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Abstract: In the context of the urban agglomeration and the rapid development of rail transit,
the planning of the Beijing-Tianjin-Hebei Region (BTHR) rail transit 2020 is attracting attention.
The BTHR is a natural disaster-prone area and a high-risk area for terrorist attacks; the robustness
of the area is critical to the sustainable development of North China. Therefore, it is necessary
to analyze the vulnerability of the regional planning rail transit network. This paper builds a
model of planning regional rail transit in BTHR. A critical node recognition measure is designed
according to the connectivity reliability of nodes. The method of Monte Carlo simulation of node
connectivity reliability is applied based on link connectivity probability. In addition, a model
of detecting multi-measure recognition and detecting Core-Nodes is proposed. Finally, the paper
analyzes the impact of multiple attack modes on the network performance from the aspects of network
performance within region and transit demand outside the region, and analyzes the vulnerability of
the BTHR planning rail transit network.

Keywords: vulnerability analysis; connectivity reliability; critical node identification;
Beijing-Tianjin-Hebei region (BTHR)

1. Introduction

In recent years, regional integration, which takes the urban agglomeration as the main form, is
a major feature of China’s regional economic and social development [1]. The integration of Beijing,
Tianjin and Hebei is a major national strategy for the future to build the capital economic circle, in
order to realize the complementary advantages of the Beijing-Tianjin-Hebei region (BTHR), as well as
to promote the development of the northern hinterland. The integration of traffic is the skeleton system
of the BTHR. In particular, rail transit will play an important role in the development of the integration
of the BTHR, and to build “BTHR on the track” is the key area for the coordinated development.
However, rail transit, like other infrastructure, faces many threats, including natural disasters, terrorist
attacks, or random failures, which calls for evaluation on the robustness in order to attain sustainable
development within the area. According to statistics, BTHR is a natural disaster-prone area, and the
natural disasters that directly affect traffic in BTHR are floods, frosts and snowstorms, which generally
have huge impact on society. In 2012, the Beijing “7.21” heavy rain caused direct economic losses of
11.64 billion yuan [2]. In addition, rail and public transport networks are generally more sensitive to
disruptions than road networks [3], rail accidents not only cause traffic delays of the direct line(s), but
also have a wider impact on passengers in other stations along the line(s) or even potential passengers,
which generally generates larger social impact [4]. Therefore, a simulation model of different damage
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scenarios is proposed according to different hazards in BTHR, and the analysis of vulnerability of the
whole planning rail transit network is important for identifying protection strategies.

The concept of vulnerability was proposed in social economics research at the beginning, especially
in terms of psychology, military science, natural disasters and climate change. Vulnerability is often
studied together with threats such as danger and disaster (e.g., terrorist attacks on traffic or power
systems, financial crisis, pandemic spatial diffusions, natural disasters, etc.) [5]. Vulnerability analysis
refers to the susceptibility of the dynamic system to extreme events and the impact of the propagation
in the network. The study of vulnerability was first proposed in transportation network by Berdica
in 2002. Berdica believes that vulnerability is closely related to the availability of services, especially
the lack of adequate service provision [6]. In recent years, literature on vulnerability has emerged
in the area of critical infrastructure networks [7–11]. However, the resilience and vulnerability in
the transportation system are not easy to measure or quantify, and recent research on vulnerability
evaluation has failed to draw clear conclusions [3]. Aura Reggiani, Peter Nijkamp and Diego Lanzi
systematically combs the conceptual framework of traffic resilience and vulnerability, reviews the
current research situation and classifies research methods into common methods and special methods
(conclusions from realistic networks or case studies), according to whether they can be easily used in a
variety of environments [9].

Previous research reveals that connectivity and accessibility are common parts of dynamic traffic
system analysis. The complexity of the network is a proper way to study the vulnerability of the traffic
system. The topological characteristics of traffic networks can be used as the basis for studying the
vulnerability of traffic systems, in order to find the critical links or key nodes and the vulnerability
conditions associated with these links or nodes, which can affect the vulnerability of the entire network.
Due to the operability of vulnerability assessment, scholars have carried out extensive research on
the vulnerability analysis of traffic networks. Based on the theory of vulnerability, scholars have
studied the actual road network, public transportation network and rail transit network [7,12–17].
In addition, simulations are applied to the actual road network, route network and logistics network.
Cats, O defines defined the robustness of the system as the capacity to absorb disturbances with a
minimal on system performance [10]. It is found that predecessors’ research is based on the evaluation
of the vulnerability of the existing road network in a city, but that the robustness evaluation of the
alternative path in the transportation development plans has not been studied. Cats proposed a
method by full-scan of all possible scenarios of link failure to evaluate the robustness of alternative
public transport links. The method was used to evaluate the robustness implications of a substantial
development plan of Stockholm multi-modal rapid urban rail network in 2025.

