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Abstract: Irrigation is being initiated on large areas of traditionally rainfed land to meet increasing
global demand for food, feed, fiber and fuel. However, the consequences of this transition on
soil quality (SQ) have scarcely been studied. Therefore, after previously identifying the most
tillage-sensitive SQ indicators under long-term rainfed conditions, conversion of a research site
on a Haplic Calcisol in Navarre, in northeast Spain provided an ideal location to reevaluate those SQ
indicators after three years of irrigated management. The Soil Management Assessment Framework
(SMAF) was used to test our hypothesis that adopting irrigation could change the sensitivity and
importance of non-irrigated SQ indicators. Several soil physical, chemical, and biological indicators
along with crop yields were used to evaluate SQ three years after initiating irrigation on a long-term
conventional tillage (CT), minimum tillage (MT) and no-tillage (NT) study where either barley
(Hordeum vulgare L.) or wheat (Triticum aestivum L.) was being grown. The results confirmed our
hypothesis that irrigation would change the relative importance of various SQ indicators and
suggested that some SMAF algorithms, such as those used to assess bulk density, needed to be
recalibrated for these Mediterranean soils.

Keywords: Soil Management Assessment Framework (SMAF); soil organic carbon (SOC);
bulk density (BD); particulate organic matter carbon (POM-C); conventional tillage (CT); minimum
tillage (MT); no-tillage (NT); barley

1. Introduction

Soil is an important natural resource that sustains many key environmental and life-sustaining
processes. Various approaches for soil quality (SQ) evaluation have been proposed to help ensure
its protection against degradation through inappropriate agricultural management practices [1-5].
Being aware of soil physical, chemical, and biological functioning is a basic step for soil conservation,
especially in intensely managed agroecosystems.

The primary challenge associated with SQ assessment is that, in contrast with water and air
quality, which is defined based on contaminant load, SQ cannot be directly evaluated. For instance,
with regard to human welfare, the functions soil must provide (i.e., provision of food, feed, fiber and
fuel; a construction medium; and sanctuary for biological diversity) are very diverse [6]. Consequently,
initial discussions regarding the concept of SQ were somewhat controversial among soil scientists [7].
A first step toward consensus was achieved in 1997, when a Soil Science Society of America committee
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characterized SQ as “the capacity of a specific kind of soil to function, within natural or managed
ecosystem boundaries, to sustain plant and animal productivity, maintain or enhance water and air
quality, and support human health and habitation” [8]. This definition supported the multifunctional
vision of soil, in contrast to previous visions focused solely on crop production [9]. To quantitatively
evaluate these critical functions, SQ indicators must be selected and assessment tools must be
developed. The use of indicators to monitor SQ was first applied using pedotransfer functions [10].
Doran and Parkin [11] later described those indicators as soil properties and processes with the greatest
sensitivity to changes in the critical soil functions. According to these authors, indicators should
correlate well with ecosystem processes, integrate soil properties and processes, be accessible to many
users, be sensitive to management and climate changes, and, when possible, be components of existing
databases. Unfortunately, selection of a minimum data set (MDS) of SQ indicators cannot be universal
because of the site-specific nature of soils and multitude of different functions they must perform.
Therefore, MDS selection for SQ assessment must be determined by which functions are most critical
to meet management goals [12,13]. Furthermore, because of the site-specific nature of SQ, different soil
property measurements may be required for a specific function (e.g., productivity) depending upon the
agroecosystem for which the assessment is being made [14-18]. Selection of proper SQ indicators must
therefore be carefully accomplished for different situations, taking into account changes in land-use,
soil management, or hydrologic conditions that may affect SQ.

To address the complexity of SQ evaluation, the use of soil management assessment tools and
integrative indexes that included biological, chemical and physical soil data, was an interesting advance
for assessing sustainability of soil ecosystem management [19]. As a result, various soil management
assessment tools have been proposed. The Soil Management Assessment Framework (SMAF) proposed
by [13] has been tested in a wide variety of locations throughout the U.S., including Georgia, California,
and the Pacific Northwest [13,20], Colorado [21], Iowa and Wisconsin [22-24], and the Great Plains [25],
and worldwide [26-29]. When compared with other assessment tools, the SMAF has demonstrated
a high sensitivity for differentiating contrasting soil management practices [21]. The SMAF is based
on quantifying effects of soil and crop management on dynamic soil properties and overall soil
functioning. It is designed to follow a three-step system: (1) indicator selection; (2) indicator assessment;
and (3) integration into a SQ index value. In the first step, SMAF serves as an expert system to
help select appropriate SQ indicators for the targeted management goals, associated soil functions,
and site-specific factors including region, crop climate, sampling time and analytical methods [30].
Non-linear algorithms or scoring curves for up to 14 indicators are currently incorporated in the
SMAPF, although effective assessments can be made with as few as five representative indicators [31].
The scoring curves convert measured values for the selected indicators into relative values ranging
from 0 to 1. A relative score of 0 is attributed to the values of the soil indicator at which the soil cannot
accomplish the functions considered at all. A relative score of 1 means that the indicator is non-limiting
with regard to the specific soil function (e.g., crop yield) being evaluated [13]. After scoring each
indicator, the relative values of the individual indicators can be averaged into an overall index, which
can be used for quantitative comparisons of soil management strategies on the same soil resources and
for temporal comparisons within the same field, watershed, or other sampling location.

Semi-arid Mediterranean agroecosystems have been shown to have different degrees of SQ,
mostly due to human pressure [32]. Many of these systems are set on soils containing carbonates,
which are known to significantly affect several soil processes [33]. For example, carbonate-containing
soils display alkaline pH and an exchange complex dominated by calcium, which has consequences in
the availability of plant nutrients [34,35]. In relation to the soil physical characteristics, carbonates are
known agents of structure stabilization [36,37]. The relationship of soil structure and organic matter
cycling is also modified by the presence of carbonates [38,39]. In this sense, SQ indicators associated
with the soil organic fraction and physical condition were very effective for evaluating effects of
intensive dryland cereal production in NE Spain [40] and showing that changes in management can
significantly improve SQ [41].
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An emerging change for arable crop production systems in this region is the introduction of
irrigation, as the overall area of irrigated land within the Mediterranean region is expected to triple
during the next few decades. For example, in Navarre (NE Spain), a new irrigation canal has increased
the irrigated land area by 22,000 ha in the past five years. In relation to soils and SQ, irrigation is a
major change in “soil climate”, with potential effects in soils. These effects have been reported not only
on the organic C and chemical fertility of the soil [42,43], but also on its physical condition [44] and
biological indicators [45]. Previous studies in the area have shown that the turn-over rates of organic C
can be accelerated in the short-term [46], very likely because of changes induced in the shoot-to-root
ratios of some crops, and the less limiting conditions for soil C mineralization. In addition, inorganic
C dynamics can be affected [47]. These observations are in line with previous studies conducted in
other regions where changes in the total organic C stored in the soil have been observed following the
adoption of irrigation [48,49]. These changes are not always related to changes in crop yields [50,51],
as this is also related to soil type and crops management. For instance, soil C losses associated to the
implementation of irrigation have been reported in other semi-arid areas [52]. Modeling scenarios
also point out the possibility of C losses upon irrigation adoption in the long term [53,54]. To date, the
consequences of introducing irrigation on SQ indicators in the region and an overall SQ assessment
under irrigation have not been addressed. In this framework, it can be hypothesized that changes in
SQ indicators will occur following the introduction of irrigation, as observed in other agrosystems [55].

