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Abstract: To support doubly fed wind turbine (DFWT) groups in offshore wind farms, this paper
proposes a distributed coordinated control based on the Hamiltonian energy theory. This strategy
provides global stability to closed-loop systems and facilitates output synchronization. First, a
model of a DFWT is realized as a port-controlled Hamiltonian system with dissipation (PCH-D),
and the single-machine model is expanded into a multi-machine model of a wind turbine group.
Then, by using the design methodology of distributed Hamiltonian systems, a distributed coordinated
control is presented for a multi-machine PCH-D system. Furthermore, to investigate failures in
wind turbine groups, they are divided into two cases: the separation of failed machines from the
system, and the grid-connected operation of failed machines after a fault. These cases correspond to
undirected and directed graphs, respectively. Finally, simulations prove that distributed coordinated
control enhances the reliability and autonomy of wind turbine groups in offshore wind farms.

Keywords: distributed coordinated control; doubly fed wind turbine (DFWT) group; port-controlled
Hamiltonian system with dissipation (PCH-D); topological structure; offshore farm

1. Introduction

Over the last decade, the development of wind-power generation systems has progressed rapidly,
and significant advancements have been achieved. Furthermore, wind-power control technology has
gained increasing research interest [1–4]. Recently, the research focus has shifted from simple-machine
control to cluster control, and the coordinated control of multi-machine systems has become an
attractive topic [5,6]. Offshore wind power has many advantages, such as abundant reserves, steady
wind speed, and no land occupation. Consequently, numerous offshore wind farms have been built
and more are planned; in addition, the amount of research related to offshore wind farms has increased
steadily [7–9]. However, the negative impacts of offshore wind power cannot be ignored. Larger wind
farms are far away from the shore and unmanned, and must operate in a complex environment.
Therefore, offshore wind farms must have higher reliability and flexibility compared to onshore wind
farms. The centralized control methods used in land-based wind power systems are not suitable for
offshore wind power systems. Centralized control means centralizing risks. When communication
lines or control devices malfunction, the control of the entire wind farm may be lost. To improve the
reliability of offshore wind farms, we adopt distributed control instead of centralized control; this
strategy can distribute the risk and increase the flexibility of the entire system.

Distributed control systems are a class of dynamic systems in a distributed space, and are derived
from a large number of engineering examples, such as wireless sensor networks, spacecraft flying
formations, and systems that coordinate multiple robots [10,11]. With the rapid development and
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broad applications of network technology, distributed systems tend to be networked, intelligent,
and integrated [12,13]. An offshore wind farm can be perceived as a distributed network: each wind
turbine is regarded as a network node, and the communication lines are regarded as the links between
the nodes. The nodes of the system communicate with each other via the links in the network. On this
basis, a distributed control strategy for wind turbine groups can be designed to distribute the risk that
the centralized control may bring. Even if problems occur with the communication lines or a single
machine, the entire wind farm does not break down, and failure losses can be minimized.

In this paper, a single-machine model of a DFWT (doubly fed wind turbine) has been developed
according to a model of a wind turbine group based on the Hamiltonian energy method [14,15].
This energy-based control method can thoroughly take advantage of the structural properties,
to allow the Hamiltonian energy function to be designed with the physical meaning. In addition,
the Hamiltonian function comes from the viewpoint of energy and avoids the difficulty of constructing
a Lyapunov function. Accordingly, this method becomes a powerful tool for designing the controllers
of nonlinear systems.

First, based on the Hamiltonian energy method, a Hamiltonian realization of a single-machine
system is achieved, and a PCH-D (port-controlled Hamiltonian system with dissipation) model is
obtained using pre-feedback control. Subsequently, some basic concepts of graph theory are introduced
to expand the single-machine PCH-D model to a multi-machine PCH-D model of a wind turbine
group. Next, the output synchronization of the PCH-D system is defined, and a distributed coordinated
control is proposed to enable the wind turbine group to achieve output synchronization. Furthermore,
we research the control effect of the closed-loop system under failure conditions. The stability has
been proved for the topological structures in undirected and directed graphs, which correspond to
failed-unit splitting and grid-connected operation, respectively. Finally, it is shown using simulations
that, regardless of whether failed machines are separated from the system, the distributed coordinated
control can improve reliability and reduce the failure losses of offshore wind farms.

