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Abstract: Accurate prediction of foreign tourist numbers is crucial for each country to devise
sustainable tourism development policies. Tourism time series data often have significant temporal
fluctuation, so Grey–Markov models based on a grey model with a first order differential equation and
one variable, GM(1,1), can be appropriate. To further improve prediction accuracy from Grey–Markov
models, this study incorporates soft computing techniques to estimate a modifiable range for a
predicted value, and determine individual state bounds for the Markov chain. A new residual value
is formulated by summing the transition probability matrices with different steps. The proposed grey
prediction model was applied to foreign tourist forecasting using historical annual data collected
from Taiwan Tourism Bureau and China National Tourism Administration. The experimental results
show that the proposed grey prediction model performs well in comparison with other Grey–Markov
models considered.
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1. Introduction

Development of the global tourism industry has contributed significantly to economic flourishing
for a country. In 2016, the World Travel and Tourism Council estimated a 3.1% growth rate for
the tourism industry, which was larger than the estimated global GDP growth (2.3%). The global
tourism industry contributes significantly to employment, providing 107.83 million jobs or 3.6% of
total employment in 2015, and will account for 135.88 million jobs by 2026. By 2026, capital investment
is estimated to be USD 1254.2 billion, with international tourist arrivals expected to be 1.93 billion,
generating expenditure of USD 2056.0 billion. Thus, the foreign visitors expenditure contributes much
to the global tourism industry.

Accurate prediction of foreign tourist numbers has become crucial for governments to be able
to set up relevant sustainable tourism development and marketing strategies to promote the tourism
industry. National authorities should carefully consider the changing number of foreign tourists.
The variety of international tourism has raised a challenging task for foreign tourist prediction [1].
Grey prediction models [2] have drawn much attention because they can characterize an unknown
system from limited data [3–5], without requiring conformance to statistical assumptions, such as
normal distributions. The widely used grey model with a first order differential equation and one
variable, GM(1,1), for example, can be set up using only four recent sample data points [6–13].

A residual model is often constructed to improve GM(1,1) prediction [3,14] where the predicted
residuals can be used to adjust GM(1,1) predicted values. Many studies have demonstrated the
Grey–Markov model, denoted by MCGM(1,1), can significantly improve prediction accuracy over
the original GM(1,1) [1,15–20]. MCGM(1,1) uses GM(1,1) to identify the trend of historical data,
and then applies the Markov chain to correct the residuals. Hsu and Wen [21] and Hsu [22] used
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Markov chain sign estimation to modify residuals for the air passenger market and global integrated
circuit industry, respectively. Hsu et al. [16] proposed a Markov Fourier model to forecast stock
market turning time. Kumar and Jain [18] applied MCGM(1,1) to predict conventional energy
consumption. Li et al. [19] combined the regression model with Markov chain for thermal electric
power generation. Mao and Sun [23] applied MCGM(1,1) for fire accident prediction. Sun et al. [1]
proposed a MCGM(1,1) variant using the Cuckoo search algorithm for foreign tourist arrival prediction,
and Wang [24] showed MCGM(1,1) effectiveness for tourism demand prediction. Xie et al. [20]
proposed a novel Markov model to estimate the probability that one energy component could transit
to another energy component.

The combination of grey prediction and soft computing can better represent system dynamics with
uncertainty and nonlinearity [16]. Thus, this paper concentrates on building an effective MCGM(1,1)
model multi-step transitions for predicting foreign tourist numbers, incorporating soft computing.
The proposed model explicitly considered the following issues. First, the upper and lower bounds
of individual states for the Markov chain are usually required to be known in advance. However,
these troublesome bounds are not easy to determine beforehand. Therefore, we adopted the genetic
algorithm (GA), a powerful optimization method [25–28], to maximize prediction accuracy for the
MCGM(1,1) model.

