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where ∗t denotes time convolution and hr̄0r̄i
(t) is the impulse response between the antennas at r̄0 and

r̄i. Reciprocity allows us to write hr̄0r̄i
(t) = hr̄ir̄0(t). The signals received at each array element are

recorded, reversed in time, and transmitted back to the same medium (Figure 1). The time-reversed
signal at the original source point r̄0 due to ith antenna is then given by

pi(t) = s(−t) ∗t hr̄0r̄i
(−t)︸ ︷︷ ︸

fi(−t)

∗t hr̄ir̄0(t) (3)

where the last two terms (hr̄0r̄i
(−t)∗t hr̄ir̄0(t)) represent a correlation filter (time-correlator). This corre-

lation function has a maximum at t = 0 which corresponds to the energy of hr̄0r̄i
(t), i.e.,

∫ |hr̄0r̄i
(t)|2dt.

With multiple antennas, TR system performance improves since each antenna will have a maximum at
the original source location and they will constructively interfere to improve the TR peak signal. This
coherent interference does not occur arbitrarily, but always at the original source location. For a TRA
with N elements, the received signal at the original source location becomes:

p(r̄0, t) =
N∑

i=1

s(−t) ∗t hr̄0r̄i
(−t) ∗t hr̄ir̄0(t) (4)

In addition to being a time-correlator, TR also acts as a space-correlator. In the above analysis, the TR
waveform is exactly matched to the original source point r̄0. However, at any other point r̄ in the domain,
this signal can be written as

p(r̄, t) =
N∑

i=1

s(−t) ∗t hr̄0r̄i
(−t) ∗t hr̄ir̄(t) (5)

As the probe antenna location r̄ gets further away from the original source location r̄0, then, similar to
time-correlation analysis, uncorrelated terms tend to cancel each other. For media with rich multipath
components, correlation peak gets sharper and a better (sharper) focusing both in time and space can be
achieved.

It is well known that the focusing spot size is dictated by the classical diffraction limit [110] which
states that in an homogeneous media, cross-range (dc) resolution is given by

dc = λ
L

a
(6)

where λ is the wavelength, a is the antenna aperture length and L is the distance between the array
and the source (Figure 1). In scenarios with multipath, a should be replaced by the effective aperture
length ae as the inhomogeneities in the intervening medium affect the receiving pattern of the TRA. As
long as some of the diverging wave components are redirected toward the TRA, the effective aperture
length increases (ae > a) resulting in a better focusing resolution than the homogeneous medium case
(superresolution) [4]. This is as illustrated in Figure 2. We will next focus on superresolution effects
created by the volumetric scattering in a continuous random media. The following subsection introduces
the random medium model used in this work.
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Figure 2. Effective aperture increase in media with multipaths. (a) Homogeneous medium
with no multipaths (ae = a), (b) multipaths created by the waveguide-like structure com-
posed of two perfect electric conductor (PEC) walls (ae > a), (c) multipaths created by
discrete scatterers (ae > a).
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2.1. Physics-Based Ultrawideband Clutter Models

Complex natural media such as snow, vegetation, rocks, soils, and some biological tissues often
cannot be described in a deterministic manner. Therefore, statistical models (random medium models)
should be employed instead [111]. A random or disordered media can be classified either as (i) discrete
random media, characterized as a discrete set of scatterers (e.g., trees, obstacles, buildings) at random
locations, or as (ii) continuous random media, characterized by pointwise fluctuations on its properties
(e.g., some biological media, soils, smoke) described in terms of a stochastic process with given first-
and second-order statistics (spatial correlation functions).

With subsurface sensing scenarios in mind, we focus our attention on the characterization of con-
tinuous random media using constitutive parameters from particular soil models. Soil presents natural
variability in density, composition and moisture that affect its permittivity and conductivity. Addition-
ally, since in a host of applications the aim is to detect man-made buried objects, the soil has usually
been excavated and therefore it is not expected to have a homogeneous or even layered distribution.
In the absence of experimental data to support a specific choice of random medium model, continuous
random medium models with Gaussian distributions are preferred for their generality and mathematical
properties requiring few statistical parameters. Such random media are also characterized by a spatial
correlation function. The relative permittivity of the medium is described as ε(r̄)=εm+εf (r̄) where εm is
the mean value of the relative permittivity and εf (r̄) is a function of position characterizing the random
fluctuation on ε(r̄) with 〈εf (r̄)〉=0. At every point in space, the fluctuation term is a Gaussian random
variable with zero mean and probability density function (pdf) given by:

Pεf
(ζ) =

1√
2πδ

exp

(−ζ2

2δ

)
(7)

The underlying assumption with this pdf is that the fluctuating dielectric permittivity is real. However,
for more general cases where the dielectric permittivity is complex and random, a similar pdf can inde-
pendently be used for both the real and imaginary parts of the dielectric permittivity. But, in this paper,
we only consider lossless random medium and we refer the interested readers to another paper where we
have considered both random and lossy (dispersive) media [106]. The random medium is characterized
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by transverse and vertical correlation lengths (ls and lz) and variance (δ), with the correlation function
between the permittivities at two points also described by a Gaussian function

C(r̄1 − r̄2) = 〈εf (r̄1)ε
∗
f (r̄2)〉 = δ exp

(
−|x̄1 − x̄2|2 + |ȳ1 − ȳ2|2

l2s
− |z1 − z2|2

l2z

)
(8)