Previous research in the region of Navarre using the SMAF approach for the identification
of sensitive SQ indicators showed that particulate organic matter (POM), penetration resistance
(PR), aggregate stability and total organic C (SOC) were the most sensitive indicators for evaluating
tillage effects associated with rainfed cereal cropping [18]. Our hypothesis for this study was that
implementing irrigation would reduce the sensitivity of those indicators because of their strong
dependence on the soil organic C cycle [18,40,56]. The SMAF algorithms developed by [13] are based
on soil function so that soil biological, chemical, and physical effects can be examined together and
monitored over time. Because our definition of SQ (soil health) focuses on the intersection of soil
biological, chemical, and physical properties and processes, simply looking at any single or select
group of indicators independently may or may not identify a limiting factor, but it does not provide
the integrated assessment associated by definition with SQ. This is the only known tool that has been
demonstrated to successfully quantify the integrative effects on soil resources that changes in soil and
crop management practices within agroecosystems can have. We also selected the SMAF to determine if
the algorithms, which are adjusted automatically based on input date regarding inherent soil properties
and processes, would provide information that helped producers understand the changes occurring in
their soils as they convert their management practices to those associated with irrigated agriculture.
In this sense, we hypothesized that SMAF algorithms would be useful for evaluating SQ response to
various tillage systems three years after the conversion to irrigated management practices.

Our two primary objectives were to: (i) verify the reliability of SQ indicators selected as sensitive
or adequate for evaluating SQ response to tillage under dryland conditions following conversion
to irrigated management; and (ii) further evaluate the effectiveness of the SMAF for evaluating
SQ response under irrigated conditions. We followed a step-wise protocol to: (1) identify the
most sensitive SQ indicators as previously in dryland conditions [18]; and then (2) compare the
indicators selected under the two conditions; (3) evaluate the overall SQ associated with the irrigated
tillage treatments; and (4) determine if the SMAF is an appropriate SQ assessment tool for irrigated
Mediterranean conditions.

2. Materials and Methods

2.1. Experimental Site and Experimental Design

The experimental site, located in Olite (Navarre, NE Spain) (42°27'19”N; 18°10'00”W; 402 m a.s.l.),
was established in 1994 to evaluate different tillage treatments for rainfed barley and wheat production.
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The experiment location was reported in [56]. The experimental design was a randomized block with
four replications. Plots were 9 m x 24 m in size. The soil is a Haplic Calcisol [57] with a fine-clayey
texture in the upper horizon (see [18] for soil characteristics). Climate is described as dry sub-humid
(C1B’2db’4 according to the classification of Thornthwaite [58]. Mean annual evapotranspiration is
740 mm and mean annual temperature is 13.5 °C. The average annual precipitation is 525 mm, 82% of
which falls during the barley growing season (November—June).

In response to the development of a regional irrigation plan, the site became irrigated in 2009
(15 years after its implementation). However, the long-term tillage treatments were maintained.
Three soil management treatments were evaluated: Conventional tillage (CT), minimum tillage
(MT), and no-tillage (NT). Barley was sown each year since irrigation started at a seeding rate of
160 kg ha~! for all three treatments. Previously, barley had been grown under dryland conditions,
with wheat introduced sporadically. Conventional tillage consisted of moldboard plowing (25 cm
deep) in late summer, followed by secondary tillage with a harrow for seedbed preparation before
seeding (late October). Crop residues were incorporated into the arable layer during tillage. Seeding
was accomplished using a coulter-seeder. Minimum tillage consisted of chisel plowing (15 cm
deep) and secondary tillage and seeding as for CT. A direct seeder that opened a seed-furrow
3-5 cm deep was used for NT. Nitrogen and P fertilization rates were similar for all three tillage
treatments, averaging 100-27-0 kg N-P-K ha~! year~!. Superphosphate was used as basal dressing
in September every other year. Urea was used every year for N fertilization. Fertilizers were
applied following the standard methods in the region. Weeds were controlled equally for all
treatments with conventional herbicides (Glyphosate (C3HgNOsP, N-(Phosphonomethyl)glycine
36%,2 Lha"!in preseeding, isoproturon (C12H;3N>O, 3-(4-isopropylphenyl)-1,1-dimethylurea) 50%,
3 L ha~! in November-December, and Pinoxaden (Co3H3,N,Oy, 8-(2,6-diethyl-4-methylphenyl)-9-oxo-
1H,2H 4H,5H-pyrazolo[1,2-d][1,4,5]oxadiazepin-7-yl 2,2-dimethylpropanoate) 6%, 0.8 L ha=!
when needed).

Irrigation was managed using sprinklers especially set to grant uniform water spreading in all
treatments. Irrigation needs were determined following the weekly recommendations of the Extension
Service in the region [59], which provides information based on meteorological data and basic soil
water balances, and was applied in the months of April, May and June. The average doses applied
accounted for 40-60 L m~2, split into 1-2 weekly doses in April, 75-100 L m~2 split into 2-3 weekly
doses in May, and 15-20 L m~? in the first week of June.

