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Abstract: Mapping soil texture in a river basin is critically important for eco-hydrological studies and
water resource management at the watershed scale. However, due to the scarcity of in situ observation
of soil texture, it is very difficult to map the soil texture in high resolution using traditional methods.
Here, we used an integrated method based on fuzzy logic theory and data fusion to map the soil
texture in the Heihe River basin in an arid region of Northwest China, by combining in situ soil
texture measurement data, environmental factors, a previous soil texture map, and other thematic
maps. Considering the different landscape characteristics over the whole Heihe River basin, different
mapping schemes have been used to extract the soil texture in the upstream, middle, and downstream
areas of the Heihe River basin, respectively. The validation results indicate that the soil texture map
achieved an accuracy of 69% for test data from the midstream area of the Heihe River basin, which
represents a much higher accuracy than that of another existing soil map in the Heihe River basin.
In addition, compared with the time-consuming and expensive traditional soil mapping method,
this new method could ensure greater efficiency and a better representation of the explicitly spatial
distribution of soil texture and can, therefore, satisfy the requirements of regional modeling.

Keywords: soil texture; soil land inference model; data fusion; arid region

1. Introduction

Soil texture is one of the most basic physical properties of soils. Different soil textures that vary in
their composition and contents of specific particles have very different soil hydraulic characteristics,
such as water retention and hydraulic conductivity, and soil thermal parameters, such as thermal
conductivity and heat capacity [1]. All of these differences significantly affect soil hydrological
processes, including soil moisture content, evaporation, transpiration, and infiltration. Therefore,
the soil texture type, which has an important influence on the simulation of water cycle and surface
fluxes, is a critical parameter in land surface process models, hydrological models, and land surface
process-coupled atmospheric models. Currently, these models always require soil properties as inputs
according to the soil texture classification scheme of the United States Department of Agriculture
(USDA). However, most available soil maps in China are based on the Chinese occurrence taxonomy or
diagnosis taxonomy classification criteria, which cannot be directly used in land surface and distributed
hydrological models. Therefore, the exploration of digital soil mapping methods that can directly
generate accurate Chinese soil texture maps using existing soil environmental data and soil survey
data would be of great value and necessity.
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The digital soil mapping technique began with the proposal of a “clorpt equation” by an American
pedologist, Hans Jenny, in 1941. This equation describes the soil as a function of the climate, living
beings, topography, parent material, and time [2]. Since then, many digital soil mapping methods based
on the soil-landscape relationship have been developed [3], including linear regression models [4],
discriminant analysis [5], decision tree methods [6], geo-statistical models [7], artificial neural network
models [8], and fuzzy clustering and fuzzy logic methods [9,10]. Among these statistical models, the
linear regression model has a simple structure and is widely accepted, with relatively good outcomes
from its application. However, a linear model cannot explain the complicated interactions between
processes in the soil [11]. Discriminant models have a similar structure to linear regression models
and can also be used to derive relatively good results when used to predict soil types. However,
the discriminant model has problems similar to those of the linear model. A decision tree model
can represent non-linear relationships and provides relatively good support for different data types.
However, in situations with relatively few nodes, it often predicts unrealistically abrupt changes in
soil type [11]. Geo-statistical models have the best prediction accuracy among the statistical models;
their primary disadvantage is their complexity and high computation cost. The variance function needs
to be manually selected based on experience, and the applicability of such models is limited to the
region set in the model [12]. The fuzzy clustering model has certain advantages in terms of spatial
extrapolation and can be combined with expert knowledge [13]. Its disadvantage is that there are still
many problems with knowledge acquisition, and the validity and accuracy of the rules for such a model
cannot be guaranteed.