Previously, similar correlation functions have been used in [111–113]. Throughout this paper, we assume
ls = lz so that we can isolate the effect of single correlation length on the TR focusing. Following these
definitions, the procedure discussed in [114] can be used to generate the random medium realizations
for numerical simulations. For modeling the scattering of embedded discrete target(s) in such media, we
employ the finite-difference time-domain (FDTD) algorithm to solve Maxwell equations. The FDTD
computational grid is truncated by perfectly matched layers (PML) [115] via stretched coordinates [116]
to provide the necessary absorption of outgoing waves reaching the computational boundaries. A FDTD
computational domain with Nx × Ny = 200 × 240 grid points and uniform space discretization size
∆x = ∆y = ∆s = 0.0137 m is utilized in the examples considered below. A linear TRA of N =

7 uniformly spaced dipole antennas are located just above a lossless random medium with spatially
fluctuating permittivity. The TRA lies parallel to the x-direction and the dipoles are separated by λc/2

where λc corresponds to the wavelength at the central frequency for the mean ground permittivity. The
location of the central antenna is assumed as origin, i.e., R̄4 = (0, 0)∆s where R̄i is the location of the
ith TRA antenna. An electric dipole located at r̄s = (xs, ys) = (0, 155)∆s = (0, 2.12)m is initially
fed by the current source J̄(r̄s, t) = ê s(t)δd(r̄s) where ê (x̂, ŷ or ẑ) is the unit vector representing the
dipole polarization, δd(r̄) is the Dirac delta function and s(t) is the UWB time-domain excitation taken
as the first derivative of the Blackmann–Harris (BH) pulse [117] that vanishes after a time period of
T = 1.55/fc, where fc = 400 MHz is the central frequency.

2.2. Numerical Results

In this section, we illustrate the superresolution effects versus random medium statistical parameters,
viz. variance (δ) and correlation length (ls).

We first investigate the effect of the variance of the random medium on the refocusing properties of
the time reversed signals for the TMz polarization case. The variance (δ) is varied from 0.025εm to
0.125εm, while the correlation length is kept fixed at ls =8∆s. The snapshots of the z-component of the
electric field (Ez) distribution at the time of refocusing are shown in Figure 3.

It is observed that as the variance increases, the amplitude of the focused field increases and the spot
size of the focused field is reduced (somewhat counter-intuitively), characterizing superresolution. This
can be explained from the fact that as the variance increases more multipath is produced. For the time
reversed signals, the multipath tends to interfere constructively only at the focusing point where coherent
perfect phase conjugation exists. This can also be understood as an increase on the effective aperture of
the TRA due to multipathing [4, 105]. Figure 5(a) shows the spatial distribution of the field components
of Figure 3 at the time of refocusing at the source plane (y = ys) with respect to the (transverse) x-
coordinate (cross-range).
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Figure 3. Spatial distribution of the time-reversed Ez field component of the electric field
at the time of refocusing for increasing δ and fixed ls of ls = 8∆s. Plots are given in linear
scale.
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Figure 4. Cross-range resolution for varying (a) 1st and (b) 2nd order medium statistics.
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Similar simulations are performed to assess the effect of varying the correlation length on the res-
olution for the TMz polarization. The correlation length is varied from ls = 8∆s to ls = 20∆s, for
fixed variance of δ = 0.04εm. Cross-range resolutions are shown in Figure 5(b), where it is seen that
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increasing the correlation length degrades the focusing properties. This can be explained from the fact
that, for larger correlation lengths, the random medium starts to behave (locally) closer to an homoge-
neous medium and volumetric scattering effects are reduced. Note that this observation applies only
for the range of correlation values and problem size considered here. If the correlation length becomes
very small versus the wavelength, then a homogenization would be applicable. In general, the effect of
changes on the correlation length on the focusing resolution is more pronounced when the correlation
length is on the order of the wavelength. Another point to consider is the effect of polarization. As
shown in [105], increased multiple scattering tends to increase depolarization, hence fully polarimetric
data should be utilized for improved refocusing resolution. We also note that, although only the results
of single realizations are shown here, another interesting phenomenon that occurs in connection with
time-reversed back-propagation of wavefields in a random medium is the occurrence of the so-called
time-domain statistical stability [8, 9]. This means that the retrofocused field is self-averaging in the
time-domain for a single realization and does not depend on the particular realization of the random
medium. Self-averaging occurs because the time reversed field is equivalent to a phase conjugated field.
After back-propagation, the conjugate phase exactly cancels out the random phase of the initial field and
different frequency components add fully coherently only nearby the original source location, hence the
focal spot is not affected by the particular realization.

3. Time-Reversal based Detection and Imaging Methods

In this section, we review some TR-based signal processing techniques to achieve UWB EM detection
and imaging for multiple objects (targets) embedded in inhomogeneous media. This requires the analysis
of the eigenspace of the TR operator (TRO) and utilization of its signal or null spaces. The TRO is
obtained from the multistatic data matrix (MDM). The MDM element [K(ω)]ij corresponds to the signal
received at the ith antenna when the jth antenna is transmitting.