Second, the original MCGM(1,1) usually uses the whole of a Markov chain predicted residual
to modify a predicted value from GM(1,1). However, this restriction could impact on MCGM(1,1)
prediction accuracy. Therefore, we require a modifiable range rather than using the whole range. Since
this involves a connection between time periods and modifiable ranges, we employed the functional
link net (FLN) with effective function approximation [29–32] to estimate a modifiable range for a time
period. Finally, the developing coefficient and control variable associated with the original GM(1,1) are
usually determined by the background value. However, this background values is difficult to determine
accurately. On the other hand, neural network based GM(1,1), denoted by NNGM(1,1), [14,33] using
a single-layer perceptron (SLP) can avoid the requirement for the background value. Therefore, the
current study incorporated NNGM(1,1) into MCGM(1,1). Therefore, this study proposes a novel soft
computing based MCGM(1,1) (SC-MCGM(1,1)).

The remainder of the paper is organized as follows. Section 2 introduces the NNGM(1,1) model
and Section 3 presents the proposed SC-MCGM(1,1) model. Section 4 describes the construct of the
proposed model using GA, and Section 5 examines the model performance using two real cases of
foreign tourist forecasting. Section 6 provides our conclusions. This paper is concluded with Section 6.

2. NNGM(1,1) for Generating Predicted Values

Using the accumulated generating operation (AGO) [3], a new sequence x(1)= (x(1)1 ,x(1)2 , . . . ,x(1)n )

can be generated from an original data sequence x(0) = (x(0)1 ,x(0)2 , . . . ,x(0)n ),

x(1)k =
k

∑
j=1

x(0)k , k = 1, 2, ...n (1)

and x(1)1 ,x(1)2 , . . . ,x(1)n are approximated by the first-order differential equation,

dx(1)

dt
+ a x(1) = b (2)

where a is the developing coefficient and b is the control variable. AGO also helps identify regularity
hidden in data sequences, even if the collected data are finite, insufficient, and chaotic.
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The predicted value, x̂(1)k , associated with x(1)k can be derived from the differential equation with

the initial condition x(1)1 = x(0)1 ,

x̂(1)k = x(0)1 −
b
a

e−a(k−1) +
b
a

(3)

so x̂(1)1 = x(0)1 holds. The predicted value of x(0)k can be obtained by using the inverse accumulated
generating operation,

x̂(0)k = x̂(1)k − x̂(1)k−1, k = 2, 3, ...n. (4)

Therefore,

x̂(0)k = (1− ea)(x(0)1 −
b
a
)e−a(k−1), k = 2, 3, . . . , n (5)

where a and b can be estimated from the grey difference equation

x(0)k + a z(1)k = b (6)

where z(1)k is the background value. However, z(1)k is not easily determined. Therefore, to obtain a and

b without requiring z(1)k , an NNGM(1,1) model was established using a single layer perceptron (SLP)
accompanied by the cost function

E(a, b) =
1
2∑

k
(x(0)k − x̂(0)k )

2
,k = 2, 3, . . . , n (7)

where a and b serve as connection weights for the SLP, and the learning rules can be easily derived by
using the gradient descent method on E(a,b). For further NNGM(1,1) details, the reader is referred
to [33].

3. The Proposed SC-MCGM(1,1) Model

3.1. Generating Transition Probability Matrices

For the proposed residual modification model, we applied the Markov chain to modify the
residuals produced by the NNGM(1,1). Let ε = (ε1, ε2, . . . ,εn) denote the sequence of residual values
obtained from training data, where

εk =
∣∣∣x(0)k − x̂(0)k

∣∣∣, k = 1, 2, . . . , n (8)

[εmin, εmax] denotes the residual range, where εmin and εmax are the minimum and maximum values
of εk, respectively, and [εmin, εmax] can be divided into r intervals (r ≥ 2) with each interval treated as a
state. The actual state of εk, denoted by sk, can be determined depending on where it locates. r − 1
partition points, p1, p2, . . . , pr−1, can be defined for r intervals, where εmin < p1 < p2 < . . . < pr−1 < εmax.

Subsequently, an m-step transition probability matrix P(m) can be generated from training
patterns as

P(m) =


p(m)

11 p(m)
12 ... p(m)

1r

p(m)
21 p(m)

22 ... p(m)
2r

...
...