2.2. Soil and Crop Sampling

To account for all the possible changes induced by irrigation, soil samples were collected at the
end of the third growing season after the conversion to irrigation, from the 0-5 and 5-15 cm depth
increments, in three different episodes. First, samples were collected in spring (May) to measure
earthworm and microbial biomass, as spring was previously identified as the period with the highest
earthworms biomass [40], and it corresponded with the warmest period of the growing season
in which water was added with irrigation to grant adequate soil moisture. For earthworms, two
20 x 20 x 20 cm soil blocks were extracted from each treatment in all replicates. Another set of soil
cores for the 0-5 and 5-15 cm depth increments were also collected and kept refrigerated until they
could be homogenized for microbial biomass analysis as described below. Then, at the end of the
campaign (June), five subsamples were collected per plot for each depth using an Edelman type auger
(@ =5 cm), and combined to obtain a composite sample for chemical and physical analyses at the end
of the growing season. Immediately after sampling, a portion of the composite soil sample was gently
pushed through an 8 mm sieve. These aggregates were allowed to air dry and used for aggregate
stability analyses (see Section 2.3.1). The remainder of the soil was air-dried and ground to pass a
2 mm sieve. Finally, intact soil cores were also collected later on, when the soil was at the adequate
moisture content to avoid compaction by sampling, using bevel-edged steel rings (& = 5 cm, total
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volume = 100 cm?®) for the 0-5 and 5-15 cm depths to determine soil bulk density (BD) and the soil
water retention characteristics.

Throughout the period of record (2010-2012), barley was harvested each year with plot-scale
combines and grain yields were recorded. Grain weights were taken directly on the combine and grain
samples from each treatment were collected and analyzed to determine water content. Grain yields
were then adjusted to a water content of 120 g kg~ !. Before harvesting, crop biomass was sampled in
three 1-m? squares per plot. The total amount of C added to the soil from crop residues was calculated
by correcting for the biomass exported with harvesting, its average C concentration (40.8%), and using
standard aerial-to-root biomass ratios [60].

2.3. Soil Analyses

Selected soil physical, chemical and biological properties were measured as potential SQ
indicators. Pre-selection of the indicators was based on soil properties previously detected in the same
experimental field and shown to represent soil functions that were sensitive to management under
dryland conditions and influenced crop yield [18].

2.3.1. Physical Properties

Bulk density (BD), penetration resistance (PR) and soil aggregate stability using different indexes
(see below) were measured as the physical soil properties. Available water-holding capacity of the soil
(AWHC) was also measured for SMAF analysis.

The core method was used to determine BD [61]. Penetration resistance was measured six
months after seeding at nine points per field replicate to a depth of 60 cm using a field penetrometer
(Rimik CP20, Agridy Rimik Pty Ltd., Toowoomba, QLD, Australia). Measurements were made
after a rainy period to avoid differences in water content between treatments. Measurements were
recorded every 15 mm, and PR for 0 to 5 and 5 to 15 cm were calculated as weighted depth averages.
Dry aggregate stability was determined by placing 100 g of dry aggregates (<8 mm) in the top of
a column of sieves of 6.3, 4, 2, 1, 0.5 and 0.25 mm openings and shaking the whole in a rotary
movement at 60 strokes/min for 60 s in a Retsch VS 100 device (Retsch GmbH & Co., Haan, Germany).
For wet aggregate stability, a constant shower-like flux (6 L/min) of distilled water was applied
from the top of the same set of sieves while sieving (60 strokes/min, 60 s). We used a mechanical
sample divisor (Retsch GmbH & Co., Haan, Germany) to ensure that initial distribution of aggregates
was similar. Aggregate size-distribution was expressed as the mean weight diameter (MWD) after
dry and wet sieving. Stability of the aggregates was evaluated using a ratio of wet-to-dry MWD
(MWDw/MWDd) [62,63]. For SQ evaluation with SMAF, the proportion of water-stable aggregates
bigger than 0.25 mm (WSA) was obtained after wet sieving.

Soil water retention at —33 kPa was determined on intact soil cores, and sieved (<2 mm) soil
samples were used for water retention assessment at —1500 kPa. Samples were placed on pressure plate
extractors (Soil Moisture Equipment Corp., Santa Barbara, CA, USA). Volumetric water was calculated
using BD. Available water-holding capacity was calculated as the difference between volumetric water
content at field capacity (—33 kPa) and wilting point (—1500 kPa).

2.3.2. Chemical Properties

All chemical analyses were done on air-dry sieved (<2 mm) samples. Total N was determined
using the Kjeldahl digestion method. Available P was determined as described by Olsen and
Sommers [64]. Exchangeable K was quantified using atomic absorbance after extraction with NH;OAc
1IN [65]. Soil electrical conductivity (EC) and soil pH were measured in distilled water (1:2.5).
Soil pH was determined with a Crison GLP22 pH meter (Crison Instruments, S.A., Barcelona, Spain).
Conductivity was read with a Crison GLP32 conductivity meter (Crison Instruments, S.A., Barcelona,
Spain). Carbonates concentration was measured in a Bernard’s calcimeter by quantifying the CO,
produced after treating a soil sample with HCL
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2.3.3. Organic Matter and Soil Biological Properties

Soil organic C (SOC) was determined by wet oxidation on air-dry sieved (<2 mm) samples [66].
The fraction of soil organic matter defined as particulate organic matter (POM) based on its size
(>53 pum) [67] was isolated by dispersion and sieving of 10 g of air dried soil, using the method
described in [40]. Earthworms were collected in May as the barley reached physiological maturity by
crumbling the 20 x 20 x 20 ¢cm soil blocks by hand, placing the worms in a glass jar, and weighing
to obtain a fresh weight for each treatment [68]. Previous studies determined that Scherotheca gigas
(Dugés 1828) is the predominant anecic species in the area [69]. Microbial biomass carbon (MBC)
was measured by comparing extractable C from non-fumigated and chloroform (CHCl3)-fumigated
soil [70]. Carbon concentration in the extract (chromic acid dissolution) was analyzed by sulfuric
digestion and subsequent spectrophotometry.

2.4. Selection of Soil Quality Indicators

Selection of the most sensitive SQ indicators as a minimum data set (MDS) for this particular
soil and soil use (i.e., irrigated crop production) was done as described by [18] for dryland conditions.
A univariate analysis of variance (ANOVA) for the different soil variables was used to identify
significant tillage treatment and depth effects. Only those variables for which the F statistic for soil
management was significant (p < 0.05) were retained for further analysis. Earthworm biomass was
included as an indicator because previous studies in this field had shown a direct relationship between
earthworm activity and surface residue [69]. Factor analysis was then used to group the retained
variables based on their correlation structure. Principal component analysis (PCA) was used for factor
extraction [71]. To eliminate the effect of different units of variables, factor analysis was done using the
correlation matrix on the standardized values of the measured soil properties, so that each variable
had a mean = 0 and variance = 1 (total variance = number of variables [16]). We used the matrix to
identify the existence of correlations between different soil properties.

