Plantation 0.5280 0.4377 – 0.7175 0.7124
River 0.1444 0.3144 – 0.3215 0.4489
AA 0.6083 0.3851 0.6 0.6946 0.7284
OA 0.7113 0.3963 – 0.7627 0.7812

Train + Test time (s) 5 + 305 39 + 2871 – 5840 + 52 5643 + 53

5. Conclusions

In this paper, a classification method based on the SPL algorithm and multilayer autoencoders
network is proposed for PolSAR image classification. In the proposed model, a two-layer autoencoder
is used to learn the features, and a softmax regression is applied to produce the predicted probability
distributions over all the classes of each pixel. When we optimize the network, SPL is used to accelerate
the learning convergence of a network and achieve a stronger generalization capacity. According to
the experimental results presented above, we can draw the following conclusions.
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First, SPLMAE obtained better classification results than conventional algorithms such as SVM,
SRC and WC because it can extract more abstract and effective features. The abstract features
can better reveal the differences between different classes, which makes terrains easier to classify.
The proposed method spends more time on training than SVM and SRC but saves extra time for
feature extraction and feature selection. Second, SPLMAE works even better compared to MAE.
Although MAE can also extract deep features, the quality of the network depends largely on the
value of the network initialization. SPL is instrumental in accelerating the learning convergence of a
network and in weakening the influence of initialization to achieve a stronger generalization capacity.
Therefore, SPLMAE converges faster than MAE (see Figures 4 and 6) and has better visual classification
results, especially in some scenes that are characterized by several types of land cover that have
similar scattering properties. In addition, the proposed method performs well on the first two datasets
collected over the same area at different frequencies, which proves the robustness of our method with
regard to variations in the frequency.

The spatial information in the PolSAR data is useful for classification. However, the input of the
multilayer autoencoder must be a one-dimensional vector instead of image patches, which cannot
exploit the spatial information very well. Zhou et al. [12] proposed that the CNN can automatically
learn hierarchical polarimetric spatial features from the raw data. Therefore, we plan to investigate
classification techniques based on the CNN, autoencoder and SPL in terms of future research.
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