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Abstract: In this paper, we present surface urban heat island (SUHI) analysis of Shanghai (China)
based on the change in land use and land cover using satellite Landsat images from 2002 to 2013.
With the rapid development of urbanization, urban ecological and environmental issues have aroused
widespread concern. The urban heat island (UHI) effect is a crucial problem, as its generation and
evolution are closely related to social and economic activities. Land-use and land-cover change
(LUCC) is the key in analyzing the UHI effect. Shanghai, one of China’s major economic, financial and
commercial centers, has experienced high development density for several decades. A tremendous
amount of farmland and vegetation coverage has been replaced by an urban impervious surface,
leading to an intensive SUHI effect, especially in the city’s center. Luckily, the SUHI trend has slowed
due to reasonable urban planning and relevant green policies since the 2010 Expo. Data analyses
demonstrate that an impervious surface (IS) has a positive correlation with land surface temperature
(LST) but a negative correlation with vegetation and water. Among the three factors, impervious
surface is the most relevant. Therefore, the policy implications of land use and control of impervious
surfaces should pay attention to the relief of the current SUHI effect in Shanghai.

Keywords: surface urban heat island (SUHI); land-use and land-cover change (LUCC); land surface
temperature (LST); Shanghai; NDVI; MNDWI

1. Introduction

Since the 20th century, urbanization has become the most significant human activity [1]. The most
intuitive expression of the rapid development of urbanization is the transformation of land cover types.
Transformations in land use change the physical characteristics of the Earth’s surface, affect the energy
exchange between the ground surface and the atmosphere, impact the cycle of biogeochemistry, and
have a profound influence on the structure and function of the regional or even global ecosystem [2].

Due to rapid urbanization, urban ecological and environmental problems have evoked widespread
concern from the public, government and scientists. The urban heat island (UHI) effect is a most crucial
issue, as its generation and evolution are closely related to social and economic activities. Studies on the
distribution of UHI and its evolutionary mechanism have become a hot topic in multi-disciplines [3–5].
Furthermore, UHI also leads to an urban rain island effect, which concentrates heavy rain during the
flood season and causes regional water logging in megacities such as Shanghai [6].

UHI is a phenomenon in which the urban surface and atmospheric temperature are warmer than
the surrounding non-urban environment [7]. Usually, the temperature of the urban suburbs subtracted
from that of the urban center acts as a measure of the intensity of the heat island.
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Over the years, there have been many studies researching the causes [8,9], shape and structure [10],
process and change [11], mechanism and simulation [12,13] of UHI formation. Urbanization has been
shown to change the dynamic characteristics of the atmosphere and the heat exchange properties of
the underlying surface, resulting in the rapid change of surface cover and land use and promoting the
UHI [14]. The larger the city and its population, the stronger the intensity of the UHI. The formation
and development of an UHI is closely related to the geographical location and geometric shape of a
certain city. In urban areas, factories, mines, enterprises, institutions and human activities releasing
living heat promote the formation of UHI as well [15].

Many studies have shown that the formation of UHI and weather conditions have a strong
correlation [16–18]. UHI is closely related to the wind speed and varies with changes in the amount
of clouds [19]. Weather conditions such as sunny skies, quiet winds and low-pressure gradients can
further intensify the UHI effect [17].

Except for the above air temperature components of UHIs, surface temperature components
also matter considerably [20]. Previous studies have also illustrated that SUHI is directly related
to land surface types and surface modifications [21–23]. Each type of land has its own thermal
characteristics, radiation features and anthropologic heat, significantly affecting the interchange of
surface energy, and then affecting the urban climate [24,25]. For example, cement and tile structured
buildings, squares, residential areas, bridges, roads and other urban land use types release more heat
and cause higher temperatures, while bare land mostly consisting of soil, vegetation and water lead to
lower temperatures [23]. Therefore, with the expansion of the city and the changes in land use type,
the SUHI effect will also produce corresponding changes. Vegetation can regulate energy exchange by
transpiration. It is suggested that LST is associated with NDVI, while the results of relevancy vary
considerably [26,27]. In addition, most studies demonstrated a positive correlation between LST and
IS [28–30]. The effect of IS was inferior to that of NDVI [30], while some studies argued that IS had a
strong correlation with SUHI, even in an exponential relationship [28]. Therefore, how IS, vegetation
and water affect energy absorption of the land surface and the extents of impacts need to be studied.

Remote sensing technology has been widely applied and has contributed much to assess SUHI
with LST patterns from advanced very high resolution radiometer (AVHRR) [31], moderate resolution
imaging spectroradiometer (MODIS) [32] to advanced spaceborne thermal emission and reflection
radiometer (ASTER) [20].

Although many previous studies evaluated the LST and SUHI effect [23,33], there are few reports
of SUHI in Shanghai [34] using satellite images in recent years. Shanghai, one of China’s major
economic, financial and commercial centers, has the highest level of urbanization in the country, which
increased from 73.84% in 1999 to 89.8% in 2012, far more than the national average [35]. In the first ten
years of the 21st century, Shanghai has experienced a great change in land use. In addition, extreme
hot weather has occurred in Shanghai with increasing frequency since that time.

In this study, we concentrate on analyzing the SUHI effect based on land-use and land-cover (LUCC)
analysis in Shanghai using Landsat images. Therefore, this study will analyze the relationship between the
impervious surface, land use and SUHI of Shanghai and draw general rules from its findings.