Principal components (factors) with eigenvalues >1 were retained and subjected to varimax
rotation with Kaiser to estimate the proportion of the variance of each property explained by each
selected factor (loadings), and by all factors (communalities). This was done because less importance
should be ascribed to soil properties with low communalities when interpreting principle component
factors [71]. To evaluate the effects of tillage treatments, factor scores for each sample point were
calculated and ANOVA was performed on the new score variables. Homogeneous groups among
treatments were detected using Duncan’s test (p < 0.05, unless otherwise indicated). Only factors that
differed among treatments were retained for further consideration. Soil properties were then assigned
to the factor for which their loading was the highest [16]. For each retained factor, highly weighted
properties were selected as possible SQ indicators. We considered highly weighted as those within
10% of the highest factor loading [15,20]. All statistical treatments were performed using IBM SPSS
Statistics 21.0 (SPSS Inc., 2016, Chicago, IL, USA).

2.5. Soil Quality Evaluation with SMAF

The SMAF algorithms developed by [13,19] were also used for SQ evaluation. To begin, several
soil and ecosystem parameters (organic matter class, texture class, clay concentration, mineral class,
Fe,Os3 class, climate class, season code, region code, crop code, rotation code, slope class, weathering
class, P extraction method and EC method) were selected to adjust the algorithms to our local
conditions. Measured values for several physical, chemical and biological soil properties that have
scoring algorithms, (i.e., BD, PR, AWHC, WSA, available P, extractable K, pH, EC, SOC and MBC)
were recorded in the Excel spreadsheet. These soil properties were used regardless of their significance
in the previous analysis because: (i) the SQ index proposed by SMAF gives individual scores using the
algorithms developed for each soil property; and (ii) SMAF generates an additive index that accounts
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for all the properties considered. Univariate ANOVA was then run to examine significant differences
in the scores given by SMAF for the different soil properties and in the general SQ index generated.

3. Results

3.1. Crop Yields

Average barley grain yields (4.10 + 0.1 Mg ha~! under NT, 4.38 & 0.4 Mg ha~! under MT,
and 4.47 + 0.8 Mg ha~! under CT) were not significantly different among tillage treatments and
were within the range of average local rainfed barley yields during the three-years of this study
reported in [56]. Differences were not observed either in the total amount of organic C incorporated
into the soil among treatments (2.49 + 0.2 Mg C ha~! under NT, 2.40 + 0.4 Mg C ha~! under MT,
and 2.74 4 0.2 Mg C ha~! under CT).

3.2. Identification of Soil Quality Indicators

ANOVA showed that some soil properties were significantly (p < 0.05) affected by tillage treatment.
Within the 0-5 cm depth, seven indicators showed significant differences: BD and PR as physical
properties, total N and extractable K as chemical properties, and SOC, MBC, and earthworm biomass
reflecting soil organic matter and biological properties. POM-C, an active fraction of the overall
SOC pool, showed significant differences at p < 0.1, among tillage treatments (Table 1). Within the
5-15 cm depth, four indicators showed significant differences: BD and PR, total N and SOC (Table 2).
To determine if the transition to irrigated management changed the SQ indicators that were most
sensitive to tillage when compared to prior dryland assessments [18], we focused only on the soil
properties that showed a statistically significant response to tillage.

Table 1. Physical (bulk density (BD), penetration resistance (PR), and mean weight diameter in dry
(MWD4) and wet (MWD, ) samples), chemical (total nitrogen, available phosphorous, extractable
potassium, carbonates as CaCO3, pH and electrical conductivity (EC)), and organic matter and
biological soil properties (total organic C (SOC), C-to-N ratio (C/N), C in the particulate organic
fraction (POM-C), and microbial biomass carbon (MBC)) for the different tillage treatments in the
0-5 cm depth. Earthworms biomass at 0-20 cm. (means (1 = 4) =+ standard error).

Soil Property No-Tillage Minimum Tillage = Conventional Tillage
Physical
BD (Mg m~3) 1.64 +0.01a 1.51+0.04b 153 £0.04b
PR (MPa) 0.87+£0.02a 041+0.10b 0.5+£0.08b
MWDy (mm) 4.01 £0.06 342 £0.16 3.67 +0.33
MWDy, (mm) 0.87 £ 0.07 0.54 £0.12 0.56 £ 0.13
MWDy, /MWDy 0.22 4 0.01 0.15 4 0.02 0.15 4+ 0.03
Chemical
Total N (g kg™ !) 188 £0.05a 1.53 £0.06 b 139 £0.31b
Available P (ppm) 4.32 £0.09 3.76 £1.36 2.28 £0.22
Extractable K (ppm) 402+71a 348 £ 22 ab 281 £29b
CaCO; (gkg™!) 278 £ 3.0 287 £4.0 294 +6.1
pH 8.45 £ 0.02 8.42 £ 0.06 8.56 & 0.04
EC (uscm™1) 211 +3.0 230 £ 10 211+ 6.0
Organic matter and biological
SOC (gkg™1) 173+ 04a 143+ 05b 105+02c¢
C/N 9.18 +0.09 9.33+0.18 7.78 +0.34
POM-C (g kg™ 1) 4.02+006a! 3514+0.70a! 2.81£028b!
MBC (mg kg~ ') 217+ 17 a 111+£10b 49+60c
Earthworms (g m~2) (0-20 cm) 128 £1.0b 198 +1.1a 41+10c

Treatment values within the same row followed by different letters are significantly different at p < 0.05. ! Different

atp <0.10.
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Table 2. Physical (bulk density (BD), penetration resistance (PR), and mean weight diameter in dry
(MWDd) and wet (MWDw) samples), chemical (total nitrogen, available phosphorous, extractable
potassium, carbonates as CaCO3, pH and electrical conductivity (EC)), and organic matter and
biological soil properties (total organic C (SOC), C-to-N ratio (C/N), C in the particulate organic
fraction (POM-C), and microbial biomass carbon (MBC)) for the different tillage treatments in the
5-15 cm depth (means (n = 4) £ standard error).