3.1. Signal Space Methods

3.1.1. Time-Domain DORT

The DORT method considers a N×N MDM K(ω) (where ω is the frequency) obtained by probing the
medium by a TRA of N transceivers. Since in this case each MDM element is associated with a different
spatial location, this type of MDM is labeled as “space-space MDM”. In the frequency domain, TR of
K(ω) is represented by its Hermitian conjugate K†(ω) and the TRO is defined by T(ω) = K†(ω)K(ω).
The SVD of the MDM is given by

K(ω) = U(ω)Λ(ω)V†(ω) (9)

where U(ω) and V(ω) are unitary matrices and Λ(ω) is real diagonal matrix of singular values. The
EVD of the TRO can be written as T(ω) = V(ω)S(ω)V†(ω), where S(ω) = Λ†(ω)Λ(ω) is the diagonal
matrix of eigenvalues. The columns of the unitary matrix V(ω) are normalized eigenvectors of the TRO
(vi(ω), i = 1, .., N ). The DORT method utilizes the eigenvectors of the TRO signal space (SS) which is
formed by the eigenvectors with non-zero (significant) eigenvalues, i.e.,

SS(ω) = {v1(ω), ..., vMs(ω)} with λ2
1(ω) > .. > λ2

Ms
(ω) > 0 (10)
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where Ms is the number of significant eigenvalues. For isotropic scattering from well-resolved point-like
scatterers, each significant eigenvalue of the TRO is associated with a particular scatterer. Subsequent
back-propagation of the corresponding eigenvector yields a wavefront focusing on that particular scat-
terer only [118]. Therefore, selective focusing on the mth scatterer is achieved by exciting the TRA with
N × 1 column vector rm(ω) generated from λm(ω) and eigenvector vm(ω) via

rm(ω) = K†(ω)um(ω) = λm(ω)vm(ω) (11)

This represents the single-frequency DORT method. For UWB signals, EVD can be applied at all the
available frequencies and a time-domain signal can be generated by

rp(t) = F−1
(
K†(ω)up(ω)

)
= F−1 (λp(ω)vp(ω)) (12)

where F−1 denotes the inverse Fourier transformation. Backpropagation of these time-domain signals
into the probed medium characterizes the TD-DORT method [106]. In cases where the background
Green’s function is not known (which is the case for most subsurface sensing scenarios), an approxi-
mate Green’s function (G0) can be used to obtain synthetic images of the probed medium by using the
following TD-DORT imaging functional:

DΩ
p (X̄s) =

〈
g0(X̄s, t), rp(t)

〉
|t=0

=
N∑

i=1

ri
p(−t) ∗t G0(X̄s, R̄i, t) |t=0

=
∫

Ω
λp(ω)vT

p (ω)g0(X̄s, ω)dω (13)

where
g0(X̄s, t) =

[
G0(X̄s, R̄1, t), . . . , G0(X̄s, R̄N , t)

]T
(14)

is the approximate time-domain steering vector connecting any search point X̄s in the probed domain
to the antenna locations R̄i for i = 1, .., N , ri

p and vi
p are the ith element of rp and vp, respectively

and Ω is the bandwidth of operation. If one assumes, for example, that at least the average constitutive
parameters of the random medium are known with a good degree of confidence, then G0 is chosen the
Green’s function of an homogeneous medium with the mean constitutive parameters of the underlying
random (inhomogeneous) medium that produces K(ω). Note also that when the background medium is
not known, energy detector which is a non-coherent imaging method can also be utilized [72].

For well-resolved scatterers, the cross-range resolution of the DORT method is related to the classical
diffraction limit (Equation 6) which is directly proportional to the wavelength and propagation distance,
and inversely proportional to the effective aperture length of the TR array. When the well-resolvedness
criterion is broken, eigenvectors of the signal space of space-space MDMs might become linear combina-
tions of the Green’s function vectors connecting the targets to the TR array, which results in a degradation
(blurring) of the image. Another problem with the time-domain DORT stems from the eigenvalue de-
composition step which creates eigenvectors with arbitrary frequency dependent phase φsvd(ω). Direct
combination of these eigenvectors creates incoherent time-domain signals which in turn severely affect
the TD-DORT excitation signals. This is particularly important in inhomogeneous background media
with strong multiple scattering where multipath components need to be coherently combined over the
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entire bandwidth. Therefore, a pre-processing step should be applied to the space-space eigenvectors to
obtain coherent time domain signals by canceling the arbitrary phase term φsvd(ω). Such pre-processing
steps can be done by projecting the incoherent eigenvectors onto the columns of the MDM [8] or by
a phase smoothing algorithm which tracks the phase difference between the adjacent frequency eigen-
vectors [106, 119, 120]. The time- and frequency-domain signals obtained for a random medium case
with and without phase smoothing algorithm are shown in Figure 6(a). The effectiveness of the phase
smoothing algorithm is evident from these plots.

Figure 6. The first eigenvalue distribution (most and only significant one in this case) of the
space-space MDM with respect to the frequency (left) and singular values of the individual
(center) and full (right) space-frequency MDMs.
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3.1.2. Space-Frequency TR Imaging

An alternative approach to pre-processing is based on the application of the SVD to a different type
of MDM which incorporates both sensor location and UWB frequency data simultaneously. Such
MDM is denoted as “space-frequency (SF)” MDM. This approach was first introduced in connec-
tion with MUSIC-type algorithms [121]. Here, we illustrate them in the context of TR-based UWB
imaging algorithms.