2. Literature Review

In a large number of studies, scholars have developed the method of vulnerability into two
aspects: the first is to study the vulnerability of the system itself, which mainly studies the influence of
traveler under various travel conditions, such as traffic accident, technical failures, natural disasters.
The influence is usually expressed in the form of probability distribution (connectivity reliability, travel
time reliability, capacity reliability, etc.) [18–20]; The second, in contrast, is focusing on the unreliability
of the research system, aiming to study the potential weak points (critical nodes/links). Scholars have
found that the connectivity of network will be heavily influenced if there is one or several weak/critical
points. Such influence may be resulted in the functional deterioration of the nodes/links, and will lead
to long-term impacts to the social economics. In addition, short-term influence would also be initiated
because of temporary threats such as bad weather, technical failures or accidents. Moreover, some
scholars and institutes pay attention to the operational transit domain.

From the perspective of operational transit, some projects have done better work in terms of
analyzing and applying real-traffic data. ON-TIME is an European Union (EU)-funded project aiming
at developing new methods and processes to help decrease overall delays on Europe railway transit,
and one of its objectives is to provide robust and resilient timetables capable of coping with disrupt
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operations on transit [21]. Hamza Achit used the data provided by the National Security System in
France; he analyzed the economic consequences for almost all road victims in France, and identified
homogenous categories of victims according to these long-run consequences [22]. Yoshitsugu Hayashi
established a map where different areas were identified according to their eco-sufficiency. These areas
are locations for retreatments, which are useful to policy makers as they can help with actions for
sustainable mobility [23]. Rayane Wehbé found that one of the causes of the increase in road accidents
in Lebanon was the inappropriate geometry of the road infrastructure; he advocated the application of
the audit method and recommended to adapt it to each step of the road infrastructure project [24].

Aura, Peter and Diego review literature of vulnerability in transportation system, and they
summarize different definitions and methodological framework of measurement or evaluation of
resilience and vulnerability [9].

According to Lars-Göran Mattsson and Erik Jenelius, there are two traditional approaches to
the study of the vulnerability of the transport system. One is based on the study of graph theory
and traffic network topology, while the other studies the response of travelers after the system or the
supply-demand relationship is disturbed by using complex models. The latter approach describes the
influence on vulnerability after disturbance more completely, but the computational demand is also
higher [3].

Liu Hong et al. extracted 399 sites from China Railway Network and 500 linked topological
networks; Monte Carlo simulation method was used to simulate the occurrence of floods in all
provinces in China based on historical data. The vulnerability of rail transit network is evaluated
through the assessment of the occurrence of floods in each province [11].

A dynamic agent-based bus assignment model was used by Cats, O and Jenelius to identify a
subset of central links and completed a detailed dynamic robustness analysis. Taking the same method
as a component of the continuous process, Cats, O and Jenelius identified the locations where the
reserve capacity should be configured and the redundancy could be increased, in order to improve
the robustness of the network. The physical meaning of the elements in the adjacency matrix is
considered as the traffic impedance of the link, and the traffic impedance is deterministic at the traffic
planning stage. The all-or-nothing assignment method is taken for network traffic assignment under
destruction, with the computing advantage for large-scale network [8,13]. Yang, Y.H. et al. evaluated
the robustness of rail transit in Beijing with complex network theory, and designed a method of
weighting index of node importance, which can guide the site selection [16]. Cats, O performed the
full-scan of network links, and analyzed the impacts of each disruption in terms of how the disruption
influences the travel experience of population (cut-off, delayed, unaffected). He proposed three
performance indicators of the network system: Share of cut-off demand; Share of delayed passengers;
Average travel time; and the evaluation of robustness of the rapid rail-bound transport system of
Stockholm, Sweden 2025, which was carried out based on the above indicators [10]. Oriol Lordan et
al. compared the performances of several node selection indicators, together with a new indicator
based on Bonacich power centrality. Identified the critical airports for the global ATN of November
2011–November 2012 [15]. Irina Petreska et al. started from the similarity of structural dynamics and
complex networks, the network node/link busy degree is proposed on the basis of the modal equation,
which could be used as the measure of vulnerability reflecting the influence on neighboring nodes [25].
Sun, D. et al. defined that the station vulnerability is the change of the topological efficiency and
the influence of passenger flow after attacked, as well as the probability of station being attacked.
A vulnerability evaluation model was proposed by introducing metro interchange and passenger flow,
and was evaluated based on a case study of Shanghai Metro with full-scale network and real-world
traffic data [4].