. . .
...

p(m)
r1 p(m)

r2 ... p(m)
rr

 (9)

where p(m)
ij represents the transition probability of going from state i to state j (1 ≤ i, j ≤ r) by m steps,

p(m)
ij =

t(m)
ij

ti
(10)
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where t(m)
ij represents the number of transitions of going from state i to state j by m steps; and ti

represents the amount of state i among the sequence of relative errors. p(m)
ii can be specified directly

as 1 when the sum of elements in the row i equals zero. In other words, such a state is treated as an
absorbing state.

3.2. Determining Centers for Individual States

Sun et al. [1] recommended that the number of intervals can be defined by Sturge formula [34]:

r =
ln(n)
ln 2

(11)

Let cw (1 ≤ w ≤ r) be the representative point of state w, whose lower and upper bounds are lw
and uw, respectively. For convenience, cw is traditionally formulated as

cw =
lw + uw

2
(12)

Nevertheless, it was more reasonable to formulate cw as [1,19]

cw = αw lw + (1 − αw) uw (13)

where 0 ≤ αw ≤ 1.

3.3. Computing Predicted Residual Values

Let s(m)
k denote the state that corresponds to m transitions ahead of sk associated with εk.

To determine the predicted state ŝk for time period k, at most k-1 (k ≥ 2) transitions ahead can
be considered. The actual states including s(1)k , s(2)k , . . . , and s(m)

k can be incorporated into the

determination of ŝk if k ≥ m + 1. In contrast, only s(1)k , s(2)k , . . . , and s(k−1)
k are considered if k < m + 1.

For instance, to determine ŝ3, one and two transition steps from s2 and s1, respectively, can be used
for two transitions ahead of ŝ3 (i.e., m = 2), and s2 and s1 are s(1)3 and s(2)3 , respectively. Then, ŝ3 can be
simply determined from s2 and s1 even though m > 2.

Let p
s(m)

k
= (p

s(m)
k ,1

, p
s(m)

k ,2
, . . . ,p

s(m)
k ,r

) denote the row vector in P(m) corresponding to s(m)
k .

If k ≥ m + 1, then we sum p
s(1)k

, p
s(2)k

, . . . , and p
s(m)

k
for m previous transitions,

vkl = p
s(1)k ,l

+ p
s(2)k ,l

+ ... + p
s(m)

k ,l
(14)

where 1 ≤ l ≤ r. Otherwise,

vkl = p
s(1)k ,l

+ p
s(2)k ,l

+ ... + p
s(k−1)

k ,l
(15)

To explain vkl as the degree in [0,1] to which ε̂k locates in state l,

vkl =
vkl
m

(16)

Traditionally, state l can be directly assigned to ŝk associated with the predicted residual value
ε̂k [29,34] when

vkl = max
i=1..r

vki (17)
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Then, state l is the reachable state with the maximum likelihood for ε̂k. In such a case, ε̂k just
equals cl. However, in addition to cl, ci (i 6= l) can also contribute to ε̂k if vki 6= 0. Therefore, considering
the contribution from different representative points for ε̂k, vkl can be normalized as

vkl =
vkl

r
∑

i=1
vki

(18)

and ε̂k can becomes
ε̂k = vk1c1 + vk2c2 + . . . + vkrcr (19)

3.4. FLN for Determining New Predicted Values

We apply ε̂k obtained from the Markov chain to adjust x̂(0)k , calculating the new predicted value as

x̃(0)k = x̂(0)k + yk ε̂
(m)
k , k = 1, 2, . . . , n (20)

where yk ranges from −1 to 1 and can be interpreted as the degree to which x̂(0)k can be adjusted. That

is, if yk is positive, then larger yk means it is more likely that x̂(0)k will be adjusted toward x̂(0)k + ε̂
(m)
k ,

whereas, if yk is negative, smaller yk means it is more likely x̂(0)k will be adjusted toward x̂(0)k − ε̂
(m)
k .

How to obtain yk is left to FLN. Let tk ∈ < denote the time period k with respect to x̂(0)k . For one
variable x, a FLN with functional-expansion expansion like {x, sin(πx), cos(πx), sin(2πx), cos(2πx),...} is
effective to approximate a nonlinear function associated with x [29,30,35]. In principle, the components
in the functional expansion representation can be unrestrictedly extended for x, but this is not practical.
However, (tk, sin(πx), cos(πx), sin(2πx), cos(2πx), sin(4πx))) with respect to x is acceptable [30,31].
Using this pattern, the corresponding actual output value can be obtained from the output node as

yk = tanh(w1tk + w2sin(πtk) + w3cos(πtk) + w4sin(2πtk) + w5cos(2πtk) + w6sin(4πtk) + θ) (21)

where w1, w2, w3, w4, w5, and w6 are connection weights; tanh denotes the hyperbolic tangent function;
and θ is the bias to the output node.