The LUCC is the key in analyzing the SUHI effect [22]. The relationship between land surface
temperature in Figure 1 and indicators like vegetation coverage and impervious surface area (ISA) will
be the main research contents in this study.
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74.4 59.1 93.8 74.2 84.5 181.8 145.7 213.7 87.1 55.6 52.3 43.9 
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exhibition and shipping center. The throughput of cargo and containers in Shanghai ranks first in the 
world. As the world’s leading financial center, Shanghai’s GDP ranked first among China’s cities and 
second among Asian cities in 2015, second only to that of Tokyo, Japan. Shanghai is an immigrant 
city. Its unique conditions have attracted a large number of people over the long history of its 
development process as this sea town has become a world metropolis. By the end of 2016, the 
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2. Data Collection

2.1. Study Area

Shanghai is a municipality and one of the first open coastal cities in China. It is located at the
confluence of the Yangtze River and Huangpu River and in the center of China’s north and south
coast. Shanghai is a part of the alluvial plain of the Yangtze River Delta. The Yangtze River Delta city
group, comprising Shanghai, Jiangsu, Zhejiang and Anhui provinces, has become one of the six major
world-class city groups.

Shanghai administers 16 municipal districts covering a total area of 6340 square kilometers.
Shanghai, which has a subtropical humid monsoon climate, exhibits the characteristics of four distinct
seasons, full sunshine and abundant rainfall. Table 1 gives detailed climate information for Shanghai
which is presented on the website of EnergyPlus [36]. All the climate data for Shanghai were obtained
based on the decades of statistical climate data (1983 to 2010).

Table 1. Climate data for Shanghai [36].

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Avg Temp. (°C) 4 5 8 14 19 24 28 27 23 18 12 7

Wind Direction (◦) 290 40 0 110 90 110 150 140 60 20 20 290

Wind Speed (m/s) 2 3 3 3 3 2 4 2 3 2 3 2

Relative Humidity 73 78 73 76 81 83 79 77 82 75 73 70

Global Horiz Radiation
(Avg Daily Total,

Wh/sq.m)
2131 2362 2791 4041 4119 4003 4782 5061 3257 3338 2533 2316

Avg precipitation (mm) 74.4 59.1 93.8 74.2 84.5 181.8 145.7 213.7 87.1 55.6 52.3 43.9

Shanghai is China’s economic, transportation, technological, industrial, finance, trade, exhibition
and shipping center. The throughput of cargo and containers in Shanghai ranks first in the world.
As the world’s leading financial center, Shanghai’s GDP ranked first among China’s cities and second
among Asian cities in 2015, second only to that of Tokyo, Japan. Shanghai is an immigrant city.
Its unique conditions have attracted a large number of people over the long history of its development
process as this sea town has become a world metropolis. By the end of 2016, the population of Shanghai
was 24.197 million. Figure 2 shows the location of Shanghai in China.Sustainability 2017, 9, 1538  4 of 22 
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2.2. Image Data

In this study, all raw image data of Shanghai were downloaded from the United States Geological
Survey (USGS) website. Three phases of image data in 2002, 2007 and 2013 all have good quality with
no cloud cover found in the selected area.

Table 2 shows the raw data for Shanghai. The images are named after their imaging time by year
and day of the year. Every image includes the information of its imaging sensor, date, resolution and
wave bands. The OLI image consists of visible bands, the near infrared (NIR) band, thermal infrared
(TIR) band and short wave infrared (SWIR) band, which are present in TM images, and also the coastal
band, panchromatic (Pan) band and cirrus band. TIRS bands are also thermal infrared bands with a
higher resolution compared with TIR bands.

In addition, LST retrieval requires radiometric calibration for thermal band. For TM images,
thermal band is band 6. For OLI images, thermal band is band 10 and 11. The specific implementation
can be seen in Section 4.4.

Table 2. Experimental data collection.

File Name 2002003 2007033 2013337

Location Shanghai

Sensor Landsat5 TM Landsat5 TM Landsat8 OLI

Spatial 30 × 30 m

Temporal 3 January 2002 2 February 2007 3 December 2013

Spectral
(micrometers)

Band 1 = Blue (0.45–0.52)
Band 2 = Green (0.52–0.6)
Band 3 = Red (0.63–0.69)
Band 4 = NIR (0.76–0.9)
Band 5 = SWIR (1.55–1.75)
Band 6 = TIR (10.4–12.5) *
Band 7 = SWIR (2.08–2.35)

Band 1 = Blue (0.45–0.52)
Band 2 = Green (0.52–0.6)
Band 3 = Red (0.63–0.69)
Band 4 = NIR (0.76–0.9)
Band 5 = SWIR (1.55–1.75)
Band 6 = TIR (10.4–12.5) *
Band 7 = SWIR (2.08–2.35)

Band 1 = Coastal (0.433–0.453)
Band 2 = Blue (0.450–0.515)
Band 3 = Green (0.525–0.6)
Band 4 = Red (0.630–0.680)
Band 5 = NIR (0.845–0.885)
Band 6 = SWIR 1 (1.560–1.660)
Band 7 = SWIR 2 (2.100–2.300)
Band 8 = Pan (0.500–0.680) *
Band 9 = Cirrus (1.360–1.390)
Band 10 = TIRS 1 (10.6–11.2) *
Band 11 = TIRS 2 (12.0–12.5) *

* The spatial resolutions of Pan, TIR and TIRS bands are 15 m, 120 m and 100 m respectively (Source: https:
//www.usgs.gov) [37].

