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Abstract: The spring flowering of tree peony (Paeonia suffruticosa) not only attract tens of million
tourists every year, but it can also serve as a bio-indicator of climate change. Examining
climate-associated spatiotemporal changes in peony flowering can contribute to the development
of smarter flower-viewing tourism by providing more efficient decision-making information.
We developed a panel data model for the tree peony to quantify the relationship between
full-flowering date (FFD) and air temperature in the middle and lower reaches of China’s Yellow
River. Then, on the basis of the model and temperature data, FFD series at 24 sites during 1955–2011
were reconstructed and the spatiotemporal variation in FFD over the region was analysed. Our
results showed that the panel data model could well simulate the phenophase at the regional scale
with due consideration paid to efficiency and difficulty, and the advance of peony FFD responded to
the increase in February–April temperature at a rate of 3.02 days/1 ◦C. In addition, the simulation
revealed that regional FFDs followed the latitudinal gradient and had advanced by 6–9 days over
the past 57 years, at the rate of 0.8 to 1.8 days/decade. Among sub-areas, the eastern forelands of
Taihang Mountains and Luliang Mountains showed more FFD advances than the other areas.

Keywords: tree peony; full-flowering date; panel data model; spatiotemporal variation; climate
change; smarter tourism; decision-making information

1. Introduction

Phenological events, which are independent of instrumental records, could serve as bioindicators
of climate change [1,2]. Numerous studies in Europe and North America indicated that spring
phenophases have advanced to various extents at mid- and high latitudes in recent decades [3–5].
Similar conclusions were also made in Chinese literature [6–8]. These studies also provided insight
into how future climate changes may manifest in biological systems. Among these studies, ornamental
plants and economic plants in China have received a few attention (e.g., [9–11]). However, most
of related studies were still on local scales. By comparison, scaling phenology from the local to the
regional level has been an international trend in oversea studies [12,13]. Therefore, further phenological
investigations on the two kinds of plants in China are still necessary [14].

Tree peony (Paeonia suffruticosa) is one of the most attractive native ornamental plants in China
(Figure 1A). Furthermore, it is also an important economic plant with medicinal and oil-utilized values,
which is especially attractive to elderly and female tourists. In 2017, the peony festival in Luoyang
alone attracted about 24.94 million tourists and generated 22.35 billion RMB incomes. Nevertheless,
the related seasonal tourism is vulnerable to climate changes. The starting dates of peony festival in
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Luoyang has advanced from April 15 to April 5 in recent 30 years, due to the impact of global warming.
In addition, the festival date, which was decided by reference to the spring phenophases of the last
year, sometimes occurs a little earlier or later than the actual flowering. As a result, tourists may
not happen to travel in the best flower-viewing period for tree peonies, making a potential negative
effect on visiting experiences. Disappointing visiting experiences have been proved to restrain tourist
spending [15] and discourage tourists from revisiting [16]. Therefore, in order to increase the economic
and social efficiency of the flower-viewing tourism, related designs of landscape and travel route need
more spatiotemporal knowledge of florescence than ever.

At present, the actual observation data on peony florescence are lacking in many places of
China. Considering that phenological models are the only method that can project into the future or
reconstruct the past [17], we utilized a new kind of phenological model—the panel data model—to
quantify the relationship between temperature and full-flowering date (FFD), and reconstructed the
spatiotemporal variation in peony FFD in stations. The applications of this model for phenological
studies in China have not been reported, but it can also provide a good accuracy in prediction like
the process-based model. In the meantime, it is simpler to set up than the process-based model. The
reconstructed spatiotemporal variation in peony FFD upscaled peony phenology from the single site
to the larger region, and extrapolated the results to the time period beyond the actual observation. This
study will not only contribute to our understanding of peony phenology changes during 1955–2011
which were unknown in the past, but also provide insight into how peony florescence will response
to the future climate changes. It could provide the flower-viewing tourism with a scientific basis on
its adaptation and mitigation policies that aim to lessen the impact of climate change, promote the
tourism management and services to be smarter, and enrich tourists experiences.
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2. Materials and Methods

2.1. Phenological and Meteorological Data

Twelve phenological data sets in the middle and lower reaches of the Yellow River (Figure 1B,C)
were used in this study to analyze the spatiotemporal variation in peony FFD. This choice was
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made because the most famous cultivar group of tree peonies in China—Zhongyuan Peony—is
traditionally grown in this warm-temperate region [18]. Two hundred and twenty observations were
collected from1963 to 2011. The geographic location and observations of each station were provided
in Table 1. In addition to date series from Heze and Shijiazhuang as well as Kaifeng, most of the
other observations are derived from the China Phenological Observation Network (CPON), which is
a nationwide system of phenological monitoring. Date series from Heze were mainly picked out from
the previous literatures [19–21], while those from Shijiazhuang were obtained from the Shijiazhuang
phenological data platform. Some reports in local newspapers also contributed 45 observations to data
sets. All the observations conformed to the same standard of full flowering: at least 50% of flowers are
in full bloom [22].