4. A Genetic Algorithm for Constructing the SC-MCGM(1,1)

The problem of constructing the SC-MCGM(1,1) with high prediction accuracy can be formulated
as maximizing the reciprocal of MAPE for training data,

MAPE = ∑
k∈TS

∣∣∣x(0)k − x̃(0)k

∣∣∣
|TS| × x(0)k

× 100% (22)

where TS denotes training or testing data. To minimize MAPE, a real-valued GA was developed
to automatically determine 6 + 2r parameters that are not easily directly accessed, including the
connection weights (w1, w2, w3, w4, w5, w6), bias (θ), partition points (p1, p2, . . . , pr−1), and relative
weights in respective intervals (α1, α2, . . . ,αr) for the proposed SC-MCGM(1,1) model, where w1, w2,
w3, w4, w5, w6, and θ range from −1 to 1, and p1, p2 . . . ,pr−1 range from εmin to εmax. For the current
population, the best solution was the chromosome with the maximum fitness value.

Let nsize and nmax denote the population size and maximum number of generations (i.e., GA
terminated after nmax generations), respectively. Each of the populations consists of nsize strings.
After evaluating the fitness value of each chromosome in Pm, nsize new chromosomes were generated
for Pm+1 by selection, crossover, and mutation. Crossover and mutation reproduce children for a
selected parent by changing the parents’ chromosomal makeup. When the stopping condition was
satisfied, the algorithm terminated, and the best chromosome is the one with maximum fitness value
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among consecutive generations. This best case can then be used to examine the SC-MCGM(1,1)
model generalization.

4.1. Selection

Let Pm denote the population in generation m (1≤ m≤ nmax), where chromosome u (1 ≤ u ≤ nsize)
produced in Pm is represented as wm

u,1 wm
u,2 wm

u,3 wm
u,4 wm

u,5 wm
u,6 θm

u pm
u,1 pm

u,2 . . . pm
u,r−1 αm

u,1 αm
u,2 . . . αm

u,r.
Two chromosomes were randomly selected from Pm by binary tournament selection, and the one with
higher fitness was put into a mating pool [36]. This process was repeated until nsize chromosomes were
in the mating pool.

4.2. Crossover

To generate new chromosomes in the next population, 1
2 nsize pairs of chromosomes from the

pool were randomly selected from the current population, and offspring of the selected parents were
reproduced by crossover and mutation. For chromosomes u and v (wm

v,1 wm
v,2 wm

v,3 wm
v,4 wm

v,5 wm
v,6 θm

v
rm

v pm
v,1 pm

v,2 . . . pm
v,r−1 αm

v,1 αm
v,2 . . . αm

v,r) (1 ≤ v ≤ nsize), each pair of real-valued genes was used to
generate two new genes with crossover probability Prc,

wm
u,i = hiwm

u,i + (1− hi)wm
v,i, wm

v,i′ = (1− hi)wm
u,i + hiwm

v,i, i = 1, 2, . . . , 6
θm

u ′ = h7θm
u + (1− h7)θ

m
v , θm

v ′ = (1− h7)θ
m
u + h7θm

v
pm

u,i′ = h7+j pm
u,i + (1− h7+j)pm

v,i, pm
v,i′ = (1− h7+j)pm

u,i + h7+j pm
v,i, j = 1, 2, . . . , r− 1

αm
u,i′ = h6+r+jα

m
u,i + (1− h6+r+j)α

m
v,i, pm

v,i′ = (1− h6+r+j)α
m
u,i + h6+r+jα

m
v,i, j = 1, 2, . . . , r

(23)

where h1, h2, . . . ,h6+2r are random numbers between 0 and 1.