The aforementioned digital soil mapping methods have mostly been developed for regional scales
and serve for soil texture mapping at multiple scales. However, efficient digital soil mapping has not been
conducted in the Heihe River basin (HRB). Many soil geological surveys have been conducted in the past,
amassing a considerable collection of profile survey data on soil texture. There are also some existing
soil comparisons at the catchment scale. For example, Gao et al. collected 53 sub-type soil profiles within
the basin and established the distribution of soil texture types in the HRB at a 30-s resolution based on a
sub-type soil distribution map (1:10,000 scale) of the HRB by comparing the map with a soil triangular
diagram relating the mapped sub-types to the corresponding international universal soil texture type
classification criteria of State Soil Geographic (STASGO) [14]. However, integrated eco-hydrological
research in the HRB still uses global and regional soil texture maps, such as the global soil texture map
(1:1,000,000 scale) published by the United Nations Food and Agriculture Organization (FAO) in 2009 [15],
the China soil texture map developed by Institute of Soil Science, Chinese Academy of Sciences [16,17]
and the regional soil texture map of China developed by Beijing Normal University [17]. The HRB
is an experimental basin used for the integrated study of biological hydrology in China, and a set of
high-quality soil texture maps is urgently needed for an integrated eco-hydrological model of Heihe. With
the accumulation of ground survey data and the development of mapping methods recently, the new soil
texture map in HRB have been produced or are developing [18–20].

This study develops a digital mapping scheme for soil texture at the basin scale. Based on fuzzy
logic inference theory, this scheme uses a Geographic Information System (GIS) to combine multiple
environmental factors that affect soil texture with available soil type maps and soil texture survey data to
extract the relationship between soil and environment through artificial intelligence, machine learning,
and expert knowledge. This produced a high-quality and high-resolution soil texture map for the
eco-hydrological model of the HRB. This paper is organized as follows: This section introduces the need
for soil texture mapping in Heihe River Basin. Section 2 primarily describes the characteristics of the
research area of the HRB. Section 3 describes the data and methods. Section 4 analyzes and verifies the
results and compares them with those of other soil maps, and Section 5 provides a summary of this paper.

2. Heihe River Basin

The HRB, the second largest inland river basin of China, has been used as an experimental river
basin to pursue the integrated study of watershed science and integrated river basin management
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for a long time [21–23]. It is located at 97.1◦ E–102.0◦ E and 37.7◦ N–42.7◦ N, and the basin’s area
is approximately 143,000 km2. Its upstream area includes the Qilian Mountains at the northern
margin of the Tibetan Plateau, where the elevation is approximately 2000–5500 m and the annual
precipitation exceeds 350 mm. This is the runoff-generating area and the water catchment area of the
HRB. The landscapes includes glaciers, cold desert, alpine meadow, shrub meadow, forest, grassland,
and desert grassland from high to low elevation. In the midstream area, irrigated crops and shelter
forest are distributed in the lower part of the piedmont alluvial fan and the river alluvial plain,
exhibiting an oasis landscape dominated by artificial vegetation. The annual average air temperature,
precipitation and potential evaporation are approximately 7 ◦C, 117 mm, and 2390 mm, respectively.
The elevation ranges between 1300 and 1700 m. The downstream area is dominated by the Gobi Desert.
In the lake basin depression along the delta and the alluvial fan on both sides of the Heihe River, there
are areas of desert riparian forest, shrub and meadow vegetation. On the basis of natural landscape
differentiation along the altitudinal gradient and block integrity, the HRB can be divided into six
landscape zones [24]: Forest-steppe zone in the Qilian Mountains (region 1), Oasis zone in the Hexi
Corridor (region 2), Desert-gobi zone in the Northwestern Hexi Corridor (region 3), Ruoshui River
Delta zone (region 4), Desertified zone in the Gurinai Lake Basin (region 5), and Desert-gobi zone in
the Northern Alxa High-plain (region 6), as shown in Figure 1.
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3. Data and Methods

3.1. Data

3.1.1. Soil Profile Data

Measurement data were collected regarding the soil texture from a total of 220 profiles in the HRB.
Due to the variety of data sources, the vertical sample soil layer and grading of the grain sizes was not
uniform. First, we unified the grain size according to the percentage by weight of individual sizes in
the soil, including sands (0.05–2 mm), clay (<0.002 mm), and silt (0.002 mm–0.05 mm), and we then
applied the soil texture classification criteria of the USDA to derive the soil texture types present in the
HRB. Under the soil texture classification criteria of the USDA, soil texture is divided into 12 types,
whereas the soil profile of the HRB only covers eight types, the three dominant types of soil texture
being silt loam, loam, and sandy loam. Specifically, the compositional proportion of silt loam is 42%,
the proportion of loam is 25%, and that of sandy loam is 26%. The combined proportion of the other
five types of soil texture present in the basin (i.e., loamy sand, sand, sandy clay loam, silty clay sand,
and silty sand) is less than 8%. The soil profiles are mainly distributed in the midstream and upstream
area of the HRB (Figure 1), and the soil profiles in the midstream area were mostly concentrated in
Linze County, Ganzhou District, and Shandan County of Zhangye City, with fewer profiles in the west
region; in the upstream area of the basin, the soil profiles were primarily distributed in the valley area.

