Next Article in Journal
Curvilinear Relationship between Corporate Innovation and Environmental Sustainability
Previous Article in Journal
Spatial Variations and Determinants of Per Capita Household CO2 Emissions (PHCEs) in China
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessArticle
Sustainability 2017, 9(7), 1278; doi:10.3390/su9071278

Long Term Quantification of Climate and Land Cover Change Impacts on Streamflow in an Alpine River Catchment, Northwestern China

Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
*
Author to whom correspondence should be addressed.
Received: 11 April 2017 / Revised: 11 July 2017 / Accepted: 19 July 2017 / Published: 20 July 2017
View Full-Text   |   Download PDF [11373 KB, uploaded 21 July 2017]   |  

Abstract

Quantifying the long term impacts of climate and land cover change on streamflow is of great important for sustainable water resources management in inland river basins. The Soil and Water Assessment Tool (SWAT) model was employed to simulate the streamflow in the upper reaches of Heihe River Basin, northwestern China, over the last half century. The Sequential Uncertainty Fitting algorithm (SUFI-2) was selected to calibrate and validate the SWAT model. The results showed that both Nash-Sutcliffe efficiency (NSE) and determination coefficient (R2) were over 0.93 for calibration and validation periods, the percent bias (PBIAS) of the two periods were—3.47% and 1.81%, respectively. The precipitation, average, maximum, and minimum air temperature were all showing increasing trends, with 14.87 mm/10 years, 0.30 °C/10 years, 0.27 °C/10 year, and 0.37 °C/10 years, respectively. Runoff coefficient has increased from 0.36 (averaged during 1964 to 1988) to 0.39 (averaged during 1989 to 2013). Based on the SWAT simulation, we quantified the contribution of climate and land cover change to streamflow change, indicated that the land cover change had a positive impact on river discharge by increasing 7.12% of the streamflow during 1964 to 1988, and climate change contributed 14.08% for the streamflow increasing over last 50 years. Meanwhile, the climate change impact was intensive after 2000s. The increasing of streamflow contributed to the increasing of total streamflow by 64.1% for cold season (November to following March) and 35.9% for warm season (April to October). The results provide some references for dealing with climate and land cover change in an inland river basin for water resource management and planning. View Full-Text
Keywords: streamflow; climate change; land cover change; Heihe River Basin; SWAT streamflow; climate change; land cover change; Heihe River Basin; SWAT
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Yin, Z.; Feng, Q.; Yang, L.; Wen, X.; Si, J.; Zou, S. Long Term Quantification of Climate and Land Cover Change Impacts on Streamflow in an Alpine River Catchment, Northwestern China. Sustainability 2017, 9, 1278.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sustainability EISSN 2071-1050 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top