SF-MDMs can be obtained by transmitting an UWB pulse from the nth antenna and recording the
received signals from all the TRA receiver antennas to yield an N ×Mf matrix given by

Kn
SF =




k1n(ω1) · · · k1n(ωMf
)

... · · · ...
kNn(ω1) · · · kNn(ωMf

)


 (15)

where each row consists of the uniform samples of the Fourier transform of the time-domain signal corre-
sponding to the respective MDM element, and Mf is the number of frequency samples. Once N of these
individual SF-MDMs are obtained, SVD is applied to each of them to yield Kn

SF = Un
SFΛn

SF (Vn
SF )†,

where Un
SF is the N × N matrix of left singular vectors, Vn

SF is the Mf ×Mf matrix of right singular
vectors, and Λn

SF is the N × Mf matrix of singular values. Note that Kn
SF maps the frequency space

onto the receiver space Kn
SF vn

SFi
= λn

SFi
un

SFi
, where λn

SFi
is the ith singular value, vn

SFi
is the ith Mf × 1

right singular vector that represents the frequency content of the received signals, and un
SFi

is the ith

N ×1 left singular vector containing spatial (sensor location) information. The left singular vectors un
SFi
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for i = 1, . . . , N form an orthonormal set spanning the sensor location space; similarly, right singular
vectors vn

SFi
for i = 1, . . . , Mf form an orthonormal set spanning the frequency space. Inverse Fourier

transformation can be applied to the right singular vectors to obtain time-domain signals which are coher-
ent. In other words, SVD applied to the SF-MDM does not create arbitrary phase dependent term as seen
in the TD-DORT implementation. Therefore, the time-domain excitation signals to be backpropagated
can be approximated as

sn(t) =
P∑

k=1

λn
SFk

vn
SFk

(t) (16)

where vn
SFk

(t) = F−1
(
vn

SFk
(ω)

)
and P is the total number of time-domain signals being included in the

approximation. This is determined by examining the singular values and the associated singular vectors.
Time-domain signals corresponding to relatively small singular values and those with erratic behavior
are not included. The resulting time-domain signals provide the UWB frequency data but they do not
possess any sensor location data. Therefore, we use the left singular vectors to provide the necessary
amplitude and phase shifts to be applied to each TR antenna during backpropagation. To this end, we
define a vector functional

f(a, z(t)) = F−1{[A0e
jφ0 z(ω), . . . , ANejφN z(ω)]T} (17)

where z(t) is the time-domain signal to be used and a = [A0e
jφ0 , . . . , ANejφN ]T is the N × 1 vector to

determine relative time-delays and amplitudes. This functional yields a time-domain vector rn
SFi

(t) =

f
(
un

SFi
, sn(t)

)
which is to be backpropagated from the receivers. If the background medium is not known

precisely, an approximate Green’s functions can be utilized, which results in the following imaging
functional:

In
SF i

(X̄s) = 〈g0(X̄s, t), rn
SFi

(t)〉 |t=0

=
N∑

k=1

rn
SFik

(−t) ∗t G0(X̄s, R̄k, t) |t=0

=
∫

Ω

(
rn

SFi
(ω)

)†
g0(X̄s, ω)dω

=
∫

Ω
(sn(ω))∗

(
un

SFi

)†
g0(X̄s, ω)dω (18)

where ∗ represents complex conjugation. This procedure is repeated for all n = 1, . . . , N . The resulting
image is averaged via

ISFi
(X̄s) =

1

N

N∑

n=1

In
SF i

(X̄s) (19)

and denoted as “SF-image”. Note that instead of the left singular vectors, one can also utilize the eigen-
vectors obtained from the DORT method at the central frequency for the spatial information [107]. A
second kind of SF-MDM can be obtained by combining all the Kn

SF for n = 1, .., N into a single N2×Mf

matrix given as
Kfull

SF = [K1
SF ; K2

SF ; . . . ; KN
SF ]T (20)

This is denoted as the “full SF-MDM”. Similar to before, SVD applied to this matrix yields N2×N2 left
and Mf×Mf right singular vectors. The right singular vectors of the full SF-MDM are very similar to the
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individual SF-MDM and can be utilized to obtain time-domain excitation signals for backpropagation.
The sub-vectors of the left singular vectors can provide the sensor location data for the SF imaging.
For further details, readers are referred to [107]. Finally, we note that the phase and magnitude of
the significant left singular vectors highly depend on the spatial distribution of the TR array antennas
(sensor). As a result, inter-distances between sensors affect the phase and magnitude distributions of the
left singular vectors. Similarly, for the DORT method, it will affect the phase and magnitudes of the
eigenvectors. Depending on the scenario, this change can have positive or negative effects on the final
imaging performance and has to be studied in more details which is reserved as a future study.

Next, we apply both TD-DORT and SF-imaging to a subsurface detection scenario to illustrate the
similarities and differences between the two methods.

3.1.3. Results

To demonstrate the performance of DORT and SF-imaging methods, we employ the same simulation
scenario as considered before except for the following differences: (a) we assume the central antenna
located at the origin (i.e. R4 = (0, 0)∆s) and (b) a single scatterer at (30, 80)∆s is considered in both
homogeneous and random media, the latter characterized by variance δ = 0.03 and correlation length
ls = 6∆s. Figure 6 shows the corresponding eigenvalues for the TD-DORT method and singular values
for the SF-imaging method.