Soil Property No-Tillage Minimum Tillage = Conventional Tillage
Physical
BD (Mg m~3) 1.65+0.00 a 1.63 £ 0.02 ab 1.56 £ 0.03 b
PR (MPa) 1.56 £0.03 a 0.69 +0.14Db 0.76 £0.11b
MWDd (mm) 3.78 £ 0.09 3.84 £0.18 4.07 £0.29
MWDw (mm) 1.17 £ 0.09 1.03 £0.15 1.08 +0.13
MWDw/MWDd 0.31 £0.02 0.26 £+ 0.03 0.27 £ 0.04
Chemical
Total N (g kg™!) 141+ 0.05a 136 £0.14a 114 £0.11b
Available P (ppm) 2.54 £0.12 2.68 £ 0.31 2.66 £+ 0.48
Extractable K (ppm) 267 £3.0 290 £9.0 255 £ 39
CaCO; (gkg™) 286 + 3.0 284 +9.0 289 £9.0
pH 8.66 £+ 0.03 8.51 £ 0.09 8.59 £ 0.04
EC (uscm™1) 219+ 2.0 216 £ 5.0 217 +£9.3
Organic matter and biological
SOC (gkg™1) 115+01a 127 +08a 9.8+020b
C/N 8.57 £0.05 9.38 £ 0.45 8.57 £ 0.16
POM-C (g kg™!) 1.89 &+ 0.06 1.97 £ 047 1.22 £ 0.09
MBC (mg kg~ 1) 435+34 49.8 £10.3 309 £ 1.8

Treatment values within the same row followed by different letters are significantly different at p < 0.05.

3.2.1. The 0-5 cm Depth

The correlation matrix (determinant < 0.0001) developed for the eight soil properties within the
0-5 cm depth increment showed significant relationships for 21 of 28 pairs (Table 3). Significant positive
correlations were found between total N and BD, SOC and extractable K, SOC and MBC, and MBC
and extractable K. The PCA identified two factors (F1 and F2) with eigenvalues >1 for the 0-5 cm
depth (Table 4). Together, those factors explained >76% of the variability in measured soil properties.

Table 3. Correlation between measured soil properties (bulk density (BD), penetration resistance (PR),
total N, extractable K, soil organic carbon (SOC), particulate organic C (POM-C), and microbial biomass
carbon (MBC)) and earthworms biomass (g m~2) considered for factor analysis in the 0-5 cm depth
across all management treatments (conventional tillage, minimum tillage and no-tillage).

BD PR Total N Ext. K POM-C MBC
BD 1
PR 0.545 ** 1
Total N 0.817 *** 0.567 ** 1
Extractable K 0.552 ** 0.455 * 0.514 * 1
SOC 0.467 * 0.585 ** 0.688 ** 0.786 ***
POM-C 0.452 * 0.204 0.242 0.601 ** 1
Earthworms 0.659 ** 0.643 ** 0.725 ** 0.781 *** 0.591 ** 1

* Correlation is significant at p < 0.10, ** Correlation is significant at p < 0.05, *** Correlation is significant at p < 0.01.
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Table 4. Eigenvalue, percentage and cumulative variance explained by factor analysis using the
correlation matrix of the standardized data of soil properties at 0-5 and 5-15 cm depths.

Factors Eigenvalue ! Percentage (%) Cumulative (%)
0-5cm

F1 4.69 58.7 58.7

F2 1.44 17.9 76.6
5-15cm

F3 2.09 52.2 52.2

1 Only factors with eigenvalues >1 are shown.

Factor scores were calculated and tested for significant differences in response to tillage as in [18]
(Table 5). Both F1 and F2 were sensitive to tillage treatment for this soil depth. Therefore, only those
soil properties with the highest proportion of variability explained by those factors were taken into
account for the selection of SQ indicators in this step. These were BD and earthworm biomass for F1
and F2, respectively. PR and total N had loadings for F1 within 10% of that of BD, while SOC had the
second highest loading for F2. Those properties were selected as the most sensitive near-surface SQ
indicators for the studied soil under irrigated management.

Table 5. Variance explained using varimax rotation for each of the retained factors, and communalities
for the selected soil properties (bulk density (BD), penetration resistance (PR), total N, extractable K,
soil organic carbon (SOC), microbial biomass carbon (MBC) and earthworm biomass, g m~2)) for the
0-5 cm depth, and effect of management on factor scores.

Soil Property F1 F2 Communality
BD 0.869 0.148 0.777
PR 0.850 0.033 0.724
Total N 0.815 0.294 0.750
Extractable K 0.507 0.725 0.783
S0C 0.552 0.748 0.864
POM-C 0.277 0.639 0.485
MBC 0.726 0.607 0.895
Earthworms —0.213 0.898 0.852
Management effect
ANOVA p-value <0.0001 <0.0001
Mean scores
No tillage 1.19b 0.44b
Minimum tillage —0.85a 0.77b
Conventional tillage —0.34a —1.22a

Treatment values within the same column followed by different letters are significantly different at p < 0.05.

3.2.2. The 5-15 cm Depth

A significant correlation matrix (determinant < 0.0001) was also developed using four soil
properties for the 5-15 cm depth. Those properties (BD, PR, total N and SOC) were the only ones found
by ANOVA to be sensitive to management (Table 2). This identified three significant correlations out
of 12 possible pairs for this depth, with the highest correlation being between BD and SOC (Table 6).
The PCA identified one factor (F3) with an eigenvalue >1. It explained >52% of the variability within
the selected soil properties (Table 4), and had high positive loadings (>78%) for BD and SOC (Table 7).
F3 also showed significant (p < 0.05) tillage treatment differences (Table 4), confirming that within this
soil, BD and SOC were the most sensitive SQ indicators for this depth.
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Table 6. Correlation between measured soil properties (bulk density (BD), penetration resistance (PR),
total N, and soil organic carbon (SOC)) considered for factor analysis in the 5-15 cm depth across all
management treatments (conventional tillage, minimum tillage and no-tillage).

BD PR N SOC
BD 1
PR 0.432 * 1
Total N 0.271 0.351 1
SOC 0.592 ** 0.221 0.429 * 1

* Correlation is significant at p < 0.10, ** Correlation is significant at p < 0.05, *** Correlation is significant at p < 0.01.

Table 7. Variance explained using varimax rotation for each of the retained factors, and communalities
for the selected soil properties (bulk density (BD), penetration resistance (PR), total N and soil organic
carbon (SOC)) for the 5-15 cm depth, and effect of management on factor scores.

Soil Property F3 Communality
BD 0.805 0.648
PR 0.656 0.430
Total N 0.678 0.460
SOC 0.787 0.620
Management effect
ANOVA p-value <0.0001
Mean scores
No tillage 0.89b
Minimum tillage 0.34b
Conventional tillage —123a

Treatment values within the same column followed by different letters are significantly different at p < 0.05.

