Next Article in Journal
Green, Green, It’s Green: A Triad Model of Technology, Culture, and Innovation for Corporate Sustainability
Next Article in Special Issue
A Review of the Economic, Social, and Environmental Impacts of China’s South–North Water Transfer Project: A Sustainability Perspective
Previous Article in Journal
Integrated Landscape Approach: Closing the Gap between Theory and Application
Article Menu
Issue 8 (August) cover image

Export Article

Open AccessArticle
Sustainability 2017, 9(8), 1366; doi:10.3390/su9081366

Projecting the CO2 and Climatic Change Effects on the Net Primary Productivity of the Urban Ecosystems in Phoenix, AZ in the 21st Century under Multiple RCP (Representative Concentration Pathway) Scenarios

1,2
and
1,3,*
1
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
2
University of Chinese Academy of Sciences, Beijing 100049, China
3
School of Resources Environment Science and Engineering, Hubei University of Science and Technology, Xianning 437100, China
*
Author to whom correspondence should be addressed.
Received: 5 May 2017 / Revised: 28 July 2017 / Accepted: 29 July 2017 / Published: 3 August 2017
View Full-Text   |   Download PDF [8319 KB, uploaded 3 August 2017]   |  

Abstract

Urban vegetation provides ecological services that promote both the ecosystem integrity and human well-being of urban areas, and thus is critical to urban sustainability. As a key indicator of ecological health, net primary productivity (NPP) provides valuable information about the performance of urban ecosystem in response to the changes in urban climate and atmosphere in the 21st century. In this study, a process-based urban ecosystem model, HPM-UEM (Hierarchical Patch Mosaic-Urban Ecosystem Model), was used to investigate spatiotemporal dynamics of urban ecosystem NPP in the Phoenix city, AZ under three representative concentration pathway (RCP2.6, RCP4.5 and RCP8.5) during the 21st century. The results indicated that, by the end of the 21st century, the urban ecosystem’s NPP would increase by 14% (in RCP2.6), 51% (in RCP4.5) and 99% (in RCP8.5) relative to that in the late 2000s, respectively. Factorial analysis indicated that CO2 fertilization effect would be the major driver of NPP change, accounting for 56–61% of the NPP increase under the scenarios. Under the RCP2.6 scenario, the strongest NPP increase would be found in the agricultural lands located in the west and southeast of the city. Under the RCP4.5 and RCP8.5 scenarios, the strongest NPP increase would be found in the mesic residential areas that mainly located to the eastern, southern, and southwestern of the Phoenix Mountains Preserve. Although higher ecosystem NPP in the future implies improved ecosystem services that may help to alleviate the heat stress (by providing more shading) and air pollution in the city, this will be at the cost of higher irrigation water usage, probably leading to water shortage in the natural ecosystems in this arid region. Furthermore, this study indicated the rich (such as in mesic residential area) would enjoy more benefits from the improved urban ecosystem services than the poor (such as in xeric residential area). View Full-Text
Keywords: net primary productivity (NPP); urban ecosystem; HPM-UEM model; carbon fertilization effect; climate change net primary productivity (NPP); urban ecosystem; HPM-UEM model; carbon fertilization effect; climate change
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Chen, C.; Zhang, C. Projecting the CO2 and Climatic Change Effects on the Net Primary Productivity of the Urban Ecosystems in Phoenix, AZ in the 21st Century under Multiple RCP (Representative Concentration Pathway) Scenarios. Sustainability 2017, 9, 1366.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sustainability EISSN 2071-1050 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top