Table 1. The summary of peony FFD dataset at each station.

Station Province Location Elevation
(ma. s. l.) Period Observations

Beijing Beijing 40◦01′ N, 116◦20′ E 116 1963–2011 40
Shanhaiguan Hebei 40◦02′ N, 119◦44′ E 45 1967–1972 6
Shijiazhuang Hebei 38◦01′ N, 114◦25′ E 84 1983–2008 15

Xintai Hebei 37◦04′ N, 114◦30′ E 77 1985–1996 12
Kaifeng Henan 34◦46′ N, 114◦20′ E 25 2006–2010 5
Luoyang Henan 34◦40′ N, 112◦25′ E 138 1964–2011 43

Xi’an Shaanxi 34◦13′ N, 108◦58′ E 438 1963–2011 35
Yulin Shaanxi 38◦14′ N, 109◦44′ E 1045 1965–1966 2
Heze Shandong 35◦17′ N, 115◦29′ E 55 1963–2011 49
Tai’an Shandong 36◦10′ N, 117◦01′ E 155 1982–1989 8
Zibo Shandong 36◦53′ N, 118◦14′ E 33 1966–1967 2
Taigu Shanxi 37◦30′ N, 112◦37′ E 796 1964–1966 3

To construct and evaluate the panel data model, we used mean monthly temperatures data of
1963–2011 from 12 cs, which are located nearby the above phenological stations. After the model
validity test, temperatures data from other 12 meteorological stations (Figure 1C) were used to
reconstruct FFD series in the study area. All meteorological data were obtained from the China
Meteorological Data Sharing Service System (http://cdc.cma.gov.cn/).

2.2. Methods

2.2.1. Model Construction

The term “panel data” refers to the pooling of observations on a cross-section of individuals over
several periods [23]. The regional data on the FFD of Zhongyuan Peony and its climate factors are
fully consistent with the essential trait of panel data sets. According to the biometrics and statistics
literature, panel data sets possess many advantages over conventional cross-sectional or time-series
data sets [24]. For example, panel data can give more variability, more degrees of freedom and more
estimate efficiency. Remarkably, this model can control individual heterogeneity, whereas time-series
and cross-section studies may run the risk of obtaining biased results, e.g., see [25,26]. Panel data
models haven’t been widely applied in the phenological field, so we tried this new approach to
peony FFD.

The subject we are interested in is the quantitative relation between the annual FFDs of tree
peonies {Yit} and the related temperature factor {Xit}. Here, Yit was measured as days of deviation
from 23 April (same as below), which is the mean value of all FFD data in the distribution area
during 1963–2011. For the Zhongyuan peonies, the temperature condition during February–April
is the predominant factor controlling FFD (e.g., [18,19]). Thus, February–April mean temperature
was selected as the only input variable of the model. Aim to construct a uniform model which

http://cdc.cma.gov.cn/
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can be extrapolated to any station and time period, a linear regression with variable intercepts was
constructed. The function can be written as the following form:

Yit = α + βXit + uit (1)

where α is a scalar, β is a constant, Xit is the explanatory variable (February–April mean temperature)
in the year t at the station i. The error term, uit, represents the effects of those omitted variables that
are peculiar to both the individual stations and time periods. Ideally, individual-specific effect and the
remainder disturbance, say µi and vit, should be explicitly introduced into omitted variables. Thus,
uit can be written as:

uit = µi + vit (2)

As for this model, parameter estimators are different under three premise conditions. Under the
first assumption, the sub-model is called pooled model, whose µi and vit are identically zero for
all i and t. Ordinary-least-squares (OLS) estimation is appropriate for it. Under the second one, the
sub-model is called fixed effects model. In the function, µi are fixed parameters and the stochastic
vit are independent and identically distributed. Least-squares dummy-variable (LSDV) estimation is
the more proper approach. Under the last one, the sub-model is called random effects model. µi and
vit are both random, and Xit are independent of µi and vit, for all i and t. Generalized-least-squares
(GLS) estimation is its optimization algorithm. Hsiao elaborated on the relevant details and assessed
the corresponding parameter estimation efficiencies [24].