3.3. Assessment of Soil Quality Indicators

A SMAF evaluation of SQ (Tables 8 and 9) was performed using BD, WSA, AWHC, available P,
extractable K, pH, EC, SOC and MBC. Scores for each indicator and an overall SQ index for each
sampling depth were evaluated.

Within the 0-5 cm depth, significant tillage treatment differences were observed in scores for
five 5Q indicators (Table 8). Among physical indicators, the highest differences were observed for
WSA, with higher scores for NT than MT or CT. Significant differences were also observed in BD
scores, with NT being significantly lower than either of the other tillage treatments. Among the
chemical indicators, scores for available P were significantly different between tillage treatments,
with NT having a higher value than CT. Scores for extractable K, pH and EC showed no differences.
Furthermore, since extractable K and EC achieved scores of 1, this indicates those parameters were
not limiting barley production at all and therefore, for those indicators this soil was functioning at its
maximum SQ potential. In contrast, SOC and MBC scores were significantly different among tillage
treatments, with NT having the highest score and CT the lowest (Table 8). The overall SQ index for the
0-5 cm depth was significantly different for the three tillage treatments (Table 8), with NT having the
highest value, followed by MT and CT, respectively.

Within the 5-15 cm depth, only two SQ indicators (BD and SOC) showed significantly different
scores (Table 9). Conventional tillage had a higher BD score than NT. SOC scores within this depth
were lower for CT than either MT or NT treatments. Overall, NT and MT treatments had lower SQ
index values within the 5-15 cm depth than within the 0-5 cm depth, and, as a result, the differences
between treatments at the 0-5 cm depth were not observed for the 5-15 cm depth.
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Table 8. Scores for the soil properties considered in SMAF (bulk density (BD), water-stable aggregates
(WSA), available water-holding capacity (AWHC), available phosphorous, extractable K, pH, electrical
conductivity (EC), soil organic C (SOC), and microbial biomass carbon (MBC)), and overall averaged
soil quality index (SQI) value (0 to 1), as affected by tillage system within the 0-5 cm depth increment
(means (n = 4) + standard error).

Soil Quality Indicator No-Tillage Minimum Tillage Conventional Tillage
Physical
BD (Mg m~3) 0.24b 031a 0.30 ab
PR (MPa) 0.55a 040b 0.38b
MWDd (mm) 0.67 a 0.67 a 0.64 a
Chemical
Total N (g kg™ 1) 0.64a 0.42 ab 0.21b
Available P (ppm) 1.00 a 1.00 a 1.00 a
Extractable K (ppm) 0.65 a 0.66 a 0.62a
CaCOj3 (gkg™) 1.00 a 1.00 a 1.00 a
Organic matter and biological
SOC (gkg™1) 0.96 a 0.89b 0.62 ¢
MBC (mg kg~1) 0.92a 041b 0.10 ¢
Soil Quality Index (SQI)
0.76 a 0.69b 0.62 c

Treatment values within the same row followed by different letters are significantly different at p < 0.05.

Table 9. Scores for the soil properties considered in SMAF (bulk density (BD), water-stable aggregates
(WSA), available water-holding capacity (AWHC), available phosphorous, extractable K, pH, electrical
conductivity (EC), soil organic C (SOC), and microbial biomass carbon (MBC)), and overall averaged
soil quality index (SQI) value (0 to 1), as affected by tillage system within the 5-15 cm depth increment
(means (n = 4) + standard error).

Soil Quality Indicator No-Tillage Minimum Tillage Conventional Tillage

Physical

BD (Mg m~3) 0.24b 0.25 ab 027 a

PR (MPa) 0.74a 0.63 a 0.76 a

MWDd (mm) 0.60 a 0.60 a 0.68 a
Chemical

Total N (g kg™!) 026 a 0.30a 03la

Available P (ppm) 1.00 a 1.00 a 1.00 a

Extractable K (ppm) 0.61a 0.63 a 0.59 a

CaCO3 (gkg™) 1.00 a 1.00 a 1.00 a

Organic matter and biological
SOC (gkg™1) 0.71a 0.79 a 0.55b
MBC (mg kg 1) 0.08 a 0.11a 0.06 a
Soil Quality Index (SQI)
0.64 a 0.65 a 0.64a

Treatment values within the same row followed by different letters are significantly different at p < 0.05.

4. Discussion

4.1. Soil Quality Indicator Selection—Dryland vs. Irrigated Soil Management

Three years after the conversion to irrigation, the analysis of crop yields and C returned to the soil,
together with soil properties and their evaluation as SQ indicators, enabled us to evaluate the effect of
this land use change by comparing the new SQ indicators selected as most sensitive to management
with those from previous studies under dryland conditions at this site [18,40,56].
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In relation to SQ indicators, we had hypothesized that their sensitivity to soil management
may have changed because of the changes induced in the soil organic C cycle by the introduction
of irrigation [46]. Results showed that many remained different between tillage systems after the
adoption of irrigation (in particular, the two physical indicators (BD and PR), total N, extractable
K, SOC and earthworm biomass), as observed in rainfed conditions [18]. However, according to
our hypothesis, there were some remarkable differences when measurements for dryland soils [18]
were compared with those in irrigated soils, mostly in relation to POM-C and aggregate stability.
Differences in POM-C between tillage treatments under dryland conditions were highly significant and
resulted in that indicator being identified as the most sensitive to management in dryland conditions.
These differences were reduced (significant at p < 0.10 only at 0-5 cm, Table 1) following the adoption
of irrigation. Considering that crop yields and therefore C returns to the soil did not change greatly
with the adoption of irrigation, and were even among treatments, these differences can be understood
as the consequence of the alteration of C mineralization dynamics with irrigation. It is known that
irrigation modifies SOC mineralization rates, as more water is available when temperatures are
adequate for microbial degradation of organic matter [72], regardless of the tillage system used.
Increased mineralization rates have indeed been reported as a reason for no changes in SOC stocks
observed following irrigation adoption in the region in the short-term [46], and for SOC losses in the
long-term in other semi-arid areas [52], most likely associated to improved soil moisture conditions
and nutrients availability [73-75].