Since the administrative area of Shanghai straddles two Landsat images, a phase of an image for
Shanghai has to be mosaicked by two unprocessed images. Figure 3a,b are what they looks like when
downloaded who are named after the numbers of air strips and their imaging year and day of the year,
demonstrating two examples of unprocessed images for one phase and are displayed in true color.

https://www.usgs.gov
https://www.usgs.gov
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3. Methodology

3.1. Pre-processing

3.1.1. Radiometric Calibration

Radiometric calibration is used to determine the exact radiation brightness value at the sensor
entrance and to further convert the radiance value to the outer surface reflectivity [38]. The formula is
presented as follows.

Li =
DNi
Ai

+ Bi (1)

Li is the radiation value at the sensor entrance for band i. DNi is the brightness value of band i
output by the sensor. Ai is the absolute calibration gain coefficient. Bi is the absolute calibration bias
value. The values of gain and bias are available in the header file of the remote sensing image.

3.1.2. Atmospheric correction

Atmospheric correction is used to convert the radiation brightness value or the outer surface
reflectivity to the actual reflectivity of land surface, and the purpose is to eliminate the error caused by
the atmospheric scattering, absorption and reflection. The method used in this project is based on the
radiative transfer models.

ρ ∗ (θs, θV , φs) = Tg(θs, θV)[ρr+a + T(θs)T(θV)
ρs

1 − Sρs

] (2)

ρr+a is the reflectivity formed by the path of molecular scattering and aerosol scattering. Tg(θs, θV)

is the reflectivity formed by atmospheric absorption. S is the atmospheric spherical albedo. ρs is the
reflectivity of the land target object. T(θs) is the scattering transmittance from the sun to the ground.
θs and θV are solar altitude and sensor altitude, respectively.

3.2. Impervious Surface

The impervious surface is extracted from the vegetation coverage based on the normalized
difference vegetation index (NDVI), combined with the application of the water mask extracted by the
modified normalized difference water index (MNDWI).
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3.2.1. NDVI

NDVI is an approach to assess whether the target on the ground surface has live green vegetation.
The calculation of NDVI is relevant to the red band and near-infrared band because of spectral
signatures of vegetation, which can be written as:

NDVI = (NIR − Red)/(NIR + Red) (3)

The value of NDVI ranges from −1 to +1. The higher the result, the higher the density of
green leaves.

3.2.2. MNDWI

In this study, the ratio method is applied to extract water information. The ratio method can
make use of the difference of the object in different bands, and then highlight the information by the
ratio calculation. The most common water index is the modified difference water index (NDWI) [39].
NDWI is calculated using the difference of the green band and near-infrared band, which effectively
eliminates the vegetation information to highlight the water information. However, NDWI neglects
the influence caused by construction areas like commercial buildings and housing estates. Considering
that urban area covers a lot of the study area, the modified normalized difference water index is
applied in this study [40], whose calculation is represented as follows:

MNDWI = (Green − MIR)/(Green + MIR) (4)

The calculation of MNDWI helps to obviously display water regions. The pixel values of water
tend to be higher than those of other ground objects.

3.2.3. Extraction of Impervious Surface

The dimidiate pixel model is a commonly used remote sensing estimation model to classify
the spectral range of the sample as the dividing line to determine whether the terminal pixel falls
into the spectral range of the classification sample [41]. In the estimation of the vegetation coverage
ratio, assuming that the pixels completely covered by the vegetation and soil as the dividing line,
the vegetation coverage (Vc) expression can be obtained according to the NDVI, which reflects the
information of vegetation growth status on the ground surface.

Vc =
NDVI − NDVIsoil

NDVIveg − NDVIsoil
(5)

IS = 1 − Vc (6)

NDVIveg can be approximately equal to the maximum value of NDVI, and NDVIsoil can be
approximately equal to the minimum value of NDVI. Therefore, Equation (5) can be expressed as:

Vc =
NDVI − NDVImin

NDVImax − NDVImin
(7)

3.3. Land Use Classification

A decision tree based on the CRUISE algorithm is used to classify land use types. The full name
of CURISE is classification rule with unbiased interaction selection estimation [42]. It is a statistical
decision tree algorithm used for data classification and data mining, in which there are four main
features. Each node is divided into multiple child nodes, and the number of child nodes is the total
number of response variable classes. The bias when the variable is selected is negligible. The algorithm
has a variety of ways to handle missing values. The algorithm can detect the local interaction between
the predicted variables.
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3.4. Land Surface Temperature

The theoretical method of land surface temperature retrieval is to solve radiative transfer
equations, eliminate atmospheric impact, and then obtain the land surface temperature. There are three
kinds of commonly used methods: single band algorithms [43–45], split window algorithms [43,46,47]
and multi-angle algorithms [48,49]. Single band algorithms are effective and need fewer parameters
and are thus are used in this study.

Additionally, taking into account the limited scope of the study area and considering that the
remote sensing images were taken under clear and cloudless weather conditions, the degree of
atmospheric impact in space that is consistent and the relative temperature of the ground temperature
distribution would not be affected. Therefore, an image-based inversion algorithm using thermal
infrared band is chosen in the study [50]. Specific steps are as follows; the first is to convert the DN
value to the radiance value.

L = gain × DN + bias (8)

L is the radiation value at the sensor entrance of the thermal band. DN is the data value of image
pixels. gain and bias are the gain coefficient and bias value of thermal band, respectively, which are
available from the header file of the remote sensing image.