Researchers have also studied the system robustness or vulnerability based on complex network
theory, in the areas of electric system, communication system, command system and social network
other than transportation system. Shuliang Wang et al. took central China power grid as an example
gave the algorithm for detecting community structure, and studied the vulnerability analysis of
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power systems under terrorist attacks [12]. Jian Li et al. compared the connectivity reliability (CR)
and topological controllability (TC) of infrastructure systems in terms of three aspects: topology,
robustness, and node importance, and developed a controllability index and a controllability-based
node importance metric [26]. Sudha Gupta et al. explored the hidden geometry of current flow path
for analysis of vulnerability in power system, and defined the Power Flow Index and the Vulnerability
Index to analyze and measure the impact of line tripping on grid vulnerability, which may lead to
cascade failure in smart power transmission system [27].

Though previous studies are quite systematic and detailed, limitations and space for
improvements still remain. Firstly, some studies are only interested in topographical characteristics
of the network while ignoring the other factors which would affect the importance of nodes, such as
connectivity reliability which is a key component in transport. Secondly, the combination of node
connectivity reliability and node centrality has not been studied thoroughly, thus the measurement used
to identify key node importance is remained to be established. In the real operational transportation
network, the connect probability of routes will be influenced related to natural or human factors,
so as to influence the node connect reliability. One may lack considerations of real operating
conditions if one only measures the node importance based on node centrality of transportation
network topological structure. The real-traffic node importance should be measured based on the
combination of node connectivity reliability (based on route connectivity probability) as well as the
node centrality measurement.

The rest of the paper is arranged as below: the main methodology is proposed in Section 3, as well
as the abstraction of rail network in the BTHR. In Section 4, the model is validated based on the case
study of the BTHR rail transit planning, and the results and corresponding analysis are presented.
Finally, some conclusions and future research prospects are put forward in Section 5.

3. Methodology

3.1. Network Model

In recent years, the use of complex network theory on traffic networks has become a hot topic, and
proposing appropriate methods to build and correctly describe the road/rail network topology is the
necessary prerequisite of path planning, traffic planning and management, and is a critical process to
improve the accuracy of research results as well. Graph theory is first used to describe the topological
system, which abstracts the real network into a mathematical method that consists of nodes and sets of
edges. However, graph theory is quite simple and macro, and could not be applied to quantitatively
study complex road network. Spatial syntax, fractal geometry, agent-based simulation and complex
network theory have been proposed and used to network study more deeply [28–30].

The main methods of road network abstraction based on the complex network theory include:
primal approach and dual approach. The primal approach is the traditional traffic network
modeling method, which is quite simple and intuitive, and could retain the geographical relevance.
In accordance with the “Beijing-Tianjin-Hebei regional inter-city railway network planning”, the
BTHR inter-city railway network will be composed of 24 inter-city railways. By 2020, there will
be 0.5~1 h commute circle of Beijing-Tianjin-Shijiazhuang with surrounding towns, and 0.5~1 h
traffic circle of Beijing-Tianjin-Baoding region, which will effectively support and guide the regional
space layout adjustment and industrial transformation and upgrading. Therefore, according to the
“Beijing-Tianjin-Hebei regional inter-city railway network planning” diagram [31], the primal approach
method is used to abstract the rail network in this paper. Detailed information of Station and node
number of BTHR rail system development plans network is presented in Table 1.

The rail transport network is represented by an undirected graph G(N, E), where the node set
N(1, 2, 3, ..., n) represents rail stations, and the link set E ⊆ N × N represents rail track segments
between stations. The graph is fully specified by: an adjacency matrix, Matrix A, where cell aij equals 1
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if nodes i, j ∈ N are connected and zero if no. Topology structure of the BTHR rail system development
plans is extracted as illustrated in Figure 1.

Table 1. Station and node number of Beijing-Tianjin-Hebei Region (BTHR) rail system development
plans network.

Node No. Station Node No. Station Node No. Station Node No. Station

1 Beijing 14 Qinhuangdao 27 Zhangxin 40 Huangye
2 Langfang 15 Chongli 28 Tongzhou 41 Hejian
3 Tianjin 16 Xiahuayuan 29 Yizhuang 42 Dingzhou
4 Yujiapu 17 Zhangjiakou 30 Huangcun 43 Anxin
5 Sea-front 18 Huailai 31 Liangxiang 44 Baodi
6 Shijiazhuang 19 Miyun 32 Chengde 45 Jixian
7 Xingtai 20 Pinggu 33 Shenyang direction 46 Zunhua
8 Handan 21 Xianghe 34 Huhehaote direction 47 Qian’an
9 Baigou 22 Wuqing North 35 Taiyuan direction 48 Laoting

10 Bazhou 23 New airport 36 Hengshui 49 Caofeidian
11 Baoding 24 Gu’an 37 Ji’nan direction
12 Cangzhou 25 Zhuozhou 38 Zhengzhou direction
13 Tangshan 26 Capital airport 39 Liaocheng direction
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In addition to the 43 nodes in the BTHR, the network figure also contains 6 neighboring nodes
(see Table 1). Therefore, the characteristics of transit traffic outside the BTHR can also be measured
as well as the characteristics within the region. N represents the number of nodes, E represents the
number of links, <k> is the average value, C is the average clustering coefficient and B is the nodes
average betweenness. The above general network properties are summarized in Table 2.