In conclusion, the main contributions of this paper include the following three aspects.
First, instead of utilizing conventional centralized control, a distributed control strategy is proposed
for offshore wind farms. Second, as the latest development in Hamiltonian energy theory, the design of
a distributed Hamiltonian system is applied to the modeling and control of DFWT groups. Third, the
effectiveness of the Hamiltonian control strategy is verified in both directed and undirected networks;
this provides a design method for controlling wind turbine groups under failure conditions.

2. Single-Machine Hamiltonian Realization of Doubly Fed Wind Turbine

This section presents the Hamiltonian realization of the single-machine wind power system,
which is not only the foundation of the Hamiltonian modeling of a wind turbine group, but also the
premise of the distributed Hamiltonian method to be applied to wind turbine groups.

2.1. Single-Machine Model of Doubly Fed Wind Turbine

A DFWT includes a transmission gear and doubly fed induction generator. The transmission
gear can be expressed as a first-order model; the doubly fed induction generator can be described
as a second-order model when ignoring the electromagnetic transient of the stator. In this paper,
the third-order model [16] of DFWTs is as follows:

2Htot
ds
dt = Ps − Pm = −E

′
dids − E

′
qiqs − Pm,

dE
′
q

dt = −sωsE
′
d −

1
T′0

[
E
′
q − (Xs − X

′
s)ids

]
+ ωs

Lm
Lrr

vdr,

dE
′
d

dt = sωsE
′
q − 1

T′0

[
E
′
d + (Xs − X

′
s)iqs

]
−ωs

Lm
Lrr

vqr,

(1)
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where Xs = ωsLss, X
′
s = ωs(Lss − L2

m
Lrr

) , T
′
0 = Lrr

Rr
, s is the rotor slip, Htot is the total inertia constant

of the turbine and the generator, Ps = −E
′
dids − E

′
qiqs is the active output power of the stator,

Qs = E
′
diqs − E

′
qids is the reactive output power of the stator, Pm is the mechanical power of the wind

turbine, Lss is the stator self-inductance, Lrr is the rotor self-inductance, Lm is the mutual inductance,
Rr is the rotor resistance, ωs is the synchronous angle speed, Xs is the stator reactance, X

′
s is the stator

transient reactance, ids and iqs are the d-axis and q-axis stator currents, respectively, E
′
d and E

′
q are

the d-axis and q-axis transient voltages, respectively, and vdr and vqr are the d-axis and q-axis rotor
voltages, respectively. Hence, Formula (1) is the double-input third-order model of a wind turbine,
where s , E

′
d, and E

′
q are the states of the system; vdr and vqr are the inputs of the system.

First, the wind turbine model (1) can be rewritten in the following form:

d
dt

 s
E
′
q

E
′
d

 =


− iqs

2Htot
E
′
q −

ids
2Htot

E
′
d −

Pm
2Htot

− 1
T′0

E
′
q − sωsE

′
d +

ids
T′0
(Xs − X

′
s)

sωsE
′
q − 1

T′0
E
′
d −

iqs

T′0
(Xs − X

′
s)

+

 0 0
ωs

Lm
Lrr

0
0 −ωs

Lm
Lrr

 [vdr
vqr

]
. (2)

Next, the Hamiltonian realization is achieved according to the Hamiltonian energy method [17].