3.1.2. Environmental Factors

The formation of soil is influenced by many environmental factors, such as topography, climate,
biology, parent material, and time. According to the characteristics of the HRB and the data availability,
this study selected 13 environmental factors as impact factors that affect the spatial characteristics
of soil texture distribution in the HRB, including topographic factors (i.e., slope, curvature along the
cross section, and curvature along the plane) derived from digital elevation models (DEM), biological
factors (vegetation type and vegetation index), climatic factors (precipitation, air temperature and
radiation), parent material factors (topographic types and geological types), land use types, and
distance from rivers.

The DEM data were derived from the SRTM (Shuttle Radar Topography Mission) elevation
product with a 90-m resolution. The vegetation type map is sourced from the vegetation map of China
(1:1,000,000 scale) [25]. The vegetation index used a long-term series of vegetation index data based
on SPOT (Système Pour l’Observation de la Terre) imagery in China [26]. The climatic factors were
estimated by using the Global Land Data Assimilation System (GLDAS) and a digital elevation model
of the HRB with a spatial resolution of 1 km to obtain atmospheric driving data for the HRB from
2001–2010 with a spatial resolution of 1 km (multi-year average precipitation, air temperature and
radiation were used here). The topographic data were sourced from a digital topographic dataset
(1:1,000,000 scale) of Western China [27]. The soil parent material data were derived from a national
geological data gallery (1:500,000 scale) [28,29], and the land use factor was based on a land use map
(1:100,000 scale) for China in 2000 [30]. These data were all obtained from the Environmental and
Ecological Science Data Center for West China [31].We pre-processed nine continuously-distributed
environmental factors, including treatment of outliers and standardization. The nine environmental
factors include elevation, slope, curvature along the cross section, curvature along the plan, vegetation
index, precipitation, air temperature, radiation, and distance from rivers. The treatment of outliers
was performed to eliminate extreme values in the data. The basis for the classification of values as
outliers was the distribution histogram for statistics of environmental factors; singular values at the
end of the distribution histograms were excluded. This is the simplest technique and is commonly
used for detecting outliers. In addition, the order of magnitude differed significantly between different
environmental factors, and this could seriously affect the classification results. Therefore, before the
clustering, we performed a standardization of the data by uniformly stretching the environmental
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factors with values greater than 0 into the range of 0–100 and stretching the environmental factors
with negative values into the range of −50 to +50. The 0 values, such as curvature, remain unchanged.
Moreover, the order of magnitude of the original values for the two curvature factors was 10−3 or even
lower, and there were too many significant digits. Therefore, before the calculation, we performed
a uniform multiplication of the values. Although the absolute values of the data became larger,
this did not affect the differences or spatial distribution of the values or the performance of the soil
texture predictions.

3.2. Method

The soil-landscape model is now widely used for regional soil prediction. This method is based
on the classical soil genesis theory, known as the Jenny equation, which defines the soil as a function
of climate, biology, topography, parent material, and time. This function was later simplified to the
following form:

S = f(E) (1)

where S is soil, E represents a vector of the formative environments, and f represents the relationships
between the soil and the environmental conditions.

Using geographic information analysis techniques, such as GIS and remote sensing (RS), we
can quantitatively develop relationships between soil distributions and their environmental factors,
including climate, terrain, vegetation, and so on. Combining these relationships with adequate soil
profile samples, it becomes possible to derive regional soil prediction maps based on the soil-landscape
model. In this study the Soil Land Inference Model (SOLIM) was used to map the soil texture, which
was jointly developed by the Institute of Geographical Sciences and Natural Resources Research,
Chinese Academy of Sciences, the Department of Geography of the University of Wisconsin, and
the Department of Geography of Dartmouth College [10,32]. SOLIM uses a suite of GIS and RS
techniques to characterize environmental conditions and knowledge acquisition techniques to extract
soil-landscape relationships. Environmental conditions are integrated with the extracted soil-landscape
relationships to infer the spatial distribution of soil types under fuzzy logic. Fuzzy clustering is used
to obtain different environment combinations to better represent transition zones in the soil-landscape.
A more detailed description of SOLIM can be found in Zhu et al. and Zhu [10,32]. SOLIM assumes
the soil at any location can be expressed by a soil similarity vector. The element of the vector is a
membership value that used to measures the similarity between the soil and environmental factors at
a certain location. Soil texture measurements from 220 profile points and an old soil texture map were
used to train the soil-landscape model (see below for the details). The key procedure in using the SOLIM
model for soil mapping is constructing the membership function curve of soil-environmental factors.
Based on the varying landscape features of the six landscape zones in the HRB (Figure 1), we applied
different methods to construct the membership function curves of the soil-environmental factors.