Second is to convert the radiance value to brightness temperature.

Tb =
K2

ln(K1/L + 1)
(9)

Tb is the brightness temperature, K1 and K2 are preset constants before launch.
Third is to calculate the land surface temperature.

Ts =
Tb

1 + (λ × Tb/ρ)lnε
− 273.15 (10)

λ is the wavelength of emission radiation and ε is emissivity.
Due to the complexity of the underlying surface type, for the thermal infrared band with resolution

of 60 meters, a pixel corresponding to the underlying surface often contains a variety of materials.
Various materials have different emissivity values. Correspondingly, the calculation of emissivity is
quite complicated. The following method is used to calculate the emissivity. Firstly, the remote sensing
image is divided into three types: the construction land, the water body and the natural ground surface.
The emissivity of water pixels is assigned to 0.995. The emissivity of construction land and ground
surface is calculated according to formulas (11), (12) and (13) [50]. For a simple calculation, NDVIsoil
is defined as 0, and NDVIveg is defined as 0.7.

εbuilt = 0.9589 + 0.086Pv − 0.0671Pv
2 (11)

εsur f ace = 0.9625 + 0.0614Pv − 0.0461Pv
2 (12)

Pv =
[
(NDVI − NDVIsoil)/

(
NDVIveg − NDVIsoil

)]2 (13)

4. Experiment

In the study, the ENVI 5.1 software helps to process and analyze the geospatial remote sensing
images and includes both a new interface and classic tools.

4.1. Preprocessing

Due to the limited geographical coverage of a remote sensing image, the Shanghai area should be
made up of two remote sensing images. To ensure the comparability of images from different sensors
or from the same sensor on different dates, and to eliminate the radiation error caused by atmospheric
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scattering, the images required radiometric calibration and atmospheric correction. In ENVI, both of
these procedures have corresponding operation modules in the toolbox. Then, the projected boundary
of Shanghai was imported for the selected regions of interests. Figure 4 shows the result of image
preprocessing and is displayed in true color.
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of 2013.

4.2. Impervious Surface Extraction

4.2.1. Impervious Surface Calculation

The calculation of NDVI is a ratio operation between the red band and near infrared band. There is
no need to input the computational formula in ENVI due to the available tool in the toolbox. For TM
images, band 3 is the red band and band 4 is the NIR band, and for OLI images, band 4 is the red band
and band 5 is the NIR band. Figure 5 shows the result of NDVI. The lighter or white pixels have a
higher probability of live green leaves.
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Different from NDVI, there is no ready function for MNDWI. Therefore, it has to be done in band
math. The input formula is (b1 − b2)/(b1 + b2). Both for TM and OLI images, b1 is assigned as the
green band and b2 is assigned as the middle infrared band. Figure 6 shows the result of MNDVI.
The darker or black pixels are regions of water.
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Based on the ground features of the study area and combining visual interpretation with high 
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impervious surface, water area and vegetation cover area; then, the training samples are determined. 
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Figure 6. (a) MNDVI calculation of 2002; (b) MNDVI calculation of 2007; (c) MNDVI calculation of 2013.

According to Section 3.2.3, the formula of impervious surface calculation in band math is
1 − (b1 − NDVImin)/(NDVImax + NDVImin), where b1 is the NDVI result in Section 4.2.1. Because this
result has not eliminated the influence of water, masking of water should be applied. The binariation
formula is (b1 ge threshold) × 0 + (b1 lt threshold) × 1. Here, b1 is the result of MNDWI calculation.
The threshold is 0.92, 0.91 and 0.93 for 2002, 2007 and 2013, respectively. After selection of water,
the water mask can be applied on the calculation result of reversed vegetation coverage. Figure 7
shows the result of IS extraction, which demonstrates the expansion of urban impervious surface in
Shanghai. The percentages of imperious surface are 19.47%, 36.23% and 37.09% in 2002, 2007 and 2013,
respectively as Table 3 displays.
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extraction result of Shanghai in 2013.

Table 3. Dynamic change of the impervious surface of Shanghai.

Year 2002 2009 2013

Percentage 19.47% 36.23% 37.09%
Area (km2) 1234.40 2296.98 2351.56

4.2.2. Accuracy Assessment

Based on the ground features of the study area and combining visual interpretation with high
resolution of QuickBird images in Shanghai, the ground objects are divided into three categories:
impervious surface, water area and vegetation cover area; then, the training samples are determined.
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Using QuickBird images as reference data, randomly generate 200 sampling points in the three
phases of images and check their categories. The random sampling points are compared with the
corresponding points in the QuickBird images at the same latitude and longitude to figure out the
similarities and differences. Table 4 shows the accuracy.

Table 4. Accuracy assessment of impervious surface extraction of Shanghai.

Year 2002 2009 2013

Accuracy 90.50% 87.79% 89.34%

4.3. Land Use Detection

4.3.1. Classification

In this experiment, a decision tree classification based on the CRUISE algorithm is used. Before
building a new decision tree, classification training samples should be specified. There are four classes,
which are vegetation, water, urban and others. In these four classes, urban is defined as an impervious
surface while other three classes are pervious land.

Then, the decision trees can be created with the application of the plug-in RuleGen. The trees
created by RuleGen tend to be too complex and need to be trimmed.