In order to reduce or avoid the omitted-variable bias as much as possible, the redundant
fixed-effects test and Hausman test are often used to find out the most appropriate model form [22–26].
The former can confirm that if the fixed-effects assumption was more appropriate than the pooled
assumption. The latter helps to choose between the model with fixed effects and the one with
random effects. This paper employed the EViews software to run all the related tests and estimate the
model parameters.

2.2.2. Model Validity Test

The double cross-validation was used to test the robustness of this model. Samples were firstly
split into two subsets during different periods: 1963–1987 and 1988–2011. Then, the calibration
equation was constructed with the training set in 1963–1987 by using the LS estimator, while the
validation set in 1988–2011 was leaved out to test the generalization ability of the derived model. Four
statistics were used to measure the fractional variance between actual and reconstructed FFDs. Among
them, the calibration validity was measured by the determination coefficient (square of correlation
coefficient, R2) and the root-mean-square error (RMSE, Equation (3)), and the verification validity was
measured not only by the R2 and RMSE, but also by the reduction of error (RE, Equation (4)), and the
coefficient of efficiency (CE, Equation (5)). In the final step, switching the subset in 1988–2011 as the
calibration data and another subset in 1963–1987 as the verification data, the same tests were run.

RMSE =

√
∑(xi − x̂i)

2

n
(3)

RE = 1.0− ∑(xvi − x̂vi )
2

∑(xvi − xc)
2 (4)

CE = 1.0− ∑(xvi − x̂vi )
2

∑(xvi − xv)
2 (5)

where xi and x̂i are the observed and simulated data in i year of the calibration period or the verification
period, xvi and x̂vi are the observed and simulated data in i year of the validation period, xc is the mean
observed FFD in the calibration period, and xv is the mean observed data in the validation period.
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2.3. Spatiotemporal Variation Analysis of Simulated Peony FFDs

We took five steps to analyse the spatiotemporal variation in the regional peony FFDs. Firstly, on
the basis of the panel data model, annual FFDs in 1955–2011 were reconstructed for all phenological
and meteorological stations. Secondly, the 57-year mean values of every reconstructed FFD series were
calculated. Thirdly, their contour distribution was derived by the Kriging interpolation. Fourthly,
a linear regression between FFDs and years was used to evaluate the temporal trends and calculate the
accumulated advance in FFD for each station. Finally, the spatial pattern of accumulated advances in
FFD over the study area was analysed by use of ArcGIS.

3. Results

3.1. Optimised Parameters Estimation

According to the principle of the above-mentioned tests [23,27], the fixed effects model is superior
to the pooled model, because the p-value of redundant fixed-effects test is smaller than 0.05 (Table 2).
In meanwhile, the random-effects model is better than the fixed-effects model, because of the p-value
larger than 0.05 yielded by the Hausman test (Table 3).

Table 2. The result of redundant fixed-effects test.

Effects Test Statistic d. f. Prob.

Cross-section F 7.035 (11,207) 0.000
Cross-section Chi-square 69.868 11 0.000

Table 3. The result of Hausman test.

Test Summary Chi-Sq. Statistic Chi-Sq. d. f. Prob.

Cross-section random 0.016 1 0.899

After the random-effects model was identified as the optimal choice, we fitted the model by the
GLS estimation. Estimated parameters and statistical indicators of the model accuracy were provided
in Table 4. Among them, the R2 is as high as 0.680 (p < 0.001) and the RMSE is 3.037. The equation of
this unified model for FFD predicting across the region can be written as:

Yit = 24.406− 3.018× Xit (6)

From the equation, we can know that the advance of regional peony FFD responded to the
increase in spring (February–April) temperature at a rate of −3.02 days/1 ◦C. The predicting values of
FFD at each phenological station can be further revised by the corresponding uit.

Table 4. Parameter estimation for the random effects model.

Parameter Fitted Value Std. Error Prob.

α 24.406 1.192 0.000
β –3.018 0.139 0.000

uit for individual phenological stations

Beijing −1.000 Heze 0.335
Kaifeng −0.717 Luoyang −2.205

Shanhaiguan −2.806 Shijiazhuang 0.925
Tai’an −1.323 Taigu 0.034
Xi’an −0.190 Xingtai 3.617
Yulin 2.874 Zibo 0.457

Weighted Statistics

R2 0.682 RMSE. 3.037
Adjusted R2 0.680 F-statistic 466.811

Prob. 0.000
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3.2. Model Validity