Table 2. General properties of BTHR rail system development plans network.

Network N E <k> C B

Value 49 83 3.388 0.169 67.571
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3.2. Critical Node Identification

Two conventional methods are used for the identification of critical nodes based on complex
network theory: 1. The node degree Ki is chosen as the measure of critical node identification to
evaluate whether the correlation between nodes are high; 2. The nodes average betweenness Bi is
chosen as the measure of critical node identification, as it can represent the control level of shortest
paths between nodes. In fact, the two methods both evaluate the importance of nodes based on
the network structure. Some scholars consider the influence of adjacent nodes on the critical node
importance and propose a shortest path number Ne that also takes node neighbors in consideration.
Besides, synthetic measures combining Ki, Bi, Ne is put forward based on the weighted method [16]
and AHP method [32]. Oriol Lordan summarized the existing research the effectiveness (measured
in terms of reduction of the size of the giant component of has been compared) attacks based on five
different measures: degree, betweenness, modal analysis, damage and Bonacich power [15]. However,
the above method only assesses the importance of node from the perspective of structure without
considering the node connectivity reliability. Based on previous studies, the critical node identification
method considering node connectivity reliability is proposed in this paper.

3.2.1. Node Importance Measure Based on Network Centrality

The degree and betweenness are two standard measures of node centrality [33]. The degree Ki

of a node i is the number of edges incident with the node, and is defined in terms of the adjacency
matrix A. The betweenness Bi of a node i is the number of times that a node appears between the
shortest paths of two other nodes and thereby quantifying the importance of a node [34,35]. The degree
Ki and betweenness Bi can be defined as:

Ki = ∑
j

aij (1)

Bi = ∑
i,j∈N,j 6=k

njk(i)
njk

(2)

3.2.2. Node Connectivity Reliability Measure Based on Monte Carlo Simulation

The probability of node connectivity is used to measure the approximate values of connected
reliability of each node based on Monte Carlo simulation. The simulation procedure is described
as below:

Step 1: The network is abstracted as a planar topological network G(N, E) with N nodes and E
links. An adjacency matrix A is established in consistent with the network model in Section 3.1.

Step 2: The connected probability matrix P(E) is input. Suppose all connected probabilities are
undirected, then

pij =


p′ij, aij = 1 and i < j

1, i = j
0, else

(3)

where p′ij is component of the matrix P(E), and represents the connected probability of link eij with
node i, j.

Step 3: Generate E pseudo random numbers between 0 and 1, and compare them with the
connected probabilities of E edges. When rij < pij, the corresponding link is considered as “connected”
in the simulation, otherwise it is seemed as disconnected.

Step 4: Modify the adjacency matrix as following, according to the results of Step 3.{
aij = aji = 1, rij � pij
aij = aji = 0, rij > pij

(4)
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Step 5: Union-Find is used to find the nodes that are directly or indirectly connected with the
source nodes, and 1 represents the nodes connected with the source nodes, and 0 represents the nodes
not connected.

Step 6: Repeat Step 3~Step 5, add up the number of connected nodes with the source node,
and compare the value with the repeated number (5000 times in this paper), so that the connected
probability is the connectivity reliability of the node i.

ωi =
si

S
(5)

where si is the connecting number with each node, S is the repeated number, ωi is the connectivity
reliability of the node i.

3.2.3. Critical Nodes Identification Considering Connectivity Reliability

Considering the connectivity reliability and centrality of nodes comprehensively, the measuring
methods are proposed as degree-based connectivity reliability metric (DCRi), Betweenness-based
connectivity reliability metric (BCR), and core-nodes.

Degree-based connectivity reliability metric DCRi

DCRi = ωi·Ki (6)

Betweenness-based connectivity reliability metric BCRi

BCRi = ωi·Bi (7)

Core-nodes and ranking determination

Oci =
{

Oki + Obi + ODCRi + OBCRi

}
order (8)

Oci represents a comprehensive node importance ranking that combines node connectivity and
network centrality, which is defined as Core-nodes in this paper. Oci is the ranking number of
core-nodes. Oki , Obi , ODCRi , OBCRi are ranking numbers of node i based on the degree value, the
betweenness value, the DCRi value, the BCRi value separately. The comprehensive ranking number Oci

depends on the value of the four above measures of node i, which is smaller with smaller summation
of Oki , Obi , ODCRi , OBCRi representing for forward sorting, and vice versa. When the summation value
is same, the determination principle in Equations (9)~(13) should be followed.