It is observed that with increasing multiple scattering (variance), the magnitude of the eigenvalues
and singular values increases. Additionally, the first dominant singular values obtained in homogeneous
(HM) and random medium (RM) are close to each other and exhibit similar time-domain signatures
(except for fluctuations due to clutter in the random medium case) as seen in Figure 7.

Figure 7. The first two significant time-domain right singular vectors obtained in homoge-
neous and random media using both the individual and full SF-MDM.
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Among the remaining non-dominant singular values, those obtained in RM are larger than the HM
ones. The corresponding time-domain right singular vectors also behave quite differently. For the RM
case, the non-dominant right singular vectors are mainly due to clutter and not included in the approxima-
tion used for the excitation signal. Therefore, the first right singular vector can be used as the excitation
signal with appropriate amplitudes and phase shifts dictated by the left singular vectors or TD-DORT
eigenvectors at the desired frequency (Figure 8).

Figure 8. Phase distribution of the most significant TD-DORT eigenvector obtained at the
central frequency (left) and those of the left singular vectors of the individual (middle) and
full (right) SF-MDMs.
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It is worth reminding that the excitation signals obtained via SF-MDM processing do not require
phase smoothing, as opposed to the TD-DORT method. In certain cases where multiple scattering is very
pronounced, phase smoothing might fail to yield coherent time-domain excitation signals, whereas SF-
MDM processing will always yield coherent time domain signals. Figure 9 depicts the images obtained
by TD-DORT and SF-imaging in homogeneous and random media. Note that these images correspond
to the electric field distributions at the time of focusing and plotted in linear scale. Note that in terms of
cross-range resolutions both methods provide similar performance. However, it was shown in [107] that
in HM, TD-DORT slightly performs better. As alluded to above, in the RM case TD-DORT might suffer
from phase-smoothing limitations under strong multiple scattering whereas SF-imaging is not affected
by this limitation. We also note that it is not possible to claim that the SF-imaging provides improved
resolution as the randomness (or multiple scattering) in the background increases. Especially, this is
not possible as long as the approximate steering vector (Equation 14) is utilized. However, even for
strong clutter cases where the TD-DORT might fail to generate coherent time-domain excitation signals,
SF-imaging is able to generate coherent time-domain excitation signals which is an advantage of SF-
imaging over the TD-DORT method. Finally, as long as the background medium is known and the exact
background steering vectors are used for the imaging functionals, both methods might provide statistical
stability thanks to the frequency decorrelation achieved by UWB operation.

It should be pointed out that some other signal space-based algorithms have also appeared in the
literature, as in [122, 123].
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Figure 9. Images (in linear scale) obtained both in homogeneous (top row) and random
(bottom row) media by TD-DORT (1st column), SF-imaging using individual (2nd column),
and full SF-MDMs (3rd column).

x (m)

y 
(m

)

 

 

 x  x  x  x  x  x  x

 TRA

−1 −0.5 0 0.5 1

0

0.5

1

1.5

2 −0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x (m)

y 
(m

)

 

 

 x  x  x  x  x  x  x

 TRA

−1 −0.5 0 0.5 1

0

0.5

1

1.5

2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x (m)

y 
(m

)

 

 

 x  x  x  x  x  x  x

 TRA

−1 −0.5 0 0.5 1

0

0.5

1

1.5

2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x (m)

y 
(m

)

 

 

 x  x  x  x  x  x  x

 TRA

−1 −0.5 0 0.5 1

0

0.5

1

1.5

2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x (m)

y 
(m

)

 

 

 x  x  x  x  x  x  x

 TRA

−1 −0.5 0 0.5 1

0

0.5

1

1.5

2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x (m)

y 
(m

)

 

 

 x  x  x  x  x  x  x

 TRA

−1 −0.5 0 0.5 1

0

0.5

1

1.5

2 −0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

3.2. Null Space Methods

Both DORT and SF-imaging methods rely on the fact that, for well-resolved point-like scatterers,
information on scatterer strength(s) and location(s) are partially encoded by the eigenvalues and asso-
ciated eigenvectors in the TRO signal space [47]. Backpropagation of these eigenvectors yields the
target images. However, the performance of these algorithms degrades if the well-resolvedness crite-
rion is not met. In this case, the SS eigenvectors become linear combinations of the Green’s function
vectors connecting scatterers to the TRA [40]. Backpropagation of such SS eigenvectors creates over-
lapped image fields which hamper target imaging and localization. On the other hand, regardless of
the well-resolvedness criteria, the TRO NS is always orthogonal to the TRO SS, i.e., projection of any
vector formed by the linear combination of SS eigenvectors onto the NS is (ideally) zero. This property
is the basis of TR-based MUSIC methods, which provides better detection and localization properties
than signal space based methods even for poorly-resolved scatterers (assuming homogeneous media). A
mathematical summary of the TR-MUSIC is presented next.