The model was satisfactory in terms of four test statistics. First, the determination coefficient
indicates that the regression models can explain 70–80% of the FFD variance (Figure 2). Second, RE and
CE over the validation period 1988–2011 are 0.77 and 0.65, respectively; whereas they are 0.73 and 0.61
for the validation period 1963–1987. According to climatological and hydrological experiences [28–30],
both of them being positive indicates high reliability of the derived reconstructions. The medians
of R2 and RE as well as CE are 0.76, 0.75, and 0.63, respectively. The decreasing trend in these three
statistics follows exactly the expected rigor level of the regression model calibration and validation
tests. Last, the median RMSE is 3.62, which indicates the kind of regression model has a good
predictive/reconstructive performance. The predicting validity of this model has been proved in
biometric and econometrics fields [23,27]. Our study further shows that this approach can also provide
accurate results for phenological studies.
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Figure 2. Results of determination coefficient and RMSE for the double cross-validation. (A) 1963–1987
as the calibration period; (B) 1988–2011 as the validation period; (C) 1988–2011 as the calibration period;
and (D) 1963–1987 as the validation period. Here, both x and y are in terms of days of deviation from
23 April.

3.3. Spatial Variations in 57-Year Mean FFD and FFD Trend

The simulated spatial pattern of 57-year mean FFDs across the study area was shown in Figure 3.
The regional FFD gradually became later from south to north with an amplitude of approximately
1 month. The earliest FFD occurred on 15 April in latitude 31◦ N, while the latest FFD occurred on
17 May in latitude 40◦ N. In addition, the FFD was not strictly linearly increased with latitude, which
is more obvious in the northern subarea than in the southern subarea. These results imply that the
atmospheric meridional temperature gradient should be the most important controlling factor for
the spatial pattern of peony FFDs, while temperature change closely related to impacts of large-scale
terrains leads to the zonal spatial heterogeneity of peony FFDs.
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The reconstructed peony FFDs in the study area for 1955–2011 showed significant advance
trends. The mean linear trend in the study area was about −1.3 days/decade, varying from −1.8 to
−0.8 days/decade (p < 0.001) at different phenological stations (e.g., Beijing, Heze, Luoyang, and
Tai’an, shown in Figure 4). In general, the study area can be divided into three sub-areas, according
to the magnitude of advance over the past 57 years (Figure 5). The first sub-area included Beijing,
Tianjin, most parts of Hebei, east of Shanxi, and north of Henan, where the FFD advance was greatest
(about 8–9 days). The second sub-area was in east of Shaanxi, west of Shanxi, north of Henan, and
west of Shandong, where the advance in FFD was moderate (about 7–8 days). The last one was located
in east of Shandong, south of Henan, northwest of Hubei, and southeast of Shaanxi, where the FFD
exhibited 6–7 days of advance.
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4. Discussion

4.1. Benefits of the Panel Data Model

The panel data model possesses several major advantages over conventional phenological
modelcs. The single-site linear regression model is simple to set up and usually provides accurate
results. However, its extrapolation to other regions and time periods may not be robust, especially
in extreme conditions. The process-based model can produce a smaller extrapolation error than the
former, but it is more difficult to establish. It costs much more time to run simulations, and the
simulation effectiveness depends on the algorithm schedule, the choice of initial temperature, and
the number of iterations. By comparison, the panel data model can be viewed as a simplified form of
the process-based model, according to the cognition that plant growth during the quiescent period is
nearly linear [12,31]. It is much more robust than the single-site linear regression model, and easier
to establish than the process-based model. More importantly, the two conventional models cannot
control the individual heterogeneity and thus run the risk of obtaining biased results. However, by
utilizing information on both the intertemporal dynamics and the individuality of the stations being
investigated, the panel data model is able to control in a more natural way for the effects of those
missing or unobserved variables [23,24].

For the Zhongyuan peonies, spring temperature is the predominant factor controlling FFD, while
the precipitation and sunshine duration have no significant influences (e.g., [18,19]). Therefore, we
constructed a panel data model which has only one explanatory variable—February–April mean
temperature. However, for other plant species in China, the precipitation and sunshine duration
may need to be considered as the explanatory variables (e.g., [32,33]). Conventional time-series
studies in the phenological field are often plagued with the collinearity among explanatory variables.
By comparison, panel data models applied to econometric estimates can reduce the collinearity among
explanatory variables [23,24]. Thus, the panel data model should be expected to have more application
in phenological studies.