Oci > Ocj , if Oki + Obi + ODCRi + OBCRi = Okj + Obj + ODCRj + OBCRj , Obi > Obj ; (9)

Oci > Ocj , if Oki + Obi + ODCRi + OBCRi = Okj + Obj + ODCRj + OBCRj , Obi = Obj , Oki > Okj ; (10)

Oci > Ocj , if Oki + Obi + ODCRi + OBCRi = Okj + Obj + ODCRj + OBCRj , Obi = Obj , Oki = Okj ,
OBCRi > ObCRj ;

(11)

Oci > Ocj , if Oki + Obi + ODCRi + OBCRi = Okj + Obj + ODCRj + OBCRj , Obi = Obj , Oki = Okj ,
OBCRi = OBCRj , ODCRi > ODCRj ;

(12)

Oci > Ocj , if Obi = Obj , Oki = Okj , OBCRi = OBCRj , ODCRi = ODCRj , i > j. (13)

3.3. Main Measures of Network Performance

Network performance should be determined first in order to measure the vulnerability.
Five performance indicators are selected for vulnerability quantification [12]. INDICATOR (k) stands
the value of the networks at phase k. Notations used in this paper are listed in Table 3.
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Table 3. Notation glossary used in 3.3.

Symbol Description

dij (k) The shortest path between node i and node j

No Set of origin nodes of the planning rail network, representing, origin stations

Nd Set of destination nodes of the planning rail network, representing, destination stations

Nl(k) The number of the nodes in the largest connected sub- network

Ni
o The number of nodes in the fraction connected with origin node

Ci(k)
A node of degree at least 2 as the proportion of links between the vertices within its
neighborhood divided by the number of links that could possibly exist between the
neighbors [36]

E(k) The normalized average value of the inverse of shortest path distance tween any two nodes

ODE(k) Only considers the shortest path between the origin nodes and the destination nodes

LCS(k) The ratio of nodes to total nodes in the largest connected sub-network to total nodes

CL(k) The average fraction of nodes of origin nodes connected by each node

CC(k) The average clustering coefficient measures the clustering (triangulation) within a network
by averaging the clustering coefficients of all its nodes.

1. Efficiency E(k)

E(k) =
1

N(N− 1) ∑
i 6=j

1
dij(k)

(14)

2. Origin–destination consider efficiency ODE(k)

The ODE(k) noly considers the shortest path between the origin nodes and the destination nodes.

ODE(k) =
1

NoNd
∑

i∈No,j∈Nd

1
dij(k)

(15)

3. Largest component size LCS(k)

LCS(k) =
Nl(k)

N
(16)

4. Connectivity level CL(k)

CL(k) = 〈N
i
o

No
〉

i
(17)

5. Network average clustering coefficient CC(k)

CC(k) =
1
N ∑ Ci(k) (18)

3.4. Attacks Simulation

Six types of disruptions are simulated in this paper: the random failures, the malicious attacks
including degree based attacks, the betweenness based attacks, the DCRi based attacks, the BCRi

based attacks and Core-nodes based attacks. The random failures are used to model the disruptions
randomly happened in rail networks, such as accident, disaster. The nodes are randomly chosen in G
and are set as failed; while the malicious attacks are used to model terrorist attacks and war attacks
at important stations. The nodes are chosen in G according to the importance of the node (based on
degree, betweenness, DCRi, BCRi and Core-nodes) as failed, implying that nodes with high important
metric value are attacked in priority. All symbols of attack modes are listed in Table 4.
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Table 4. Notation glossary used in attack simulation.

Symbol Description

Ar Attack the nodes on random order
Ad Attack the nodes on the order of Ki
Ab Attack the nodes on the order of Bi

Adcr Attack the nodes on the order of DCRi
Abcr Attack the nodes on the order of BCRi
Ac−n Attack the nodes on the order of Core-nodes

3.5. Vulnerability Assessment Model

The vulnerability evaluation model is established based on the method of robustness research on
traffic planning by Cats, O [10]. The influence of damage on the network is defined as:

∆y(k|n) = y(n, k)− y(n, 0) (19)

Vs =
∆y(k|n)
y(n, 0)

(20)

where n represents the network, k is the number of attack nodes.
Higher Vs stands for a network with greater vulnerability. In addition, the relationship between

change of network performance and the number of failed nodes after attack should be considered
more deeply. The vulnerability of a network is relatively high if the network performance changes a
lot with small number of failed nodes after attack, and vice versa.