Aggregate stability was also a sensitive property under dryland conditions, and important for
explaining differences between tillage treatments as it showed higher values with NT than MT or
CT under non-irrigated conditions. However, in samples collected three years after irrigation was
introduced, aggregate stability expressed as MWD was reduced in NT and differences between
treatments were not significant, which seems related to the evolution of POM-C, as labile organic
matter is known to be an active agent of macroaggregates stabilization [67]. Because of these changes,
and because management decisions are known to affect soil properties in different ways, it was not
surprising that the indicators identified as most sensitive to soil management under irrigated conditions
differed from those under dryland conditions. For example, POM-C was no longer a meaningful
indicator, while several others, such as BD, PR, SOC and earthworm biomass, remained sensitive for the
0-5 cm depth. Within the 5-15 cm depth, POM-C and aggregate stability (selected as the most sensitive
indicators for this depth under dryland conditions) were replaced by BD and SOC. This change,
however, still maintained a physical and an organic matter-related property as the most sensitive
indicators with regard to SQ. These changes highlight the necessity of reevaluating SQ indicators
when agroecosystems are changed. They also confirm observations by [19] that MDS indicators may
need to change as climate, soil type, or even time, change. This is also in accordance with the current
SQ paradigm, which focuses on evaluating the capacity of a soil to function within the limits of a
determined ecosystem [11]. Furthermore, the short period in which changes occurred (only three years
after irrigation was implemented) confirm the utility of previously selected indicators such as POM-C,
which has been highlighted in the literature as an effective SQ indicator for detecting land use and soil
management changes [67,76,77]. In this case, its behavior as a rapid indicator was confirmed by the
fact that it changed in only three years, and was no longer selected as a significant indicator because it
was no longer sensitive to differences in management under irrigation. As explained above, this is
likely a consequence of similar amounts of crop residue being returned to the soil due to the lack of
differences in yield, and also to the elimination of limitations for surface crop residues decomposition
under NT when irrigation is applied to satisfy the crop water demand. Changes in other consequences
of non-limiting moisture conditions, such as those associated to the priming effect of crop residues
placed at different locations [78], are beyond the scope of this study but should be considered in
future studies.
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4.2. SMAF Soil Quality Index and Evaluation of Tillage Treatments

The SMAF scores also indicated significant tillage effects on several soil properties. In relation to
physical SQ, a significant increase in soil compaction, expressed by lower scores for BD, was noted for
the NT treatment. This effect had been previously observed in several NT studies [79,80]. Furthermore,
according to SMAF interpretation, the low BD scores for all three tillage treatments indicated that the
soil at this site would not be functioning at its full potential due to a possible compaction problem.
BD data were in fact observed to be higher than generally described in cultivated soils in all the three
treatments. As a result, BD scores for all three tillage treatments were quite low because the measured
values (Table 1) all exceeded 1.5 Mg m~3, which is the threshold set by SMAF for limitations to SQ
induced by elevated BD. However, previous studies in the area [40,41,56] showed that agricultural
soils of the type of the one studied here display values of BD ranging between 1.50 to 1.55 Mg m 3
under CT and 1.69-1.78 Mg m 3 under NT. These values are higher than those generally associated to
limiting for soil crops when managed for agriculture, and yet these soils showed equal or higher yields
under NT. This suggests that the scoring curves for BD need to be reconsidered if SMAF is to be used as
a SQ assessment tool for soils such as those encountered in this study. This was supported by the lack
of correlation between BD scores and the soil nutrient status. Some authors have described limitations
to plant nutrition when BD exceeds certain values. For instance, Wolkowski et al. [81] described
problems in P and K uptake efficiency by crops for values greater than 1.4 Mg m 3. Skopp et al. [82]
reported critical bulk density for root penetration reported at values between 1.30 and 1.60 Mg m 3
for fine-textured soils. In the studied soil, NT, which had the lowest scores for BD (Tables 8 and 9),
had the highest scores for P availability, and no differences were obtained in relation to extractable K
between tillage systems (Table 8). No differences in yield were observed either.

In contrast to BD, aggregate stability measurements appeared to be a better indicator of soil
physical condition since the values were greater under NT (16% == 0.1%) than either MT or CT, which
averaged 12% =+ 2.1% at 0-5 cm, and thus resulted in higher SMAF scores for NT than MT or CT
(Table 8). Increased aggregate stability reflects better soil structure and supports the idea that the
interpretation algorithm (i.e., scoring function) of BD may need to be revised based on inherent
characteristics of soils in this region. Previous studies that used SMAF to compute a SQ index have also
reported the sensitivity of WSA [22,83] and BD [4,83] as a SQ indicator, and observed score differences
due to soil management for this soil property.

Increased WSA did not have a detectable effect on soil water retention characteristics (i.e.,
no differences were found in AWHC scores), but the overall score for physical indicators in SMAF were
higher for NT than for MT or CT (Table 8). This was consistent with other studies that have shown
improved aggregation within NT systems in the Mediterranean region [84-86], and have attributed
this response to higher SOC concentrations and organic matter stability [87].

Among chemical indicators, only one (available P) showed differences among the tillage
treatments for the 0-5 cm depth. Available P was not included in the MDS obtained through PCA
because tillage differences were not significant. However, when the measurements were interpreted
using the SMAF algorithms, the scored values were significantly different. This occurred because the
observed P values were low and located in the exponential increase region of the scoring curve, where
small increments of this property can result in big changes in the scores it gets (see [13]). Following the
construction of SMAF algorithms, the observed low available P scores for CT would be translated in
that plant-available P would be limiting for soil functioning with this management system. Conversely,
the notably higher score for NT would indicate an improved chemical soil functioning. The absence
of differences in yield, which is very sensitive to P availability, suggests that this was not the case in
the studied soil. At least two reasons can explain this lack of relationship between SMAF scores for
available P and barley yields. First, in calcareous soils such as the one studied here, low P availability
is common due to its retention by carbonates [34], leading to reduced P scores regardless of the tillage
system. Second, the ability of plant roots to actually take up P from the upmost soil layer (0-5 cm) can



Sustainability 2017, 9, 1476 14 of 20

be questioned, as this layer is often dried out (even under irrigation) and the rooting density (one of
the most important drivers for P uptake) is likely to be rather low at this depth.

From the chemical fertility perspective, the observed scores of 1 for extractable K (Tables 8 and 9),
even though none was added in fertilizer, mean that the natural abundance of K in this soil was high
enough for the soil to function at its full potential. Therefore, the differences in extractable K observed
between tillage treatments at 0-5 (Table 1) disappeared when the values were interpreted by SMAF,
since all were over the maximum established by the scoring curve.