2.2. Single-Machine Hamiltonian Realization

For the system model (1), the Hamiltonian energy function can be constructed as

H =
s2

2
+

1
2

(
E
′
q +

Pm

2iqs

)2

+
1
2

(
E
′
d +

Pm

2ids

)2

. (3)

By using the energy function (3), the system model (2) can be expressed as a port-controlled
Hamiltonian system (PCH), which is as follows:

d
dt

 s
E
′
q

E
′
d

 =


0 − iqs

2Htot
− ids

2Htot

0 − 1
T′0

−sωs

0 sωs − 1
T′0

∇H +


0

ids
T′0
(Xs − X

′
s) +

Pm
2T′0 iqs

+ sωs
Pm
2ids

− iqs

T′0
(Xs − X

′
s) +

Pm
2T′0 ids

− sωs
Pm
2iqs



+

 0 0
ωs

Lm
Lrr

0
0 −ωs

Lm
Lrr

 [vdr
vqr

]
, (4)

where ∇H =
[
s E

′
q +

Pm
2iqs

E
′
d +

Pm
2ids

]T
.

Furthermore, we need to transform the PCH system into the PCH-D form, which is achieved
through pre-feedback control. The whole control law is expressed as

u =

[
vdr
vqr

]
= K + µ =

[
Kdr
Kqr

]
+

[
µdr
µqr

]
. (5)

The control law (5) includes two parts: the pre-feedback K and the output feedback µ. To satisfy
the PCH-D form, the pre-feedback K is designed as

K =

[
Kdr
Kqr

]
=

−
Lrr

ωs Lm

(
ids
T′0
(Xs − X

′
s) +

Pm
2T′0 iqs

+
(ωsPm

2ids
− iqs

2Htot

)
s
)

Lrr
ωs Lm

(
− iqs

T′0
(Xs − X

′
s) +

Pm
2T′0 ids

−
(ωsPm

2iqs
+ ids

2Htot

)
s
)
 . (6)
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Substituting Equation (6) into Equation (4), the closed-loop system can be rewritten in the
following PCH-D form.

d
dt

 s
E
′
q

E
′
d

 =


0 − iqs

2Htot
− ids

2Htot
iqs

2Htot
− 1

T′0
−sωs

ids
2Htot

sωs − 1
T′0

∇H +

 0 0
ωs

Lm
Lrr

0
0 −ωs

Lm
Lrr

 [µdr
µqr

]

4
= (J − R)∇H + Gµ, (7)

where J =


0 − iqs

2Htot
− ids

2Htot
iqs

2Htot
0 −sωs

ids
2Htot

sωs 0

, R =


0 0 0
0 1

T′0
0

0 0 1
T′0

, G =

 0 0
ωs

Lm
Lrr

0
0 −ωs

Lm
Lrr

.

Clearly, J is a skew-symmetric matrix, and R is a positive semidefinite matrix. Thus, the model (7)
matches the PCH-D form. Its output equation is expressed as:

y = GT∇H =

[
ωs

Lm
Lrr

(E
′
q +

Pm
2iqs

)

−ωs
Lm
Lrr

(E
′
d +

Pm
2ids

)

]
. (8)

3. Distributed Coordinated Control of DFWT Group

The main purpose of this paper is to investigate the method of coordination of multiple wind
turbines in an offshore wind farm and achieve output synchronization using distributed control. First,
we need to construct a model of a wind turbine group containing network topological information
from a single-machine Hamiltonian model. A distributed Hamiltonian design is then proposed to
solve the coordination control problem of wind turbine groups. In this section, we first introduce
some basic concepts of graph theory as the theoretical basis for the network description of a wind
turbine group. Next, the output synchronization of a wind turbine group is defined and the distributed
coordinated control is designed. Finally, the main results of this study are described.

3.1. Graph Theory

Multiple wind turbines that are connected to each other in an offshore wind farm form a network
in which each wind turbine is regarded as a node. Information from every wind turbine is exchanged
within the network, which works as the basis of distributed coordinated control. The related graph
theory terms are given as follows [18].