3.2.1. Soil Texture Mapping for the Forest-Steppe Zone in the Qilian Mountains

A small number of soil profile points were distributed in the forest-steppe zone in the Qilian
Mountains. These profiles have a high degree of topographic variation. The climate and vegetation
have clear characteristics of vertical differentiation. It is appropriate to use a method that combines
targeted sampling, a non-probability sampling, and fuzzy logic mapping. The objective of targeted
sampling used here is to capture the spatial pattern of soil variation effectively. Except the existing
small number of soil profile points, an old soil texture map is used to support the targeted sampling
(see below). The fuzzy C-means (FCM) method is used to identify the environmental configuration in
this study. For this zone, we implemented FCM clustering for the topographic factors (i.e., elevation,
slope, curvature along the cross-section, curvature along the plan), climatic factors (precipitation,
air temperature, radiation), and distance from rivers, and derived the quantitative membership
relationship between the combination of environmental factors and soil type according to a small
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number of soil profile points. Then, we used the values of environmental factors in regions with high
membership as the typical environmental value for the soil distribution and then used the SOLIM
model to generate a soil texture map and fuzzy membership graph. This process includes two steps
as follows:

(1) Extraction of the Soil-Landscape Relationship
We first implemented the FCM clustering of nine treated environmental factors (see Section 3.1.2)

for the landscape in this zone and selected the optimal numbers of categories ‘c’ and fuzzy degree ‘m’.
First, we calculated the fuzzy matrix derived through fuzzy clustering with different ‘m’ and calculated
the partition coefficient and entropy. Then, according to the selected criteria of the optimal number
of categories, we determine the optimal classification. As shown in Figure 2, for m = 2.5, there is no
optimal number of categories; for m = 1.75, the optimal number of categories is 13 or 14; for m = 1.5,
the optimal number of categories is 6, 8, 12, or 15; for m = 1.25, the optimal number of categories
is 7, 8, 11, 14, 16, or 17. The most frequent optimal numbers of categories were 8 and 14. According
to the mapping scale, we determined the optimal number of categories to be 8. Then, according to
the determination principle of optimal ‘m’, we determined the fuzzy objective function and fuzzy
constraint function for different ‘m’ values given that the number of categories is eight. The objective
function and fuzzy function curves intersect at m = 1.55 and, thus, we selected m =1.55 as the optimal
fuzzy degree.
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different fuzziness values ‘m’.

After the number of categories ‘c’ and the fuzziness value ‘m’ were determined, we implemented
the FCM clustering of environmental factors to generate membership graphs for individual
environmental combinations. We obtained a total of eight different environmental combinations,
which correspond to different spatial distributions. Then, we calculated the type of environmental
combination for the maximum membership of individual environmental combinations as the new
discrimination type. For example, categories 3, 4, and 5 were adjacent and their environmental
combination results were similar; thus, categories 3, 4, and 5 were combined. In the spatial analysis
module of ArcGIS (Redlands, California, USA), we calculated the region where the membership of
individual environmental combinations is greater than 0.7 and used the range of environmental factors
in that region as the typical values of environmental conditions for the soil type distribution. The range
of values with the existence of six major categories was used as the type-II knowledge rule for the
existence of soil type (see Table 1). The range of values for the first row of environmental factors
represents the range of environmental values with membership greater than 0.7 and is used as the
type-I knowledge for the mapping of the SOLIM model. The second row represents the range of values
when the environmental condition deviates from typical environmental conditions, where ‘s’ indicates
an s-type curve and ‘z’ a z-type curve.
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Table 1. Typical environment and deviation environment for the existence of soil types.