3.2.1. TR-MUSIC

Recalling Equation 9, the TRO NS is formed by the eigenvectors having near zero eigenvalues as
shown below:

NS(ω) = {vMs+1(ω), ..., vN(ω)} with λ2
Ms+1(ω) ≈ .. ≈ λ2

N(ω) ≈ 0 (21)

Note that, an NS (and thus the possibility to utilize TR-MUSIC) exists as long as the number of sig-
nificant eigenvalues is less than the number of TRA antennas, i.e., Ms ≤ N . This may not hold
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for non-isotropic scattering, where more than one eigenvalue may be associated with a single scat-
terer [49, 85, 86, 124]. Similarly, with increasing clutter and/or noise, additional TRO eigenvalues
may become significant, which makes it increasingly difficult to distinguish the clutter/noise contribu-
tion from that of the discrete scatterers. In this case, a threshold criteria can be set to determine the SS
and NS. This threshold may depend on the frequency and clutter/noise level.

In order to form the scatterer images, TR-MUSIC method requires the knowledge of the exact back-
ground Green’s function vector g(X̄s, ω) (steering vector) at each search point X̄s in the probed domain,
which is defined by

g(X̄s, ω) =
[
G(X̄s, R̄1, ω), ..., G(X̄s, R̄N , ω)

]T
(22)

where G(r̄, r̄′, ω) = |G(r̄, r̄′, ω)|ejφ(r̄,r̄′,ω) is the Green’s function of the problem [16, 57]. The conjugate
of the steering vector provides the necessary phase and amplitude distribution for the array excitation to
focus on the desired point. Since g(X̄s, ω) is often not known in an deterministic fashion in inhomoge-
neous media, approximate steering vectors g0(X̄s, ω) can be employed instead.

As mentioned above, as the well-resolvedness criterion for the scatterers is weakened, SS eigenvectors
become linear combinations of the Green’s function vectors connecting the scatterers to the TRA. This
is illustrated in Figure 10.

Figure 10. Illustration of well-resolved and non-well-resolved cases for a scenario having
Ms = 2 scatterers and probed with N = 3 antennas. While the SS is formed by the plane
(P ) formed by the first two eigenvectors (v1 and v2), NS is formed by the eigenvector (v3)
orthogonal to P .
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Imaging using these eigenvectors creates an interference pattern that degrades scatterer(s) location(s)
estimates. However, even for closely spaced scatterers, NS is still orthogonal to the SS. Therefore, inner
products of the steering vectors with the NS eigenvectors would vanish only at the scatterer(s) location(s).
This provides the TR-MUSIC imaging functional (pseudospectrum) as given below:

M(x̄s, ω) =




N∑

i=Ms+1

| 〈g0(x̄s, ω), v∗i (ω)〉|


−1

(23)

Since this scheme uses a single (central) frequency (CF) ωc, the above is referred to as CF-TR-MUSIC,
or simply CF-MUSIC in what follows.
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In inhomogeneous media, g0 does not cancel out exactly the phase of the SS eigenvectors
vp (= g∗/‖g‖) nearby the scatterer(s) location(s) as g would. Similarly, the inner product of g0 with
the NS eigenvectors may not necessarily produce a minimum (ideally zero) at the original scatterer lo-
cations. In addition, since g has phase factors that depend on the (random medium) realization, using
g0 does not produce statistical stability. In order to achieve statistical stability, one needs to explore
frequency decorrelation. This can be achieved by UWB operation and combining images obtained at
different frequencies via the following frequency integration [40]:

MΩ(x̄s) =




∫

Ω

N∑

i=Ms(ω)+1

| 〈g0(x̄s, ω), v∗i (ω)〉|dω



−1

(24)

where Ω is the bandwidth of operation. We call this strategy as UWB-TR-MUSIC, or
simply UWB-MUSIC.

We apply both these TR-MUSIC algorithms to the same scenario of the previous subsection.
Figure 11 shows the images obtained.

Figure 11. Images (in dB scale) obtained both in homogeneous (HM) and random media
(RM) by CF-MUSIC and UWB-MUSIC.
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(a) CF-MUSIC in HM
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(b) CF-MUSIC in RM
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(c) UWB-MUSIC in HM
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(d) UWB-MUSIC in RM