It is defined in this paper that the number of failed nodes after attack (strategic or random attack)
is the criteria of network vulnerability, with the level of network performance failure of 80%, 50% and
20%. The higher the number value is, the lower the network vulnerability is.

4. Application and Result

In this section, the method in Section 3 is applied to the BTHR rail system development plans.
The network model of the BTHR rail system development plans has been built in 3.1. Firstly, the
critical nodes are identified by different metrics in Section 4.1. Secondly, six different attacks are
simulated according to Section 3.4. Finally, the vulnerability of the BTHR rail system development
plans is evaluated.

4.1. Identifying the Critical Nodes

The critical nodes are identified with 5 metrics. Figure 2 shows the imrtance of nodes in the
BTHR rail system development plans, with (a) indicating the importance of the nodes based on Ki and
(b) indicating the importance of the nodes based on Bi. The importance is represented by the size of
the nodes. The top fifteen nodes are list in Table 5 respectively based on two metrics.

Based on the degree of network centrality, Beijing, as the capital, has the most important position
in the BTHR rail transit plans. The number of stations directly connected with Beijing is the most,
followed by Tianjin and Hengshui. While based on the degree of betweenness, Tianjin appears to be
more important. As the node with the largest number of shortest paths passing through, Tianjin shows
the importance as a port city, as well as its traffic ease function of the influence of the outer transit traffic
on Beijing in the BTHR rail transit plans. Meanwhile, Beijing and Tianjin also possess higher value
of node centrality than other cities in the BTHR, especially the betweenness centrality value which is
nearly 5 times the average. It is worth noticing that Huailai also has a relatively high betweenness
centrality value only after Beijing and Tianjin, even higher than several critical cities in Hebei such
as Shijiazhuang, Hengshui, Baoding, etc. It can be concluded that, although Huailai seems to be less
critical in the BTHR traffic network, it will play an important role in node control.
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Figure 2. (a) Description of the degree of BTHR rail system development plans nodes; (b) Description
of the betweenness of the BTHR rail system development plans nodes.

Suppose that the connecting probability of each side of the G network is pij, the connectivity
reliability ωi can be calculated using method in Section 3.2.2, as shown in Table 6. The histogram
of 49 node connectivity reliability as simulation outputs is presented in Figure 3. The degree-based
connectivity reliability metric DCRi and betweeness-based connectivity reliability metric BCRi can
be calculated by method in Section 3.2.3. Meanwhile, the Core-nodes ranking is determined, and
summarized in Table 7.
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Table 5. The nodes importance of the BTHR rail system development plans.

Node Degree Node Betweenness

Beijing 9 Tianjin 309.269
Tianjin 7 Beijing 306.662

Hengshui 6 Huailai 191.767
Langfang 5 Shijiazhuang 159.752

Miyun 5 Miyun 155.514
Yizhuang 5 Hengshui 143.881
Tangshan 5 Cangzhou 139.691

Qinhuangdao 5 Xiahuayuan 137.000
Shijiazhuang 5 Liangxiang 128.385

Cangzhou 5 Sea-front 121.778
Tongzhou 4 Baodi 111.573
Baoding 4 Bazhou 93.558
Bazhou 4 Tangshan 92.127
Baodi 4 Xingtai 92.000

Baigou 4 Langfang 89.827

Table 6. Node connectivity reliability based on Monte Carlo simulation.

Node ωi Node ωi Node ωi Node ωi

1 0.931959 14 0.953820 27 0.95382 40 0.94389
2 0.929461 15 0.728314 28 0.95382 41 0.94389
3 0.953820 16 0.73031 29 0.95382 42 0.94389
4 0.914424 17 0.728314 30 0.95382 43 0.93195
5 0.953820 18 0.953820 31 0.95382 44 0.95382
6 0.943898 19 0.953820 32 0.95382 45 0.95382
7 0.943898 20 0.95382 33 0.95382 46 0.95382
8 0.908131 21 0.95382 34 0.723514 47 0.95382
9 0.931959 22 0.906539 35 0.914424 48 0.95382
10 0.943898 23 0.95382 36 0.943898 49 0.95382
11 0.931959 24 0.931959 37 0.943898
12 0.943898 25 0.931959 38 0.908131
13 0.95382 26 0.95382 39 0.943898
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Table 7. Values of DCRi BCRi and the Core-Node ranking.