Consider n nodes that interact with each other; the relationship between them can be expressed
as a directed or undirected graph. A graph G consists of a node set V = {v1, v2, . . . , vN} and an edge
set E ⊆ V ×V. If the edge of the graph is an unordered pair of nodes, which means (vi, vj) = (vj, vi)

(i, j = 1, 2, . . . , N), the graph is undirected. Similarly, if the edge of the graph is an ordered pair of nodes,
which means (vi, vj) 6= (vj, vi), it is a directed graph. A =

[
aij
]

is the adjacency matrix. When (vi, vj) ∈ E,
aij > 0; otherwise, aij = 0. The neighbor nodes of vi can be expressed as Ni = {vj : (vj, vi) ∈ E}.
The in-degree di (that is, the sum of the elements of the i-th row of matrix A) of node i is defined as
di = ∑j∈Ni

aij. Then, the in-degree matrix is defined as D = diag
{

di
}

and the Laplacian matrix L is
defined as L = D− A. If we can always find a path between any two nodes in an undirected graph, it
is called a connected graph; in a directed graph, it is called a strongly connected graph.

An important lemma is needed for the following analysis and proof, which is given as follows:

Lemma 1. If the network topology is a strongly connected graph and the connection weights aij > 0, then there
exists a vector γ being constituted by positive elements, which satisfies γTL = 0 [19].
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3.2. Output Synchronization Problem Description

Based on the graph theory, the PCH-D model (7) of a single DFWT can be expanded to that of a
wind turbine group. Then, the definition of output synchronization is given. In the following content,
i = 1, 2, . . . , N if it is not specified.

The PCH-D model of a wind turbine group is described as{
ẋi = (Ji − Ri)∇Hi(xi) + Giµi,
yi = GT

i ∇Hi(xi),
(9)

where the state vector of the i-th wind turbine is xi =
[
si E

′
qi E

′
di

]T
; the input is µi =

[
µdri
µqri

]
;

the output is yi =

[
ωsi

Lmi
Lrri

(
E
′
qi +

Pmi
2iqsi

)
−ωsi

Lmi
Lrri

(
E
′
di +

Pmi
2idsi

)]; the gradient of the Hamiltonian energy function is

∇Hi =
[
si E

′
qi +

Pmi
2iqsi

E
′
di +

Pmi
2idsi

]T
; Ji, Ri, and Gi are identical to J, R, and G in Equation (7),

respectively, and the only difference between them is that Ji, Ri , and Gi have the index i with each
variable, which represents the parameters of the i-th wind turbine.

The output synchronization of the system (9) is defined as follows:

Definition 1. Consider a network system consisting of N PCH-D nodes (9); if the output of every node satisfies

lim
t→∞
‖yi(t)− yj(t)‖ = 0, ∀i, j = 1, . . . , N, (10)

where ‖ · ‖ represents the Euclidean norm, then the system is said to have output synchronization [20].

3.3. Coordinated Control of Wind Turbine Group

Theorem 1. Consider a DFWT group (9) in an offshore wind farm; if its network topology is a connected
undirected graph, and the coordination control is designed as

µi =

[
µdri
µqri

]
= −λ

N

∑
j=1

aij(yi − yj),∀i, j = 1, . . . , N, (11)

where λ > 0 is the adjustable gain, aij is the weight of the link between adjacent nodes i and j, aij = 1 in the
communication network of the wind farm. Then, the closed-loop system composed of (9) and (11) is globally
stable, and all wind turbines can achieve output synchronization.

Proof. Take the Hamiltonian energy function of the entire system H = 2 ∑N
i=1 Hi(xi), and the derivative

of Hamiltonian energy function is

Ḣ = 2
N

∑
i=1
∇T Hi(Ji − Ri)∇Hi + 2

N

∑
i=1
∇T HiGiµi.

Substituting the coordinated control law (11) into the above equation yields

Ḣ = 2 ∑N
i=1∇T Hi(Ji − Ri)∇Hi + 2 ∑N

i=1∇T HiGiµi

= 2 ∑N
i=1∇T Hi(Ji − Ri)∇Hi − 2 ∑N

i=1∇T HiGiλ ∑N
j=1 aij(yi − yj)

= −2 ∑N
i=1∇T HiRi∇Hi − 2 ∑N

i=1 yT
i λ ∑N

j=1 aij(yi − yj).
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Notice that the topological structure of the network is an undirected graph and the Laplacian
matrix of the system is symmetrical; then

Ḣ ≤ −
N

∑
i=1

λ
N

∑
j=1

aijyT
i (yi − yj)−

N

∑
i=1

λ
N

∑
j=1

aijyT
j (yj − yi)

= −
N

∑
i=1

λ
N

∑
j=1

aij(yi − yj)
T(yi − yj) ≤ 0.