4.2. The Consistency of Regional Phenological Trends

The advanced FFD trend of Zhongyuan Peony was largely consistent with spring phenological
changes in other places. For example, over the past 57 years, the advance of peony FFD in Luoyang,
Heze, Beijing, and Xi’an was respectively −1.2, −1.6, −1.8, and −1.4 days/decade. Another
phenological result from [34] was close to this study: trends of the first leaf date (FLD) for Chinese ash
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trees (Fraxinus chinensis Roxb.) over the period 1952–2007 were nearly −1.1 days/decade in Henan,
−2.0 days/decade in Beijing and Shandong, and −1.4 days/decade in Shaanxi. Furthermore, the first
flowering dates of 23 species at 22 stations in eastern China since the 1960s were found to advance
at the average rate of 1.2 days/decade [35], and the same rate has been reported for the FLD across
the Northern Hemisphere over the period 1955–2002 [36]. The two results are also in good agreement
with the average trend (−1.3 days/decade) of Zhongyuan Peony. Based on the phenology theory that
phenophases of different species in the same climatic zone usually advance or delay synchronously [37],
the advanced FFD trend of Zhongyuan Peony can be viewed as a good proxy of the overall mean
phenological changes in the warm-temperate zone of China during the recent decades.

4.3. Influential Factors on Spatial Heterogeneity in FFD

Peony FFDs in the eastern forelands of Taihang Mountains and Lvliang Mountains showed
steeper gradients and clearer advances of than those in the other sub-areas (Figures 3 and 5). These
piedmont regions are located in the climate-sensitive area (32◦–42◦ N, 110◦–120◦ E) where the strongest
advance of FLD has occurred in China during the past 50 years [38]. In addition, these regions belong
to the high-risk area of wheat dry-hot wind in northern China [39]. We consider that the foehn caused
by mountainous terrain should impose an important influence on the above phenomena. It is well
known that the foehn can not only cause the temperature to rise, but also cause the relative humidity
to fall on the lee side of a mountain range. Furthermore, the advance of spring phenophases can be
prompted by it. In the case of the Taihang Mountains, the foehn area can generally extend 170 km
to the east, and up to 254 km farther during stronger foehn processes [40]. In general, a foehn area
possesses a heat resource as much as the southern areas about 2–3 latitudes away [41]. Beijing, Baoding,
Shijiazhuang and Xingtai, where peony FFD showed the strongest advance in the study area, happen
to locate in the above-mentioned range.

4.4. Practical Applications of Phenoloigcal Researches in Tourism

In China, tourism industry has gradually become a pillar industry and played an important
role in the society during the past 30 years. However, there are still some problems which cannot
be neglected in the development of tourism, such as inefficient management, low service level, and
mismatch with accelerated technological and social developments. In order to regulate and upgrade the
traditional tourism, the smarter tourism, inspired by IBM’s “Smarter Planet” and “Smarter City”, has
been put forward as a strategic solution [42]. Our research results can contribute to the development
of the smart tourism by providing more efficient and intelligent information. From a perspective
of tourism destination, phenological knowledge can help them to first recognise the new challenge
arising from changes in both the climate and tourists, and then to proactively respond in terms of
landscape planning and tourist management. With phenological information being embedded on
tourism organisations and entities, it can also enhance the competitiveness of destinations, support
travel agencies to make smarter decision on travel routes, and enrich experiences of tourists and
local residents.

Bringing smartness into tourism, especially into tourism destinations, requires phenological
studies in China to be more closely connected with the development of tourism industry. Although
this paper and some other studies (e.g., [43–45]) has shed some light on the spatiotemporal dynamics
of flower-viewing in China, more measures are still needed to expand the contributions of phenology.
For example, in most of the time, tourists only have limited knowledge and low awareness on the
phenological changes of destinations they visit. Thus, more regional phenological calendars should
be updated with the support of observation data and simulation results as soon as possible, and
be provided by the tourism service platform of destinations. Furthermore, due to uncertainties in
future climate, the risk prediction of phenoloigcal landscapes should combine phenological models
with different climate scenarios and related strategies of risk management should also be adapted
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to them. In addition, analyzing the relation between the spatiotemporal changes of tourist flow and
phenoloigcal landscapes would be a prosperous field in tourism geography for the future.

5. Conclusions

In the present study, a panel data model was utilized to quantify the relationship between the
peony FFD and spring temperature, and the spatiotemporal variation in FFD in the middle and lower
reaches of China’s Yellow River in 1955–2011 was further analyzed on the basis of the model. The
following conclusions can be made: (1) the panel data model can well simulate FFDs at the regional
scale, with due consideration paid to both efficiency and difficulty; (2) the advance of peony FFD
responded to the increase in February–April temperature at a rate of 3.02 days/1 ◦C; (3) regional FFDs
of tree peonies followed the latitudinal gradient and had advanced by 6–9 days over the past 57 years,
at the rate of 0.8 to 1.8 days/decade; (4) the eastern forelands of Taihang Mountains and Luliang
Mountains showed more FFD advances than the other sub-areas.
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