Knowledge Type Type 1 Type 2 Types 3/4/5 Type 6 Type 7 Type 8

Elevation
Type-I knowledge 3208–4377 3088–4168 3656–4820 1837–3479 2566–3803 2840–4231
Type-II knowledge 2918–4653 2558–4702 2569–s z–5025 2334–4326 1937–4890

Vegetation
Index

Type-I knowledge 54.2–90.8 66.4–102.9 26.6–64.5 42.8–82.3 84.3–152.5 44–85
Type-II knowledge 31–105 35–128 z–112 24–98 66–s 24–126

Plane
curvature

Type-I knowledge −17.3–20.8 −20.3–16.1 −25.7–12.1 −27.3–25.7 −16.4–22.4 −11–15
Type-II knowledge −287–196 –299–169 z–192.6 −173–s −179–349 −63–164

Cross section
curvature

Type-I knowledge −11.4–13.8 −11.6–15.3 −28.4–13.2 −13.8–19.4 –8.9–20.1 0.5–27.9
Type-II knowledge −53–66 −73–66 −73.2–50.7 z–85 –64–83 −86–s

Radiation
Type-I knowledge 4724.8–5152 4647–5228 4194–4997 4782–5658.3 4795.3–5431 4681–5317
Type-II knowledge 4376–5535 4156–5544 z–5414 4431–s 4309–5669 3617–5719

Precipitation Type-I knowledge 255.1–500.8 611–971.4 298.2–725 99.6–387.3 320.6–673 243–596
Type-II knowledge 212–720 404–s 172–1247 z–676 212–833 129–1248

Slope Type-I knowledge 0.2–7.1 4.9–13.5 6.9–17.2 0.5–10.7 2.1–11.6 11.8–19.9
Type-II knowledge z–11.6 0.75–28.47 0.91–31.9 z–17.67 z–19.3 5.58–s

Air
temperature

Type-I knowledge −8.7 to −1 −10.4 to –1 −12.6 to
–2.2 −3.3–7.3 −5.5–2.2 −9.43 to

−0.24
Type-II knowledge −14.6–1.11 −14.1–0.1 z–2.5 −17.3–s −14.3–4.8 −19.8–6.5

(2) Mapping with the SOLIM Model
The upstream area of the HRB contained 24 soil measurement profiles including four soil types.

Silt loam accounted for 18 of the profiles, representing the vast majority. There was also one sample
point of sandy loam, two sample points of silty sand, and three sample points of loam. The old soil
texture map [18] was used to connect the category combination generated by fuzzy c-means clustering
and soil types, and the membership curve corresponding to soil types and environmental factors was
edited in the SOLIM model. According to the membership curve, we can infer the membership graph
of individual soil types. The range of the membership graph is 0–100. A higher membership value
indicates greater similarity to this soil type. A membership of 100 indicates full belonging to a certain
type of soil, and a membership of 0 indicates a total absence of belonging to a certain type of soil.
The membership graph was used to generate the preliminary soil type map after hardening. Except
the four soil types, i.e., silt loam, loam, sandy loam, and silty sand included in soil survey data, silty
clay loam, and sandy clay loam included in old soil texture map also was integrated to derive a soil
texture map of the Qilian Mountains forest meadow landscape.

3.2.2. Soil Texture Mapping of the Oasis Zone in the Hexi Corridor

The oasis zone in the oasis zone in midstream area of the Hexi Corridor contained a large number
of soil profile points, where the overall terrain is flat. The dominant environmental factors are land
use and topography and, thus, for this region, a knowledge mining method based on a decision
tree, characterized by a hierarchical organization of rules, was adopted. We first used a decision tree
algorithm to generate the soil type distribution and decision-making rules for the environmental data,
determining the typical environmental values of the soil distribution and then using the SOLIM model
to generate the soil map and the fuzzy membership graph.