Node DCRi Node Ki Node BCRi Node Bi Core-Node

1 8.387633 1 9 3 294.9871 3 309.269 1 Beijing
3 6.676743 3 7 1 285.7965 1 306.662 3 Tianjin

36 5.663388 36 6 18 182.9113 18 191.767 36 Hengshui
13 4.769102 2 5 6 150.7896 6 159.752 6 Shijiazhuang
14 4.769102 6 5 19 148.3324 19 155.514 19 Miyun
19 4.769102 12 5 36 135.809 36 143.881 12 Cangzhou
29 4.769102 13 5 12 131.854 12 139.691 18 Huailai
6 4.71949 14 5 31 122.4562 16 137 13 Tangshan

12 4.71949 19 5 5 116.1543 31 128.385 5 Sea-front
2 4.647306 29 5 44 106.4206 5 121.778 2 Langfang
5 3.815282 5 4 16 100.0525 44 111.573 14 Qinhuangdao

18 3.815282 9 4 10 88.30921 10 93.558 29 Yizhuang
21 3.815282 10 4 13 87.87261 13 92.127 10 Bazhou
23 3.815282 11 4 7 86.83861 7 92 44 Baodi
27 3.815282 18 4 2 83.49071 2 89.827 31 angxiang

It can be seen from Table 7 that the ranking of critical nodes has changed after considering
node connectivity probability, though some nodes that are relatively large Ki & Bi and with higher
connectivity probability still remain high rankings. Suppose the link connectivity probability pij is
known, the core-nodes ranking can be obtained, of which 15 nodes are listed here according to the
limited space of paper. Therefore, the core-nodes ranking can be used as the attack sequence destroying
the simulation when evaluating the network vulnerability.

4.2. Simulations and Result Analysis

4.2.1. Rail Transit Network within Region Analysis

Destroying simulations have been carried out to the BTHR rail transit network, with random
failure and 5 strategic attack modes based on critical node design. The simulation outputs of
the network efficiency E(k) and the largest component size LCS(k) after attacks are presented in
Figures 4 and 5. After 50% nodes are destroyed, E(k) decreases to less than 5% of the original network
efficiency, while LCS(k) is only 10% of that of the original network. Therefore, only simulation outputs
of 25 nodes after attack are presented.

Figure 4 presents the simulation outputs of E(k) under 6 different attack modes. It can be concluded
that: (a) The change gradient of network is the smallest under random failure Ar. The decrease speed
of E(k) is slowest, and E(k) only decreases to 50% of E(0) after 10 nodes (20% of nodes) are destroyed.
While E(k) is more sensitive to attack modes of Ac−n, Ab and Abcr. After 6 nodes (12% of nodes) are
destroyed, E(k) decreases to less than 50%; (b) The decreasing patterns of E(k) are relatively similar
under attack modes of Ab and Abcr, or Ad and Adcr. This is due to the close relationship of Abcr
and Adcr with Ab and Ad, respectively. Significant difference would appear only when differences
of node connectivity reliability is large; (c) Under 5 attack modes other than random failure, the
change of network performance is relatively similar after two nodes, Beijing and Tianjin, are destroyed.
The finding is consistent with common sense as Beijing and Tianjin are extremely critical points in the
network. After the two cities are destroyed, the betweenness node-based attacks have larger impact on
network efficiency, which are, however, beginning to change slower after the 8th node is destroyed.
Meanwhile, the network efficiency decreases quickly under the degree node-based attacks. Such
findings indicate that the nodes with a more direct link to other nodes have a higher sensitivity to
the network efficiency than the nodes with more number of shortest paths passing through, after the
former 8 nodes are destroyed.
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Figure 5 shows the simulation outputs of LCS(k) under 6 different attack modes. The value
of LCS(8) is 0.7959, indicating that after 8 nodes are destroyed, the percentage of nodes in largest
connected sub-network can reach approximately 80%, which means that links between 38 nodes are
still connected. The value of LCS(18) is 0.5152 indicates that after 18 nodes are destroyed, there are
50% nodes in largest connected sub-network left. It could be seen that the robustness of the BTHR rail
transit plans to random failure is relatively high with the measure of LCS(k). The decreasing pattern of
LCS(k) is similar with that of E(k) under 5 attack modes, but the difference is more significant. After the
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first two nodes are destroyed, the betweenness node-based attacks have larger impact on the largest
connected sub-network. The value of LCS(k) decreases to 65% after the 7th node is destroyed, while the
network connectivity remains 80% under degree node-based attacks. After the 8th node is destroyed,
the impact of betweenness node-based attacks increases dramatically, with the percentage of nodes in
largest connected sub-network decreasing from 80% to 55%. After 10% of nodes are destroyed, the
percentage of nodes in largest connected sub-network remains only 33%.