One of the first observations is that the dynamic range of the MUSIC images are larger than the signal
space methods (Figure 9). This is due to the fact that MUSIC pseudospectrum utilizes the null subspace
and the inner products around the scatterer locations should ideally be zero resulting in a very strong
peak at the scatterer locations (especially for the homogeneous media). A more detailed comparison of
the dynamic ranges for varying clutter conditions can be found in [108]. In a homogeneous medium
case, both TR-MUSIC methods provide good co-range and cross-range resolutions and they overper-
form those of the TD-DORT and SF-imaging. In the random medium case, the clutter affects the image
quality. CF-MUSIC fails to image the scatterer location due to multiple spurious peaks, which can be
misinterpreted as discrete scatterer locations. Moreover, the images vary with different random medium
realizations because the imaging functionals utilize g0 and not g. Therefore, CF-MUSIC does not pro-
vide stable images under strong clutter. UWB-MUSIC, on the other hand, combines images obtained
at different frequencies to yield a statistically stable image. This is produced at the expense of poorer
co-range and cross-range resolutions (blurring) compared to the homogeneous case. Note that for both
TR-MUSIC methods, increased clutter (i.e., decreased signal-to-clutter ratio) yields wider cross-range
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resolutions. Also, both TR-MUSIC methods fail to work in cases where NS is null, e.g., when all clutter
eigenvalues are above the threshold. On the other hand, both DORT and SF-imaging methods provide
similar co-range and cross-range information even for increasing clutter. As for processing times, it was
shown in [108] that narrow-band methods (i.e., CF-MUSIC or CF-DORT) are faster than their UWB
counterparts, and as long as the number SS eigenvectors is less than the number of NS eigenvectors, SS
based methods are faster than the NS based methods. Additionally, TR-MUSIC is more stable against
increasing dispersion and medium loss as compared to the SS based methods. Further details on the
stability of the methods to perturbations can be found in [108, 125]. There are also several other variant
TR-MUSIC algorithms as considered, e.g., in [126, 127]. Finally, in this paper, we have assumed that
the number of distinct scatterers are less than the total number of antennas. For scenarios where the scat-
terers are more than the number of antennas, the methods explained in this paper may not be sufficient
for imaging. As discussed in [72], a practical approach is to suppress the clutter first via an anti-focusing
step and then attempt to image the scatterers of interest. This algorithm has shown to have good per-
formance over conventional approaches when the number of scatterers is larger than the TRA sensors.
So as a future study, we plan to incorporate this approach into the TR-imaging algorithms presented
here. Especially, the effects of anti-focusing on the eigenspace and singular value/vectors structures will
be focused.

4. Frequency Dispersion/Loss Compensation Techniques

The methods discussed so far have assumed that the intervening medium is lossless and stationary,
hence the invariance of the wave equation under TR remains valid. However, dispersive and lossy media
are often encountered in nature, such as in soils, rocks, ice, and most biological tissues. In such cases, the
TR invariance is broken and conventional TR operation can not be directly applied. Several compensa-
tion methods (within certain limitations) have been discussed in the
literature [22, 75, 128, 129]. In this section, we review a more robust compensation method developed
for UWB signals propagating in dispersive media [106, 109].

A dispersive medium acts as a filter for UWB signals that propagate in it. For such a medium, the
electric field at a single frequency is represented as

Ē(r̄, ω) = F̄ (r̄)exp
(
−jω

√
µε(ω)r̄

)
(25)

where F̄ (r̄) is a frequency-independent amplitude coefficient and for simplicity the permittivity function
ε(ω) is here assumed to be invariant over space (ε(r̄, ω) = ε(ω)) [130, pg. 18].

The non-zero imaginary part of ε(ω) yields additional attenuation on the received signals by the TRA
relative to the non-dispersive case as shown in Figure 12. Moreover, the larger real part of ε(ω) causes
an additional phase shift (delay). Since TR signals are phase conjugated coherently along the entire
bandwidth, any additional phase shift induced from dispersion during the forward propagation is exactly
compensated by the TR process. In a dispersive medium however, the signal is attenuated during both
forward- and back-propagation. As a result, refocusing of the TR signals can be significantly degraded
relative to the non-dispersive (lossless) case. To overcome this degradation, a compensation technique
should be applied to act as an inverse filter with respect to the attenuation. Additionally, dispersive
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effects are also cumulative in time, i.e., the longer a signal travels in the medium, the more it is atten-
uated. In other words, a dispersive medium acts as a frequency-dependent, cumulative-in-time filter to
the propagating signals. This requires the use of space and frequency dependent compensation filters.
The implementation of the compensation method does not change the basic TR experiment, i.e., forward
and backpropagation steps stay the same. But received and recorded signals after the forward propaga-
tion are properly modified (compensated) and then retransmitted. During the forward propagation of the
transmitted short pulse in the dispersive medium, different multipaths go through different (dispersive)
relative attenuations depending on the total distance (or time) traveled in the medium. In other words,
received signals at later times (or equivalently, at further distances) need more strong “compensation”
than those at earlier times. Ideally, different filters should be applied for each particular instant (sam-
ple), but this is impractical. Instead, time-windowing can be applied to received signals and different
frequency-dependent filters used on each window. The combined time-windowing/filtering process can
be best achieved after applying a short-time Fourier transform (STFT) [132] to the received signals at
the TRA.

Figure 12. Magnitude of the exponential term exp(−jω
√

µε(ω)r̄) plotted with respect to
frequency and spatial distance for complex ε(ω) corresponding to the Puerto Rico soil with
moisture level of %2.5 [131]. Space- and frequency-dependent attenuation is observed.
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The whole compensation process is relatively simple and starts by taking the discrete STFT, X[k, i],
of the (sampled) received signal at each TRA antenna x[n], which is given as

X[k, i] =
∑
n

x[n]wi[n]e−j(2π/L)nk for i = 1, .., M (26)

where wi[n] is the ith window, L is the FFT length, and M is the total number of windows. Note that
M depends on the window length and overlapping factor (between windows). The product x[n]wi[n] =

si[n] is referred to as the ith windowed signal. Each windowed signal has traveled a different distance
amount to reach the receiver and each of its frequency components has gone through different attenua-
tion. Therefore, each windowed signal has to be filtered with a different space and frequency dependent
filter H[k, i] obtained for the ith window. In the Fourier domain, the filtering is carried out by

Y [k, i] = X[k, i]H[k, i] for i = 1, .., M (27)

The final, dispersion-compensated signal xc[n] is then obtained by an inverse STFT:

xc[n] =
M∑

i=1

1

wi[n]

∑

k

Y [k, i]ej(2π/L)nk (28)
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A block diagram of the whole procedure is given in Figure 13.
Filters play an important role here and to obtain them, the dispersive characteristics of the media

should be (ideally) known or (practically) estimated. One way to obtain these filters is to compare the
solution of the wave equation in a homogeneous reference medium having the exact dispersive model of
interest with that in a nondispersive reference medium, as carried out in [109].