Figure 8 shows the land use classification results of 2002, 2007 and 2013. The red pixels represent
urban areas. The green pixels represent vegetation. The blue pixels represent water. The light-yellow
pixels represent other types, mainly bare land.
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4.3.2. Confusion Matrix

In this study, the high-resolution QuickBird images are also used to examine the land use
classification result of 2002, 2007 and 2013. In ENVI5.1, this procedure can be realized by the module
of the confusion matrix using ground truth images. Selecting ground truth images and adding the
combination with the four classes lead to the results. Table 5 displays the classification accuracy.

Table 5. Land use classification accuracy.

Year 2002 2009 2013

Overall Accuracy 85.59% 83.20% 88.14%
Kappa Coefficient 0.7874 0.7536 0.8117
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4.4. Land Surface Temperature Retrieval

4.4.1. Calculation Process

Figure 9 shows that land surface temperature retrieval is a complicated process.
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To calculate vegetation coverage is a little bit different from Section 4.2.1. The formula input in
band math is (b1 gt 0.7) × 1 + (b1 lt 0) × 0 + (b1 ge 0 and b1 le 0.7) × ((b1 − 0)/(0.7 − 0)), where b1 is
the NDVI. Then, the calculation result of vegetation coverage is obtained.

Emissivity is a piecewise function, which is divided into water, built-up areas and ground surface.
With b1 as NDVI and b2 as vegetation coverage, emissivity is computed according to the band math
(b1 le 0) × 0.995 + (b1 gt 0 and b1 lt 0.7) × (0.9589 + 0.086 × b2 − 0.0671 × b2ˆ2) + (b1 ge 0.7) × (0.9625
+ 0.0614 × b2 − 0.0461 × b2ˆ2). Then, the calculation result of emissivity is obtained.

The radiance value is relevant to emissivity and the radiometric calibration result for the thermal
band. The formula is represented as below, (b2 − 0.86 − 0.87 × (1 − b1) × 1.42)/(0.87 × b1), and b1 is
emissivity when b2 is radiometric calibration result for thermal band. Then, the calculation result of
radiance value is obtained.

The final step is to compute land surface temperature with the radiance value as b1. For TM
images, the formula is (1260.56)/alog (607.66/b1 + 1) − 273.15. For OLI band 10, the formula is
(1321.80)/alog (774.89/b1 + 1) − 273.15. For OLI band 11, the formula is (1201.14)/alog (480.89/b1 + 1)
− 273.15. The first formula is applicative for images of 2002 and 2007. The later ones are used for 2013.
Then, the land surface temperature is obtained.

4.4.2. Land Surface Temperature Intervals

Since the images used in the study are from different years and different months, normalization
of land surface temperature is applied for fair comparison. In addition, the temperatures are divided
into seven intervals to display the difference of temperature in different regions of Shanghai in 2002,
2007 and 2013. They are low temperature, sub-low temperature, sub-medium temperature, medium
temperature, sub-high temperature, high temperature and extreme high temperature. The division
rules are shown in Table 6. Figure 10 is the surface urban heat island effect distribution of 2002, 2007
and 2013.

Table 6. The range of 7 land surface temperature intervals.

Temperature Grade Range

Extreme high temperature TS > Ta + 2Sd
High temperature Ta + SdTS ≤ Ta + 2Sd

Sub-high temperature Ta + Sd/2TS ≤ Ta + Sd
Medium temperature Ta − Sd/2TS ≤ Ta + Sd/2

Sub-medium temperature Ta − SdTS ≤ Ta − Sd/2
Sub-low temperature Ta − 2SdTS ≤ Ta − Sd

Low temperature TS < Ta + 2Sd

TS represents land surface temperature. Ta is the average land surface temperature. Sd is standard deviation.
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5. Results and Analysis

5.1. Spatial Distribution and Characteristics of Impervious Surface

5.1.1. Impervious Surface Distribution in Shanghai

Impervious surface is one of the main types of land cover in urban areas. It is also an important
component of urban ecosystems.

By a series of processes involving the impervious surface, binarization diagrams in different years
were obtained (Figure 7). These three pictures vividly revealed that there is a rapid expansion of
impervious surface in Shanghai, especially in the city’s center.

In general, the statistical data present an ascending trend from 2002 to 2013. In detail, there is
a booming from 2002 to 2007 in terms of proportion, after which the figure for impervious surface
remains stable with minute growth from 2007 to 2013, as shown in Table 3.

The expansion of the built-up area depends on the balance between increasing urban construction
land scale and the limited environmental capacity of proper conditions, and its developing direction
concentrates in a special region. Therefore, the study area is divided into 10 sub-regions according
to the administrative division: downtown (including Huangpu, Xuhui, Changning, JingAn, Putuo,
Hongkou and Yangpu seven districts), Pudong (include old Pudong and Nanhui), Minhang, Baoshan,
Jiading, Jinshan, Songjiang, Qingpu, Fengxian and Chongming districts. The following data analysis
will be deeper based on these 10 sub-regions.

After clipping the result for the impervious surface, the entire study area was divided into 10
sub-regions. By binarization processing with the suitable threshold value, the three impervious surface
statistics information data were obtained for 2002, 2007 and 2013 in Table 7.

Table 7. Impervious surface statistics information data (km2).