The Hamiltonian energy function H(x) can satisfy H̃ = H(x)−H(xe), where xe is the equilibrium
point. Then,

˙̃H = Ḣ ≤ −
N

∑
i=1

λ
N

∑
j=1

aij(yi − yj)
T(yi − yj) ≤ 0,

and H̃ is a Lyapunov function of this system. Therefore, the closed-loop system is globally stable and
all the output signals are bounded. Furthermore, consider the set

E = {xi | Ḣ = 0}

=

{
xi

∣∣∣∣ N

∑
i=1
∇T HiRi∇Hi = 0,

N

∑
i=1

N

∑
j=1

aij(yi − yj)
T(yi − yj) = 0

}
. (12)

Owing to Ḣ = 0, for i, j = 1, . . . , N, the invariant sets can be written as
{

1
T′0i

(
E
′
qi +

Pmi
2iqsi

)2

+

1
T′0i

(
E
′
di +

Pmi
2idsi

)2

= 0
}

and {(yi − yj)
T(yi − yj) = 0}. When the conditions in their intersection are

satisfied, it is known that E = {yi = yj = 0}. According to LaSalle’s invariant set theorem [21], when
t→ ∞, all solutions of the system converge to the set E and all the wind turbines can achieve output
synchronization.

Combining the coordination control (11) with the pre-feedback control (6), the control strategy of
the i-th wind turbine is

ui =

[
vdri
vqri

]
= Ki + µi =

[
Kdri
Kqri

]
+

[
µdri
µqri

]
, (13)

where

Ki =

[
Kdri
Kqri

]
=

Lrri
ωsiLmi

− idsi
T′0i

(Xsi − X
′
si)−

Pmi
2T′0i iqsi

−
(ωsi Pmi

2idsi
− iqsi

2Htoti

)
si

− iqsi

T′0i
(Xsi − X

′
si) +

Pmi
2T′0i idsi

−
(ωsi Pmi

2iqsi
+ idsi

2Htoti

)
si

 , (14)

µi =

[
µdri
µqri

]
=

−λ ∑N
j=1

(
ωsi

Lmi
Lrri

(
E
′
qi +

Pmi
2iqsi

)
−ωsj

Lmj
Lrrj

(
E
′
qj +

Pmj
2iqsj

))
λ ∑N

j=1

(
ωsi

Lmi
Lrri

(
E
′
di +

Pmi
2idsi

)
−ωsj

Lmj
Lrrj

(
E
′
dj +

Pmj
2idsj

))
 . (15)

Therefore, the control strategy is composed of two parts: the pre-feedback control (14) is designed
for realizing the PCH-D form and stabilizing the single unit; the coordinated control (15) is proposed
to coordinate multiple wind turbines in the wind farm and achieve the output synchronization of the
wind turbine group through the communication network.
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The above result can be concluded as Theorem 2, which is the main conclusion of this paper.

Theorem 2. Consider a DFWT group in an offshore wind farm:

dsi
dt = − 1

2Htoti
(E
′
diidsi + E

′
qiiqsi + Pmi),

dE
′
qi

dt = −siωsiE
′
di −

1
T′0i

[
E
′
qi − (Xsi − X

′
si)idsi

]
+ ωsi

Lmi
Lrri

vdri,

dE
′
di

dt = siωsiE
′
qi −

1
T′0i

[
E
′
di + (Xsi − X

′
si)iqsi

]
−ωsi

Lmi
Lrri

vqri.