(1) Extraction of the Soil-Landscape Relationship
In this area, there were a total of 190 soil profiles. Among these, 141 soil profiles were used

as the training sampling points to develop soil-landscape model. The selection criteria of training
sampling points is that distribution can reflects the difference and diversity of the environmental
conditions governing soil distribution. The remaining 49 soil profiles were used as verification points.
As for the selection of environmental factors, we first used the soil mapping method based on a
decision tree to rapidly select environmental factors from 13 factors mentioned in Section 3.1.2. By
comparing the mapping effects of different combinations of environmental factors, we selected the
optimal combination of environmental factors by comprehensively considering the prediction accuracy
of training points and verification points. The terrain in this zone is relatively flat and, thus, there
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was no need to include many topographic factors. Additionally, the testing results for the mapping
based on the decision tree indicated that the introduction of terrain curvature factor resulted in a
soil map that was fragmented and unrealistic and, therefore, the curvature factors were not taken
into account. As for type factors, the geological map and vegetation map did not improve mapping
accuracy, which was higher after these factors were excluded. By comprehensively considering the
results of the analysis above, we finally selected a total of nine environmental factors in this area,
including elevation, slope, precipitation, air temperature, radiation, vegetation index, distance from
rivers, geomorphology, and land use.

We extracted the environmental condition values of individual profile points and the decision
tree and decision-making rules was generated. In this region, we adopted a decision tree with more
abundant information as the basis for extracting the soil texture type-landscape relationship. By
working downward in sequence from the root node of the decision tree, we recorded the generated
paths of the decision tree and converted them to descriptions of soil environments. Since not all
combinations of environmental factors have a distribution of representative soil profiles in this area,
the decision tree model arbitrarily allocated the leaf nodes of the decision tree in the prediction of
unknown regions. This created some rules in the decision tree model that were unreasonable and, thus,
some expert knowledge pertaining to the relationship between soil texture types and environmental
factors was used for supplementation. For example, in the region where the type of geomorphology is
sand, the sand content in the corresponding soil texture type is high. In the generated decision tree,
the utilization rate of individual environmental factors was ordered from high to low as follows: air
temperature (100%), vegetation index (81%), landscape (74%), precipitation (66%), distance from rivers
(48%), slope (42%), land use type (36%), elevation (32%), and radiation (30%). This reflects the different
influences of the various environmental factors in this area on the distribution of soil textures.

(2) Mapping with the SOLIM Model
For the oasis landscape zone, the relationship between soil and environment derived from decision

tree learning can be used as the typical environmental condition for soil texture existence, i.e., the
first kind of knowledge required by SOLIM model mapping. Mapping with the SOLIM model also
requires a second kind of knowledge, namely, the width of the membership curve. The second kind
of knowledge in this situation is generally established by comprehensively considering the range of
environmental conditions and the amplitude of variation. In this area, the second kind of knowledge
for individual continuous environmental conditions is as follows: elevation (200), slope (5), distance
from rivers (100), vegetation index (3), radiation (100), air temperature (5), and precipitation (100).
Therefore, according to the obtained first and second kinds of knowledge, in the SOLIM model, we
edited the membership graph between individual soil types and existing environmental factors and
then derived a fuzzy membership graph of individual soil types through automatic inference. The
membership graph is processed through hardening to generate an initial soil type map, and the land
use type map is then integrated to extract the non-soil factors, such as bare rocks and water. Fusion
then generates a soil texture map for the oasis landscape zone in the midstream area.

3.2.3. Soil Texture Mapping in the Downstream Area

No soil profile is located in the downstream area of the HRB, or in where the overall terrain is flat.
Thus, it is neither suitable for the targeted sampling method nor for the knowledge mining method
based on a decision tree. Therefore, in this area, we used an old soil texture map generated by previous
studies to perform knowledge mining. Based on this existing soil map and environmental data, we
examined the distribution histogram of each soil type and environmental factor, and determined the
typical environment values associated with each type of soil. Then the SOLIM was used to generate a
soil map and fuzzy membership graph.

(1) Extraction of the Soil-Landscape Relationship
The available soil texture maps for the HRB include the global soil texture map (1:1,000,000)

published by the United Stations Food and Agriculture Organization (FAO) in 2009 [15] and the China
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soil texture map developed by Beijing Normal University [18]. The validation results indicate that
the latter has better accuracy than the soil texture map of FAO. Therefore, it is used for knowledge
mining in this study. Based on the similar characteristics of their environmental factors, we combined
the Ruoshui River Delta zone (region 4) and the Desertified zone in the Gurinai Lake Basin (region 5)
as a new region and mapping soil texture for this new region, region 3 and region 6, respectively. Since
the quality of the data on climatic factors in region 4, 5, and 6 is relatively poor, the climatic factors
were excluded; the terrain in regions 3, 4, and 5 is flat and, thus, the curvature factor was not taken
into account.