Downtown Pudong Minhang Baoshan Jiading

2002 160.87 217.63 126.59 148.41 86.71
2007 242.64 528.73 230.77 210.64 216.13
2013 238.95 544.71 231.06 216.39 216.70

Jinshan Songjiang Qingpu Fengxian Chongming

2002 35.93 64.15 69.78 50.41 177.92
2007 111.27 165.76 155.06 194.93 241.05
2013 112.86 180.09 155.64 196.77 258.39
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Statistical data of the generated cylindrical statistical diagram can directly reflect the diverse
regional impervious surface growth conditions. The development condition of the impervious surface
in each period within the study area reflects the significant difference. The transformation of Pudong
new district, Jiading, Jinshan, Songjiang, Qingpu and Fengxian districts is most distinct among all
sub-regions, which showed an almost twofold increase from 2002 to 2007. Generally, the tendency
between 2007 and 2013 is a very small increase in all areas. There is a mild and regular rise in all
the non-downtown areas with a great increase in Pudong new district. Specifically, the change in
downtown is unusual with a tiny decline partly due to more vegetation covers after the 2010 Expo and
its environmental improvement plan.

Table 8 shows the impervious surface proportion table of 10 sub-regions.

Table 8. Regional proportion of impervious surface.

Downtown Pudong Minhang Baoshan Jiading

2002 55.66% 17.98% 34.03% 49.47% 18.89%
2007 83.95% 43.69% 62.03% 70.21% 47.08%
2013 82.68% 45.02% 62.11% 72.13% 47.21%

Jinshan Songjiang Qingpu Fengxian Chongming

2002 6.13% 10.60% 10.32% 7.34% 15.01%
2007 18.99% 27.39% 22.94% 28.37% 20.34%
2013 19.26% 29.76% 23.02% 28.64% 21.80%

In order to proceed with further research of the transformation law based on differences in the
regional impervious surface information over time, the three phase of images are divided into two
periods (namely 2002–2007, 2007–2013) so we can understand the urban growth over time more
specifically. Table 9 lists the impervious surface area growth in two periods. Apparently, there is
only a minute decline in downtown areas; conversely, five figures (>100) reflect a dramatic increase in
Pudong, Minghang, Jiading, Songjiang and Fengxian districts.

Table 9. Regional change of impervious surface (km2).

Downtown Pudong Minhang Baoshan Jiading

2002–2007 81.77 311.10 104.18 62.23 129.42
2007–2013 −3.69 15.98 0.29 5.75 0.57

Total 78.08 327.08 104.47 67.98 129.99

Jinshan Songjiang Qingpu Fengxian Chongming

2002–2007 75.34 101.61 85.28 144.52 63.13
2007–2013 1.59 14.33 0.58 1.84 17.34

Total 76.93 115.94 85.86 146.36 80.47

Based on the statistical data above, the growth percentage of the impervious surface in the study
area within each period can be calculated, which could represent the overall growth rate of the urban
area within two periods. According to Table 10, both downtown and other districts display an obvious
increasing rate from 2002 to 2007. In particular, the figures of Pudong new district, Jiading, Jinshan,
Songjiang, Qingpu and Fengxian even exceed 100%. From 2007 to 2013, apart from the slight decline
for the downtown, the other nine districts all gain slight increase in the coverage of impervious surface.
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Table 10. Growth rate of impervious surface area.

Downtown Pudong Minhang Baoshan Jiading

2002–2007 50.83% 142.95% 82.29% 41.93% 149.25%
2007–2013 −1.52% 3.02% 0.126% 2.73% 0.264%

Jinshan Songjiang Qingpu Fengxian Chongming

2002–2007 209.68% 158.39% 122.21% 286.68% 35.48%
2007–2013 1.43% 8.65% 0.374% 0.944% 7.19%

Generally speaking, with the rapid development of urbanization, the density of buildings in
urban built-up areas in Shanghai is quite high, while the greening rate is low. Statistics indicate that
the average impervious surface rate in 2013 inside Shanghai’s outer ring road reached 70%, much
higher than that of most foreign mega-cities (around 40%).

From the spatial distribution map of impervious surface, it is estimated that the overall impervious
surface rate of Shanghai is generally high, especially within the inner ring of the city center, and its
impervious surface rate has reached over 90%. In addition, Zhabei and Wusong, industrial zones along
Huangpu River, and some of the new industrial areas in Pudong new district have also climbed to
more than 85%. There is a significant difference between the urban land outside the inner ring and
the downtown area, and its impervious surface rate of ranges from 50% to 85%. Besides, parks and
green space in the urban area and the remaining farmland in Pudong new district have an impervious
surface rate below 50%.

5.1.2. Urban Development Density Analysis

Impervious surface is an important indicator of urban spatial distribution and development
density. A previous study reported the characteristics of thermal environment and city development
condition in Tampa Bay and Las Vegas, the United States [51], in which the selected regions were the
impervious surface rate that included more than 10% as urban land (e.g., 10% to 40% as low, 40% to
60% as medium and 60% to 100% as a high development density area).

Shanghai as one of the largest cities in China has been under high-density development for a
long time. Its impervious surface rate is higher than other cities at home and abroad. Therefore, the
threshold is different from the above rules. In this study, urban development density is divided into
four degrees. Regions whose impervious surface rate is less than 40% are considered as non-urban land,
mainly including bare land, farmland and water. Forty to 60% is considered a low development density
area. Sixty to 80% is a medium development density area. Eighty to 100% is a high development
density area. Selecting the downtown area as regions of interests, Figure 11 shows the distribution of
urban development density.
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From Figure 11, it is obvious that most area within the inner ring belongs to the high development
density areas. Tongji University, People Square, Century Park and the old residential area near
Xujiahui are formed into some rarely seen medium development density areas and low development
density areas within the inner ring. Medium development density areas are mainly located in the new
towns outside the inner ring, except for Wusong Industrial Zone and Zhabei Industrial Zone. Low
development density areas are mainly located in Pudong new district and Dachang Town in Baoshan
district. In general, the density of urban development is significantly different between the inner ring
and outer ring.