(16)

Under the action of the pre-feedback control (14), the system can be transformed into PCH-D form:

d
dt

 si

E
′
qi

E
′
di

 =


0 − iqsi

2Htoti
− idsi

2Htoti
iqsi

2Htoti
− 1

T′0i
−siωsi

idsi
2Htoti

siωsi − 1
T′0i

∇Hi +

 0 0
ωsi

Lmi
Lrri

0
0 −ωsi

Lmi
Lrri

 [µdri
µqri

]
. (17)

It is known that the topological structure of a wind farm is a connected undirected graph. By using the
coordinated controller (15), the closed-loop system is globally stable, and all doubly fed wind turbines in the
wind farm can achieve output synchronization.

Remark 1. When the output of the wind turbine group is synchronized, the output of each wind turbine is

yi = GT
i ∇Hi =

[
ωsi

Lmi
Lrri

(
E
′
qi +

Pmi
2iqsi

)
−ωsi

Lmi
Lrri

(
E
′
di +

Pmi
2idsi

)] . (18)

It is known that ∇T HiRi∇Hi = 0 from the set E (12), which means

1
T′0i

(
E
′
qi +

Pmi
2iqsi

)2

+
1

T′0i

(
E
′
di +

Pmi
2idsi

)2

= 0.

Hence, {
E
′
qi +

Pmi
2iqsi

= 0,

E
′
di +

Pmi
2idsi

= 0.
(19)

Note that the active output power of the wind turbines is Psi = −E
′
diidsi − E

′
qiiqsi. When the output of

every turbine is synchronized, we have

Psi = Pmi, (20)

which means that if every wind turbine absorbs the same mechanical power, it will produce the same active
output power. Considering that there are good wind resources on the sea and no adverse influences between the
machines, it can be assumed that the wind energy absorbed by every wind turbine in the same wind farm is
equal. Hence, the machines in a wind farm can achieve output synchronization and generate the same active
power under the action of coordinated control. Furthermore, if a few failed wind turbines disconnect after failure
and the network still forms a connected undirected graph, other wind turbines will operate normally without
influence, which has been proved in Theorem 1.

4. Distributed Coordinated Control of Wind Turbine Groups in Failure Cases

According to the relationship between a failed machine and the wind turbine group, there are two
possible cases: 1© separating the failed machine from the network and changing the network structure;
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2© the failed machine continues to run in the group and the network structure remains unchanged.
In the previous section, we described our research on the first case. In this section, we describe our
investigation into whether the proposed distributed coordinated control works in the second case.

If the failed machine still connects with the grid after failing, it may adversely affect the other
machines in the network. To eliminate the impact of the failed machine, we can allow it to receive
information from other normal units but not give information. Thus, the communication network
cannot be regarded as an undirected graph, but as a directed graph. Therefore, it is necessary to expand
the result of the undirected graph to a directed graph. Consequently, Theorem 1 is transformed into
the following theorem.

Theorem 3. Consider a wind turbine group in an offshore wind farm (9), which includes the failed machine
n f and the group of other machines N f = {1, 2, . . . , n f − 1, n f + 1, . . . , N}. If the topological structure of the
communication network of the group N f is a strongly connected directed graph, the distributed coordination
control of the normal machines is designed according to Equation (11) and the control of the failed machine is
changed into

µn f = −λyn f , (21)

where λ > 0 is the adjustable gain. Then, the closed-loop system given by Equations (9), (11), and (21) is
globally stable and all wind turbines other than the failed machine n f can achieve output synchronization.

Proof. Since the network topology of the group N f is a strongly connected directed graph, based on
Lemma 1, it is known that there exists a vector γ = [γ1, γ2, . . . , γN−1]

T satisfying γT LN−1 = 0, where
γi > 0 and LN−1 is the Laplacian matrix for the communication network without the failed machine.
The Hamiltonian energy function of the whole network is set as

H = 2 ∑
i∈N f

γi Hi(xi) + Hn f (xn f ).

By taking its derivative and substituting the distributed coordination control (11) into it, we have

Ḣ = 2 ∑
i∈N f

γi∇T Hi(Ji − Ri)∇Hi + 2 ∑
i∈N f

γi∇T HiGiµi

+∇T Hn f (Jn f − Rn f )∇Hn f +∇
T Hn f Gn f µn f

= −2 ∑
i∈N f

γi∇T HiRi∇Hi − 2 ∑
i∈N f

γiλ ∑
j∈N f

aijyT
i (yi − yj)

−∇T Hn f Rn f∇Hn f − λyT
n f

yn f .