Figure 13. The block diagram of the dispersion compensation method.
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Now, let us illustrate the compensation procedure by considering the received signal at one of the
TRA elements is considered in more detail. The received signal is windowed using five Hamming
windows [132] of length 256∆t each and an overlapping factor of 0.5, as shown in Figure 14.

Figure 14. (Left:) One of the original received signal and the employed Hamming windows
with overlapping factor of 0.5; (right:) corresponding windowed signals. Note the amplitude
difference for each windowed signal.
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For each windowed signal, a filter is designed as follows: First, for each central point of window
wi[n], a corresponding effective distance is found for the specific dispersive characteristics. The ratio be-
tween the frequency domain representations of the signals received in the dispersive and non-dispersive
reference media at this effective distance gives the frequency-dependent attenuation due to dispersion
to be compensated by H[k, i]. Note that, to avoid noise contamination, the amplification factors can
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be smoothly set to unity for frequencies where the spectral density are below acceptable levels (high-
frequency ends) depending on the particular application. Then, these filters are applied to corresponding
windowed signals to yield the filtered windowed signals shown in Figure 15.

Figure 15. Time and Frequency domain representations for some of the windowed signals
and their compensated counterparts after space and frequency dependent filtering.
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These filtered windowed signals are then inverse Short-Time Fourier transformed to obtain the final
compensated signal, which is shown in Figure 16 along with the original signal received in the dispersive
medium and a reference signal that would have been received in the non-dispersive case.

Figure 16. Signal received by one of the TRA antennas in dispersive medium, correspond-
ing compensated signal and the reference signal that would be received in non-dispersive
medium in (left) time and (right) frequency domains.
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As seen in these plots, apart from the phase shift (which is automatically compensated by the TR
process), the amplitude of the compensated signal is much closer to the reference signal amplitude
than that of the original signal. Any discrepancy between the compensated and the reference signal
is due to the finite window length used. A better agreement can be obtained with a larger number of
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windows, however, trade-off is the increased computational cost. This procedure is applied to all the
signals received by the TRA. Note that, since backpropagation occurs in the same dispersive medium,
additional attenuation is produced on the signals. Therefore, for each windowed signal, two different
sets of compensation filters should be applied for each windowed signal. The first one compensates for
propagation losses from the source (TRA) to scatterers and from scatterers back to the TRA; the second
one compensates for propagation losses from TRA to scatterers. The compensation filters used for
backpropagation should be different from those for the initial propagation, since the effective propagation
duration for the backpropagation is approximately half of the initial propagation. The second set of filters
for each windowed signal can be obtained by using half of the effective distances used for the first set
of compensation filters. Once these compensated and TR signals are backpropagated into the same
medium, the refocused fields around the scatterers have amplitudes much closer to those obtained in the
nondispersive case, as shown in [106, 109]. It should also be noted that compensation filters also amplify
system noise; hence, they are of limited availability in scenarios where the medium dispersion reduces
the signal to noise ratio below acceptable levels.

5. Conclusions

In this paper, we have provided a summary of some time-reversal techniques for UWB microwave
remote sensing. For concreteness, we have focused most of the discussion on imaging scenarios consist-
ing of obscured discrete targets in continuous random media, although TR techniques are applicable to
many other remote sensing scenarios, as surveyed in the Introduction.

First, we considered the so-called “signal space” methods, viz., TD-DORT and SF-imaging, which re-
spectively utilize space-space and space-frequency multistatic data matrices obtained from the TR array
signals. For the TD-DORT method, the use of an eigenvector decomposition of the TR operator along
the available bandwidth followed by a phase smoothing algorithm (on the eigenvectors associated with
the significant eigenvalues) provides the required time-domain excitation signals to be used on the TRA
for selective focusing of multiple targets. While TD-DORT performs well in relatively low clutter envi-
ronments, it fails in environments with stronger clutter because of the limitations in the phase smoothing
algorithm. SF-imaging, on the other hand, utilizes less conventional MDMs to provide coherent time-
domain excitation signals regardless of the background clutter. Although the TD-DORT cross-range
performance is slightly better than that provided by SF-imaging, the latter is favored in highly scattering
environments.

Next, we considered the TR-MUSIC method as the prototypal “null space” based TR algorithm. In
this case, the TR operator eigenvectors associated with near zero eigenvalues of the TR operator (as
opposed to the significant eigenvalues, as in the “signal space” case) are utilized along with medium
steering vectors to obtain desired target images. Under weak clutter conditions, TR-MUSIC outperforms
TD-DORT and SF-imaging methods in terms of both co-range and cross-range resolutions. However,
TR-MUSIC was found to be less stable under increased clutter.

Finally, we briefly discussed the use of compensation (inverse) filters as a means to extend the basic
TR techniques to lossy media, where the TR invariance is broken.
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