5.2. Land-Use and Land-Cover Change

As illustrated in Section 2.2, the images ownloaded in this study were all taken in winter, from
December, January and February. Therefore, the accuracy of land use classification depends on the
actual situation on that day. The result of land classification (Figure 8) is obtained by the means of a
decision tree, which vividly showed a change in urban, water, vegetation and other land (mainly soil),
especially in the urban area.

In detail, the data from the Table 11 reflect an increase in terms of urban and water areas from
2002 to 2007, while the figure for urban area declines from 2007 to 2013. The trend also complies with
the result of impervious surface extraction. From the proportion diagram (Figure 12), the trend of the
greater decrease in vegetation area is quite obvious, as it was from 2002 to 2007. The change in water
stays in acceptable ranges.

Table 11. LUCC: Land-use and land-cover change (km2).

Urban Vegetation Water Other

2002 2105.96 2375.86 165.64 1692.84
2007 2940.93 1785.94 202.10 1413.76
2013 2562.84 1973.15 175.39 1629.98
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soil land. The built-up area of the city center has extremely high coverage and has been under intensive
development for a long time.

Furthermore, the average LSTs of four types of land use in 2002, 2007 and 2013 were marked in
Figure 12. The difference between the average temperature of urban and vegetation areas in 2007 exhibited
a maximum value among the three phases of images, which was exactly in accordance with the differences
of their areas. Thus, a general result could be drawn that the missing vegetation coverage that turned into
ISA led to the intensifying of SUHI, which also verified the impact of LUCC on LST.

5.3. Surface Urban Heat Island Analysis

5.3.1. Surface Urban Heat Island Intensity Distribution

According to the land surface temperature retrieval result, the temperatures are divided into
seven intervals for fair analysis considering that different days in divergent months have different
land surface temperatures. The distribution maps are shown in Figure 10. Their main characteristic
is that the high temperature zone expands from the central urban area to the outskirts. Through
the comparison of SUHI intensity maps, areas of heat islands are shown to increase, mainly in the
city’s center and the centers of districts from 2002 to 2007. However, the heat island effect shows
signs of abating from 2007 to 2013, and the expansion of the medium temperature zone and sub-high
temperature zone generally focuses on Pudong, Nanhui and Fengxian. The area of extreme high
temperature zones and high temperature zones is decreasing, and their distribution becomes scattered,
not solely focusing on the city’s center and centers of districts. Low temperature zones are located in
the outskirts of Shanghai, mainly in Fengxian, Jinshan and parts of Pudong and Nanhui.

To test the phenomenon that the heat island intensity first increased and then decreased, the
heat island intensity of the city center and nine other districts was extracted in this study. Here is the
calculation formula of the SUHI intensity:

IUHI = TAvg(Downtown) − TAvg(Outskirts) + Sd/2 (14)

TAvg(Downtown) is the average temperature of the downtown area. TAvg(Outskirts) is the average
temperature of outskirts, and outskirts are defined as regions outside the outer ring. Sd is the standard
deviation of temperatures.

Table 12 shows the average LSTs and SUHI intensities of the downtown area and the remaining
districts in Shanghai. Obviously, at the imaging time, the average LSTs and SUHI intensities both
declined from downtown to outskirts. It is known that LSTs vary in different seasons or even at
different times on the same day, and winter nights exhibit the most intensive SUHI in Shanghai due to
the specific location and structure [52]. Therefore, the result of winter is chosen to distinctly analyze
the relationship of LST and LUCC.

Table 12. Urban heat island intensive distribution in different dstricts (◦C).

2002 Avg
Temp.

2002 UHI
Intensity

2007 Avg
Temp.

2007 UHI
Intensity

2013 Avg
Temp.

2013 UHI
Intensity

Jinshan 7.697 −0.586 10.736 −0.806 10.436 −0.753
Qingpu 7.459 −0.824 10.908 −0.638 9.974 −1.246

Songjiang 8.084 −0.274 10.813 −0.742 11.942 0.764
Minhang 9.577 1.297 13.647 2.217 14.145 2.135
Baoshan 9.485 1.266 14.636 3.122 13.746 1.894

Downtown 12.192 3.978 16.135 4.914 15.864 4.217
Pudong 9.997 1.797 14.742 3.033 12.798 1.853
Jiading 9.096 0.897 14.126 2.783 13.120 1.935

Fengxian 7.437 −0.721 11.063 −0.523 11.752 −0.004
Chongming 7.765 −0.416 11.130 −0.024 8.969 −2.131

Total 8.846 1.463 11.837 2.012 11.033 1.894
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Figure 13 demonstrates that the heat island intensity gradually decreases from the city center to
the suburbs, and reaches the maximum positive value in the city center, while the heat island intensity
in the outer suburbs is negative. From the trend of the entire curve, it is easy to see that the heat island
effect is the strongest in 2007, while in 2013, it dropped slightly.Sustainability 2017, 9, 1538  17 of 22 
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Statistics from Shanghai Municipal Statistics Bureau show that the completed construction area in
2002 was 18.8 million square meters, and the figure reached 28.43 million square meters in 2007 while
it declined into 14.39 million square meters in 2013 [53]. On the other hand, the resident population
of Shanghai was 17.13, 20.64 and 24.15 million in 2002, 2007 and 2013, respectively [52]. Both the
urban construction and increasing population and human activities contribute to the intensity of the
heat island effect. Therefore, the SUHI effect was particularly evident in 2009. Nevertheless, with the
coming Expo in 2010, Shanghai not only carried out more rational planning for urban construction but
also made a breakthrough in the ecological environmental construction. This progress was maintained
after the Expo in 2010. Therefore, the SUHI effect was not that intensive in 2013.