Since the topological structure of the network is a directed graph, the Laplacian matrix LN−1 is
usually asymmetrical. Then,

Ḣ ≤ − ∑
i∈N f

λγi ∑
j∈N f

aij(yi − yj)
T(yi − yj)− ∑

i∈N f

λγi ∑
j∈N f

aij(yT
i yi − yT

j yj)− λyT
n f

yn f

= − ∑
i∈N f

λγi ∑
j∈N f

aij(yi − yj)
T(yi − yj)− λγT LN−1(YTY)− λyT

n f
yn f

= − ∑
i∈N f

λγi ∑
j∈N f

aij(yi − yj)
T(yi − yj)− λyT

n f
yn f ≤ 0,

where YTY =
[
yT

1 y1 yT
2 y2 . . . yT

NyN

]T
, γ is the matrix form of γi. From Lemma 1, it is known that

γT LN−1(YTY) ≡ 0.
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Thus, the closed-loop system is globally stable, and all of the output signals are bounded. Similar
to the proof of Theorem 1, all of the wind turbines, other than the failed machine, can achieve output
synchronization under the action of the coordinated control.

From the theorem above, it is known that when the failed wind turbine connects to the grid after
a failure, the topological structure of the network is a directed graph, in which other wind turbines
can still run normally and the failed wind turbine works alone without sending out any messages.
Thus, irrespective of whether the failed wind turbine disconnects, the proposed control strategy
reduces the impact of the failure on the wind farm and keeps other machines working normally in an
unattended condition. Therefore, a closed-loop system under distributed control has higher reliability
and flexibility than the one under centralized control.

Remark 2. If the proposed control strategy is applied to real offshore wind farms, the following questions need
to be considered. The first question is the control performances of the wind farm when the parameters of wind
turbines are not correctly identified, especially since the PCH-D model is derived from a perfect knowledge
of those parameters. Hence, the robust control problem of PCH-D need to be further addressed. Second, it is
assumed that every wind turbines absorbs the same wind energy and produces the same active power. In real
wind farms, the interaction between wind turbines is unavoidable and the wind energy absorbed by each wind
turbine cannot be the same. However, if these wind turbines in an offshore farm work in the constant power
stage, the output synchronization and power synchronization can be achieved under the action of the distributed
coordinated control. Third, an offshore wind farm is seen as a network, in which the wind turbines are the nodes
and the communication lines are the links. In real wind farms, the causes of failure are more complex than the
cases considered in this paper, which are possibly caused by the failure wind turbine or the failed communication
line. Some of them can be solved or partially solved by the proposed distributed control, yet more problems cannot
be solved.

5. Verification of Simulations

When simulating with MATLAB (R2012a, MathWorks, Natick, MA, USA), we first verify the
control effect of the closed-loop system when no failures are present. Accordingly, the failure cases
can be divided into two categories: in Case 1, the failed machine disconnects from the grid after
failure; in Case 2, the failed machine connects to the grid after the failure. The control results under
these two conditions are verified. The simulation system includes five doubly fed wind turbines; the
network structure is given in Figure 1. The wind comes from the left. The key parameters are given
in Table 1 [16], where Lss = Lm + Ls, Lrr = Lm + Lr, DFWT is the abbreviation of doubly fed wind
turbine. The block diagram of the control structure implemented in MATLAB is presented in Figure 2.

Table 1. Key parameters of doubly fed wind turbines.

Parameters #1 DFWT #2 DFWT #3 DFWT #4 DFWT #5 DFWT

Htot 3 s 5 s 4 s 6 s 6 s
Lm 2.9 pu 3.1 pu 2.5 pu 3.2 pu 3.3 pu
Ls 0.171 pu 0.159 pu 0.181 pu 0.165 pu 0.170 pu
Lr 0.156 pu 0.149 pu 0.167 pu 0.164 pu 0.163 pu
Rr 0.005 pu 0.008 pu 0.007 pu 0.006 pu 0.006 pu
Iqs 1.8 pu 1.4 pu 0.8 pu 1.6 pu 1.7 pu
Ids 1.6 pu 1.8 pu 1.5 pu 2.0 pu 1.9 pu
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Figure 1. Network structure of an offshore wind farm.