For the organic and biological indicators (SOC and MBC), the SMAF scores indicated that both
were close to the maximum possible score under NT at 0-5 cm. In contrast, CT scores were low (near 0
in the case of MBC), indicating the soil under this management was depleted in organic matter and
its microbial community was very likely reduced and unable to accomplish at least some of their
functions. Within the 5-15 cm depth, SOC scores were lower than within the 0-5 cm depth for NT and
MT, although the scores of both those treatments were higher than for CT. These results provide further
evidence that organic matter mineralization, enhanced by moldboard plowing, can induce a reduction
of SOC that can affect soil functioning at this depth. It is also remarkable how dramatically MBC scores
decreased for all tillage treatments below the 0-5 cm depth: the MBC scores were near zero for all
tillage systems, emphasizing the reduced presence of microorganisms below the first 5 cm within the
studied soil. The importance of SOC as a SQ indicator is consistent with previous studies using SMAF,
which showed high SOC score differences between management practices [4,83]. SOC also had low
SMATF scores in several of the soils evaluated in other studies [22,23,83] indicating that agricultural
soils are frequently depleted in organic matter. This further emphasizes the value of using SOC as an
indicator to detect agricultural soil-improving management practices.

Finally, the overall SQ index calculated using SMAF was significantly different between the three
managements at 0-5 cm, but not at 5-15 cm. The ranking of the scores for the surface 5 cm was NT
> MT > CT. Data presented in Table 8 indicate that the higher NT index was mostly due to better
scores for aggregate stability, available P, SOC and MBC. Comparing these results with other studies
is complicated, as SQ evaluation indexes need to be compared not only using similar calculation
methods, but also for soils with the same inherent characteristics. A study [24] also evaluated different
long-term tillage effects using SMAF under non-irrigated conditions in Iowa. Despite the differences
in agronomy and climate, they observed, in accordance with our results, the lowest scores in soils
under moldboard tillage, which had the most negative impact on several SQ indicators. In addition, in
agreement with our observations WSA, SOC and MBC were the indicators with the highest differences
between managements. In the second soil depth (5-15 cm), both the available P concentration and
MBC decreased dramatically under NT in the current study. Consequently, no differences in the SQ
index provided by SMAF were found in that depth.

4.3. Adequacy of SMAF

The results obtained when applying SMAF algorithms to our data can be evaluated from
two perspectives. First, in relation to the overall SQ index scores based on our SMAF evaluation
of the studied soil, they were in the range 0.64 to 0.76 (in a scale from 0 to 1). These results are low
in comparison with the results found in the literature based on previous SQ studies using SMAF
analysis. For example, Karlen et al. [22] evaluated different crop rotations in a study carried out in
three different sites located in Iowa and Wisconsin. They found scores higher than 0.90, 0.80 and 0.75
in each site for the 0-15 cm soil depth. Stott et al. [23] studied areas with different crop development
conditions in several soils along the Iowa River’s South Fork Watershed. They found average SMAF
scores of 0.86 and 0.82 for well-developed and poorly-developed crop canopy areas, respectively,
in the 0-10 cm soil depth. In studies where soil samples were divided in different depths, average
SMAF scores obtained for the 0-5 cm soil depth were always over 0.80 [4,24,83]. In our results, the
scores obtained in the 5-15 cm depth were lower than within the 0-5 cm depth in all cases. This was
also observed in previous studies, although our values were generally lower than those reported
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elsewhere [24,83]. The scores for the 5-15 cm depth obtained in [4] (0.53-0.69), were the only ones
within the same range of those obtained in this study. All the studies mentioned were performed
in soils located in the Midwestern U.S., and comparisons with results for our climatic conditions
must be carefully considered. The systematically low values obtained in our study, for a soil that is
irrigated and achieving average yield standards suggest that, despite the flexibility of SMAF to adapt
its algorithms to different soils and ecosystem conditions, a calibration of the tool for different regional
conditions is probably needed. This would help validate the scores given by SMAF, especially those
who primarily focus on crop yield response.

Second, it should be noted that crop yields, which were recorded as an indicator of soil functioning
because sustaining plant productivity is considered the major soil function for irrigated agricultural
soils in the study area, were not different between tillage systems. The observed differences in SQ
indicators scores and SQ indexes between tillage treatments did not, therefore, have a detectable
effect on barley yield. In this context, it seems necessary to consider whether this type of assessments
are actually evaluating the real functioning capacity of different agro-ecosystems, and are able to
detect differences in soil condition beyond their effect on yields. SMAF, as used in the studied
semi-arid irrigated Mediterranean soil, was able to detect significant differences in many SQ indicators,
which were sensitive enough to differentiate among tillage managements. The absence of correlation
with barely yields can be explained by the fact that external inputs (fertilizers and irrigation water)
minimized soil effects limiting crop productivity. In addition, the slightly better soil physical
condition for BD observed under CT than NT (Tables 8 and 9) can help to explain similar production
among treatments. This is in contrast with yield differences found in dry seasons under dryland
conditions at this site [56], when an increase in AWHC was considered the main advantage for NT.
The implementation of irrigation, which greatly reduces the importance of this advantage and has
resulted in no differences in AWHC between soil systems after three years of irrigation, is very likely
related to the absence of yield differences.

5. Conclusions

In an attempt to systematically evaluate SQ indicators in Mediterranean semi-arid irrigated
cropland under different soil managements, factor analysis showed that, although some indicators
selected previously in dryland conditions were still valid, the most sensitive indicators changed both
at 0-5 and 5-15 cm. This supported our hypothesis that irrigation, even when it does not result in
immediate increases in crop yields, can induce changes in soil functioning that result in the need of
re-assessing the utility of SQ indicators. In addition, it showed that changes induced in SQ by different
dryland tillage systems might be reverted in just three years, when the soil is irrigated. The early
sensitivity associated to some SQ indicators, especially POM-C, was also confirmed because POM-C
was no longer able to detect differences between tillage systems only three years after irrigation was
introduced. These results highlight the necessity of accurate evaluations of the consequences of such
a change in soils, especially considering that the transformation to irrigation is affecting millions of
ha worldwide, under the pressure of increasing productivity without increasing the total surface of
cultivated land.

Following our second hypothesis, the SMAF framework was shown to be sensitive and able
to detect differences in SQ indicators between tillage treatments in irrigated Mediterranean land.
However, the low scores obtained by some soil properties in SMAF, and the overall low soil quality
obtained by the studied soil, suggest that a detailed analysis and possible interpretation changes may
be necessary to adapt some SMAF algorithms for local agroclimate. This seems especially important
for indicators such as BD, which consistently returned low values.
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