5.3.2. Correlation Analysis of SUHI and IS, LUCC

SUHI is a local climate characteristic affected by global climate change and is determined by
human factors and local geographical conditions. The land surface temperature is closely related
to the land cover which is an important factor leading to the SUHI. In urban built-up areas, land
cover types are mainly impervious surface, vegetation and water. These three ecological factors,
meteorological factors, artificial heat have a comprehensive impact on the SUHI effect. Therefore, this
section will demonstrate the correlation between LST and IS, NDVI, MNDWI in 2013 with the help of
MATLAB software.

A total of 500 sample points were randomly generated by means of MATLAB. The impervious
surface rates, NDVI values, MNDWI values and corresponding land surface temperature were used to
show the relationships (Figures 14–16).
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In the correlation analysis of IS and LST, both linear fitting and quadratic fitting gave a high
goodness of fit.

LST = 11.5150 × IS + 5.7561, R2 = 0.8239
LST = 10.7475 × IS2 + 0.3943 × IS + 8.7502, R2 = 0.8310
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The linear fitting model passed the F test and the t test under the 95% confidence interval. The
regression coefficient is positive, which means that the impervious rate has a linear positive correlation
with land surface temperature. That is, land surface temperature increases with the addition of the
impervious surface rate.

As for the correlation analysis of NDVI and LST, an apparent linear or exponential correlation
does not exist, while a negative trend does. In addition, where rocks and brick exist (NDVI = 0) has
higher land surface temperature, while vegetation-covered land (NDVI > 0.7) and water (NDVI around
0.2) have lower land surface temperatures, which become the cold island in Shanghai.

As for the correlation analysis of MNDWI and LST, the value of LST generally drops in accordance
with the increasing value of MNDWI. When the MNDWI value is greater than 0.6, it has lower land
surface temperature. Therefore, MNDWI and LST also have a negative correlation, which is not that
obvious. The temperatures are distinct depending on regional conditions.

Generally speaking, impervious surface has a positive correlation with land surface temperature
and is the strongest between the three factors. Vegetation and water have negative correlations with
land surface temperature, and vegetation is more relevant than water.

6. Discussion

With the development of urbanization especially in developing countries, buildings and structures
have been continuously built over decades. The resulting increase of impervious surface area and
decline of water and vegetation have gradually affected land surface temperature and contributed to
the SUHI effect.

Studies demonstrate that IS has a warming effect which is a key indicator in urban
planning [28–30], consistent with the conclusion of this study. Xu stated that LST and IS have
exponential relationships [28], while Cao illustrated their linear positive correlation [30]. Based
on the conclusion drawn from Figure 14, both linear fitting and quadratic fitting methods showed a
high goodness of fit. This means that an exponential correlation exists due to variations of imaging
time and actual on-site conditions.

In comparison, vegetation and water are able to cool the built-up area. Yuan and Zhou both
reported that NDVI has a negative linear correlation with LST [26,27], while Yuan argued that it was a
weak correlation, similar to our result in this study. Cao also demonstrated that MNDWI has a strong
negative linear correlation with LST [30], but our study shows a weaker dependency than IS.

Nonetheless, slight differences among similar studies are possible. As mentioned above, the
images used in this paper were from winter nights. Since the underlying surface of Shanghai transforms
from season to season, the change of surface structure led to the variation of LSTs. Thus, the specific
exponential relationships or their power might be a little different although they share the same trends
between LUCC and LST.

7. Conclusions

In this study, we analyzed the general trend of impervious surface growth from 2002 to 2007
and its minor increase from 2007 to 2013. The greatest increase in the impervious surface was from
farmland, causing a loss of vegetation coverage and leading, to a certain degree, to local SUHI effects.
Simulations also demonstrate that the relationship between LST and IS is a positive correlation, while
the relationships with NDVI and MNDVI are negative. This result means that the construction of
impervious surface strengthens the SUHI effect, while vegetation and water bring about some degree
of relief.

Conversely, the driving force of land-use change varies, including the influence of policy, economy,
population distribution, and the effect of climate or topography. In short, with the rapid development
of urbanization, the policy implications for land use and the control of impervious surface should
receive more attention from the urban planning and design used in Shanghai in the future.
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The remote sensing data used in this study are images from winter for determining the influence
of vegetation shades, which leads to the seasonal influence on the SUHI effect being ignored.
Therefore, analysis of different seasons is taken into consideration in the future study. This study
focuses on the macroscale problem, which is the speculated relationship between SUHI and IS, water
and vegetation. In the near future, it is still necessary to include multiple factors such as ventilation
and microclimate for further study in local areas of Shanghai. Moreover, multi-date meteorological
data should be introduced to determine how synoptic conditions synergistically affect SUHI.
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