In the soil map, one soil type often includes many polygons. If each polygon were treated as an
independent entity, we can calculate the soil-environmental factor relationship curve corresponding to
each polygon. If all of the polygons for one soil type were treated as one entity, we can also calculate an
average soil-environmental factor relationship curve, which is called the overall average relationship
curve. For the independent relationship curve of each polygon, we can compute its similarity with
the overall average relationship curve, which is expressed as the similarity curve. If the similarity
between an independent relationship curve and the overall average relationship curve is too low, we
classify this polygon as a singular polygon, which is called an outlier. The soil-environmental factor
distribution curve expressed by the outlier does not follow the general rule, and the outlier should
be excluded and the average curve recalculated. Similarly, the mode curve expresses the occurrence
frequency of environmental factors values. For values with a particularly low occurrence frequency can
also be considered as outliers or excluded individually to recalculate the overall average relationship
curve. The newly-generated curve. after excluding outliers. can be considered as the curve that
correctly reflects the relationship between soil type distribution and landscape factors by eliminating
erroneous values.

(2) Mapping with the SOLIM Model
For the downstream area of the basin, we investigated the frequency distribution curve of each

soil type for individual environmental factors in each landscape zone. After the outliers were excluded,
this curve was directly introduced into the SOLIM model as the membership curve for the distribution
of soil and environmental factors, and then the fuzzy membership graphs of the soil types in individual
areas were generated through automatic inference. Finally, the soil type map was generated by a
hardening process of the soil membership graph yields.

4. Validation and Results

4.1. Results

For each of the six ecological landscape zones in the HRB, we applied the extracted knowledge
rules and SOLIM model to create a predictive map of soil texture and then integrated non-soil
information (such as a glacier map and water map) to generate a final soil texture map of the HRB, as
shown in Figure 3. Figure 3 indicates that the upstream area of the HRB is dominated by loam, sandy
loam, and silt loam. Loam and sandy loam are primarily distributed in the mountainous area of the
upstream area, and silt loam is primarily distributed in the valley area of the upstream area. The soil
texture of the upstream area has distinct altitudinal zonation, and topographic factors play a dominant
role in the distribution of soil texture types. The soil of the artificial oasis in the midstream area of the
HRB is dominated by loam and sandy loam, and other areas are dominated by silt loam and loamy
sand. The distribution of soil textures in the midstream area of the basin is primarily affected by land
use, topography, and distance from rivers, and the structure of the distribution is relatively clear and
definite. The soil structure of the downstream area is relatively simple and is dominated by loamy
sand, silt loam, and large areas of bare rock.
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4.2. Validation

The reliability of the results was validated in two ways. We first used 49 verification points to
assess the accuracy of the derived soil texture type map. After selecting a subset of the soil profile
data that represents the diversity of the soil texture distribution as training points, the remaining
profile points were used as verification points (See 3.2.2). Since the majority of the profile points were
distributed in the midstream area due to the limitations of the available data, we used the verification
points to assess the accuracy of the soil texture map by focusing on the midstream area of the HRB.
The confusion matrix calculated from the comparison between verification points and the soil map
derived in this study is shown in Table 2. The rows in Table 2 represent the number of sampling points
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for each soil type in the field measurements, and the columns represent the number of sampling points
for each soil type in the result map. For example, for silt loam in Table 2, there are a total of 25 points
for this type of soil in the soil survey data, and there are only 21 points for this soil type in result map.
Among the 25 silt loam sampling points in the field data, 17 sampling points are correctly classified
in the map, and eight are classified incorrectly as other types of soil. The producer’s accuracy is
17/25 = 0.68 and, thus, the producer’s accuracy represents the level of correct classification of the soil
type map. The overall accuracy of soil texture classification in the midstream area of HRB was 69.4%.

Table 2. Confusion matrix for the comparison of the soil survey data with the soil map produced by
this study.