4.2.2. Regional Exterior Transit Analysis

During the establishment of network, six regional exterior nodes have been added besides the
43 regional nodes, which are directions of Shenyang, Hohhot, Taiyuan, Zhengzhou, Liaocheng and
Ji’nan respectively. Among the 6 cities, the directions of Hohhot, Taiyuan and Zhengzhou are located
inland, and Yujiabao in Tianjin will become a more critical estuary after the integration of the BTHR.
Taking the three directions as transit departure point and Yujiabao as the terminal point, simulations
under attack modes of Ar and Ac−n are carried out based on the measure of ODE(k) in order to
evaluate the network vulnerability. Simulation outputs are generated in Figure 6, which shows that the
network efficiency of links between three inland nodes and the estuary changes a lot under the attack
mode of Ac−n. After the first two critical nodes are destroyed, the network efficiency decreases to zero
considering OD (origin-destination). The finding indicates that transit links between three inland cities
and Yujiabao will all be destroyed after Beijing and Tianjin are unable to provide service. Especially
once Tianjin station is destroyed, the transit network will be invalid as a whole. Robustness remains in
the network under random failure.
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5. Conclusions

The method of critical node identification considering node connectivity reliability is proposed
in this paper. A comprehensive measure of Core-Nodes is proposed based on 4 measures to identify
critical nodes. The connectivity reliability of 49 nodes in the BTHR rail transit plan network is simulated
by Monte Carlo simulations. The critical nodes in the BTHR rail transit plan network are analyzed
based on network centrality measure. Combining the above measures together, we calculate the
Core-Nodes in the BTHR rail transit plan network. Finally, the network vulnerability is evaluated
based on measures of network efficiency and largest component size. Some findings and conclusions
are summarized as below:

(1) The critical node identification considering node connectivity reliability is based on connectivity
probability of network links. As the output nodes from Monte Carlo is based on the measure of
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network centrality, the sequencing of critical nodes is similar with that of network centrality when
the centrality and connectivity reliability are relatively high. However, when the connectivity
reliability is low, the method of critical node identification can take network centrality into
consideration as well as the real connectivity reliability.

(2) The attack modes based on random failure and 5 strategic modes provide simulations of different
forms of destructions on the BTHR rail transit plan network. The network performances of E(k)
and LCS(k) are simulated, and the results indicate that the network retains robustness under
random failure. Under strategic attacks, though, the network shows ability to resist attack, the
network vulnerability is relatively higher. An interesting finding from the measure of ODE(k)
concerning regional exterior transit demand shows that failure of two critical nodes (Beijing and
Tianjin) would cause fatal effect on the whole network.

(3) The critical node rankings are quite different under different measures, such as degree/betweenness
node-based metrics that have various emphases. However, when evaluating the network
vulnerability, different aspects of influence should be taken into consideration. The network
performance simulation under attack mode of Core-Nodes provides relatively balanced outputs
between measures based on degree and on betweenness, from the perspective of either E(k) or
LCS(k). Therefore, the measure of Core-Nodes is more suitable for critical node identification, as it
represents for comprehensive network performance.

(4) Although both centralities of Beijing and Tianjin are high, the influence of their failures on the
whole BTHR rail transit network is only 6–21%. However, with multiple nodes failures, especially
when the 8th node is destroyed, have huge impact on network performance, and the impact
on E(k) is larger than that of LCS(k). The finding indicates that the robustness in the BTHR rail
transit plan network is quite strong, though the impact of critical nodes failure on shortest paths
is relatively high, the influence on partial nodes connectivity is quite small.

(5) Considering regional network performance, the protection and emergency rescue preparation
are not only essential for several large nodes such as Beijing and Tianjin, but is also important
for nodes of Hengshui, Shijiazhuang, Miyun, Cangzhou, Huailai and Tangshan which have
huge impact on the whole network shortest paths and connectivity. In terms of the regional
exterior transit or transit towards the sea, Tianjin becomes a life-and-death node which should
be paid large attention to. The safety protection and emergency rescue preparation should be
strengthened, and multiple branch links connected to the sea should be constructed in order to
raise the robustness of the network.

In the domain of transportation network, the identification of critical nodes is of great importance
to the sustainable development of transportation infrastructures, as we can raise the network robustness
by setting up rescue stations accordingly, increasing redundant lines or other lines in the network.
The method of critical node identification in this study is expected to present the locations of vulnerable
nodes combined with real network conditions. In addition, the methodology can also be applied
to studies on system vulnerability evaluation of other areas, such as electricity, communication and
infrastructure constructions.

Further studies may be conducted with several additional factors, or aiming at analyzing the
vulnerability of the integrated effects of different modes of transport. The pattern of natural destroy
can be evaluated based on historical statistics, and the network performance under natural attacks
can be simulated. Nevertheless, the impact of different travel modes is critical to the integration of
transportation in the BTHR, thus is worth studying in the future. Third, but not the least, the real
travel flow from the BTHR rail transit network after construction is worth collecting and taking into
consideration as a key component of vulnerability analysis. In this way, we will pay more attention to
research on the operational rail domain, combine the theoretical model with actual operations and
make the research more applicable to real-traffic sustainable developments.
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