(a)

(b)

Figure 2. The block diagram of the control structure. (a) the coordination control of five wind turbines;
(b) the pre-feedback control of doubly fed wind turbine.

5.1. Results of Distributed Coordinated Control before Failure

Since wind on the surface of the sea is evenly distributed and the wind turbines are far away
from each other, it can be assumed that the mechanical power absorbed by each wind turbine is equal.
The simulation results under the coordinated control are shown in Figure 3. From the results, we can
conclude that the five machines in the wind farm can achieve output synchronization rapidly and
produce the same active power.
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Figure 3. Corresponding curves of the active output power before failure.

5.2. Results of Distributed Coordinated Control in Case 1

The process description is as follows: the fault occurs in the machine at node 5 at 2 s, and it ceases
to operate. Hereinafter, this machine will be referred to as the 5th machine. At 2.5 s, the failed machine
is separated from the network. The change in the topological structure is shown in Figure 4. Curves
showing the changes in active output power during the process are shown in Figure 5.

Figure 4. Change in the topological structure in Case 1.

Figure 5. Corresponding curves of the active output power in Case 1.
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From Figure 5, it is shown that the process before and after failure can be divided into three stages:
1© from 0 s to 2 s, all wind turbines work synchronously; 2© at 2 s, the fault occurs in the 5th machine,

whose output power falls to 0. From 2 s to 2.5 s, the 5th machine is still connected to the network; this
affects the other machines and makes their outputs deviate from the synchronous state. (The 2nd and
4th machines deviate first, and then the 1st and the 3rd machines do.); 3© at 2.5 s, the 5th machine is
cut off from the network and the topological structure is changed, as shown in Figure 4. Accordingly,
the other machines quickly return to the synchronous state.

5.3. Results of Distributed Coordinated Control in Case 2

The process description is as follows: the failure occurs in the 5th machine at 2 s, and it cannot
work normally. Since the 5th machine can still generate power, it is not removed from the network.
However, to eliminate its adverse impact on other machines, the 5th machine receives (but does not
send) messages. The change in the topological structure is shown in Figure 6. Curves showing the
changes in active output power during the process are shown in Figure 7. It is shown that when the
5th machine is still connected to the network, by stopping its outgoing messages, other machines can
still work normally under the coordinated control. The only loss is that of the partial active power of
the failed machine. Thus, the damage caused by the fault can be greatly reduced.

Figure 6. Change in the topological structure in Case 2.

Figure 7. Corresponding curves of the active output power in Case 2.

From the simulation results, it is shown that problems caused by a sudden failure can be partially
solved by employing autonomous coordination control. Thus, the control strategy enhances the
reliability of wind turbine groups and minimizes losses experienced by wind farms, which has an
important application value for unattended offshore wind farms.
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6. Conclusions

In this paper, a distributed coordination control mechanism has been proposed to solve the
problems of wind turbine groups in offshore wind farms. In contrast to centralized control, distributed
control provides stronger adaptability and flexibility, making it more suitable for unattended offshore
wind farms. Based on the Hamiltonian energy theory, the single-machine model of a DFWT is expanded
to a multi-machine model with network structure information. Subsequently, a distributed coordinated
control mechanism is designed for managing the system under normal and failure conditions.
Finally, the simulations prove the effectiveness of the proposed control method. However, the output
synchronization of multiple wind turbines is only the primary control target for offshore wind turbine
groups. More complex distributed control problems, such as the leader–follower control and the
complementary control, need to be further investigated. In addition, the distributed coordinated
control proposed in this paper can only solve the control problem of wind turbine groups in the
constant power stage. When the offshore wind turbine cluster works in the maximum power tracking
stage, new distributed control strategies need to be studied.
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