Silt Loam Loam Sand Loamy Sand Sandy Loam Total Producer’s Accuracy

Silt Loam 17 2 0 2 4 25 0.68
Loam 2 5 0 0 2 9 0.56
Sand 0 0 1 0 0 1 1

Loamy Sand 0 0 0 0 0 0 0
Sandy Loam 2 1 0 0 11 14 0.79

Total 21 8 1 2 17 49
User’s accuracy 0.81 0.63 1 0 0.65

Overall accuracy = 0.694

Since the soil texture map for the desert and lake basin landscape zone in the downstream area
of the HRB is based on the old soil texture map, the extracted relationship between soil texture and
environment is derived from fuzzy logic inference mapping; the soil texture mapping for the Qilian
Mountains forest meadow landscape zone in the upstream area of HRB also refers to the old soil
texture map and, thus, we also used the 49 verification points to validate the old soil texture map.
The results indicate a classification accuracy of 38.7% for the old soil texture map, meaning that the
accuracy of the results in this study was considerably improved. Based on a confusion matrix of the
two texture maps, the overall consistency is 46.7%, and the kappa coefficient is 30.5%.

In comparison with the old soil texture map, the soil texture map generated in this study based on
the fuzzy logic method yields considerably higher accuracy by characterizing the correlations between
soil types and typical environmental factors, and the new map clearly reflects the different conditions
of soil formation in the upstream, midstream and downstream area of the HRB. The spatial distribution
of soil texture is more reasonable in the updated map, with richer details and stronger continuity.
For example, in the upstream area of the HRB, the map clearly exhibits the altitudinal variation in soil
texture and better retains the complexity and integrity of plaque structures in the midstream area of
the HRB.

4.3. Data Availability

The soil texture map produced by this paper are available upon request from the corresponding
author or download from Cold and Arid Regions Science Data Center at Lanzhou, a member of World
Data System [33].

5. Conclusions

This paper applies the fuzzy logic inference mapping theory to the entire HRB, which has a large
area and strong natural differentiation, and covers three distinct landscape features (i.e., mountains,
plain oasis, and desert). Using multiple knowledge mining methods, we extracted the soil-environment
relationships in each zone of the basin, providing input data for the fuzzy logic mapping. In addition,
by combining multi-sources information, several thematic maps, such as a glacier map, a water map,
and a desert map, were integrated to improve the soil texture map. The main conclusions are as follows:

(1) The new soil texture map produced by this study are more reliable than existing maps. This
indicates that by combining the large number of soil profile data with environmental factors, we
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can obtain relatively good soil texture prediction results by applying the method based on the
combination of a decision tree and fuzzy logic.

(2) The targeted sampling method of fuzzy c-means is more applicable to regions with relatively
large variations in topographic factors, when we can achieve the goal of increasing efficiency
and implement soil prediction with the fewest possible sampling points; in vast areas with flat
terrain, the environmental factors are the dominant controls, and the fuzzy c-means method
is not applicable. In regions with flat terrain, we still require a number of sampling points to
characterize the soil-landscape relationship and achieve fuzzy logic inference mapping.

(3) Since the influence of the training samples is very strong in the shaping of the decision tree,
the level of utilization efficiency changes significantly for the environmental factors based on the
differences among the training samples and the combination of different environmental factors.
Therefore, from the perspective of the level of utilization efficiency for the environmental factors
in the decision tree, the influence of each environmental factor on soil formation is relative rather
than absolute. We can only determine the dominant environmental factor once the combination
of training samples and environmental factors is determined.

(4) In the application of the SOLIM model to mapping soil texture for six landscape zones, there was
no occurrence of texture plaque rupture at the boundaries of the individual zones. It is, therefore,
reasonable to implement soil mapping by dividing the HRB into six zones based on ecological
function. This also reflects the feasibility of using the fuzzy logic method for soil mapping.

(5) Based on the fuzzy logic method, we can overcome the disadvantages of relatively low efficiency
and relatively poor accuracy associated with the traditional soil mapping method. The generated
soil map is expressed in raster format, which can more accurately characterize the spatial
gradient features of soil. In comparison with traditional mapping methods, most processes
in the mapping scheme in this study were accomplished with computers, and the mapping cycle
is short. For example, we can update the current soil map by introducing new soil profiles or
other soil distributions.

Therefore, we conclude that, with limited soil profile data and full consideration of the impact of
environmental factors, the method presented here is validated for digital soil mapping based on fuzzy
logic to obtain a digital soil texture map and real-time updates at the river basin scale. This approach
can generate soil texture data that satisfies the requirements of watershed-scale eco-hydrological
models, regional climate atmospheric models, and potentially improve the simulation accuracy of
those models.
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