4.3. Mutation

Mutation occurred with probability Prm for each real valued gene in a newly generated
chromosome produced by crossover. A low mutation rate was used to avoid excessive perturbation.
When a mutation occurs, that gene was altered by adding or subtracting a tiny number randomly
selected from a pre-specified interval. Subsequently, ndel (0 ≤ ndel ≤ nsize) chromosomes in Pm+1

were randomly removed from the set of new chromosomes (formed by genetic operations) to allow
additional copies of the chromosome with maximum fitness values in Pm. Only two or three elite
chromosomes are sufficient to generate better results [37].

4.4. Algorithm for Constructing the Proposed Model

The GA for constructing the proposed SC-MCGM(1,1) is briefly described below.

Algorithm: GA for constructing the proposed SC-MCGM(1,1).

Step 1. Initialization

Generate nsize chromosomes.

Step 2. Compute fitness values

Compute the fitness value of each chromosome in the current population.

Step 3. Generate new chromosomes

Generate nsize new chromosomes from the current population using selection, crossover,
and mutation.

Step 4. Apply elitist strategy

Randomly remove ndel strings from the newly generated nsize strings, and replace them with ndel
best chromosomes in the current population.
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Step 5. Termination test

Return to Step 2 if the stopping condition is not satisfied.

5. Empirical Results

Two real data sets were used to compare foreign tourist forecasting using the proposed
SC-MCGM(1,1) model with different transitions (m = 1,2,3,4) against the original GM(1,1), MCGM(1,1),
and several models proposed by Sun et al. [1], including segmented GM(1,1), SGM(1,1) using Markov
chain, and MCSGM(1,1) using a Cuckoo search algorithm. They are denoted by SGM(1,1), MCSGM(1,1),
and CMCSGM(1,1), respectively.

In contrast to the original GM(1,1) and the MCGM(1,1) models, which use all observed data,
the SGM model first used a rolling mechanism to determine the set of newly observed data, and
then constructed the GM(1,1) model. The rolling mechanism could select only a few recent data
by capturing the developing trend from all observed data. The training data were retained after
rolling and applied to the SGM(1,1), MCSGM(1,1), CMCSGM(1,1), and proposed SC-MCGM(1,1)
models. Related GA parameters were: (1) population size nsize = 200; (2) stopping condition nmax = 500;
(3) ndel = 2; (4) crossover probability Prc = 0.9; and (5) mutation probability Prm = 0.01.

5.1. Prediction of Foreign Tourists for Taiwan

The first experiment was conducted on the yearly statistics reported by Taiwan Tourism Bureau.
Table 1 shows historical annual foreign tourists to Taiwan from six economies, including Japan, Hong
Kong/Macao, Korea, China, USA, and Southeast Asia, collected from 2001–2016. Year 2016 was
used for ex post testing. After performing the rolling mechanism, 2011–2015 (n = 5) from China
and 2012–2015 (n = 4) from the other economies can be used for model-fitting for the SGM(1,1),
MCSGM(1,1), CMCSGM(1,1), and proposed SC-MCGM(1,1) models. Both n = 4 and 5 produced
two intervals.

Table 1. Historical annual foreign tourists from six economies to Taiwan.

Year Japan Hong Kong/Macao Korea China USA Southeast Asia

2001 976,750 435,164 85,744 348,808 488,968
2002 998,497 456,554 83,624 377,470 530,319
2003 657,053 323,178 92,893 272,858 457,103
2004 887,311 417,087 148,095 382,822 568,269
2005 1,124,334 432,718 182,517 390,929 636,925
2006 1,161,489 431,884 196,260 394,802 643,338
2007 1,166,380 491,437 225,814 397,965 700,287
2008 1,086,691 618,667 252,266 329,204 387,197 725,751
2009 1,000,661 718,806 167,641 972,123 369,258 689,027
2010 1,080,153 794,362 216,901 1,630,735 395,729 911,174
2011 1,294,758 817,944 242,902 1,784,185 412,617 1,071,975
2012 1,432,315 1,016,356 259,089 2,586,428 411,416 1,132,592
2013 1,421,550 1,183,341 351,301 2,874,702 414,060 1,261,596
2014 1,634,790 1,375,770 527,684 3,987,152 458,691 1,388,305
2015 1,627,229 1,513,597 658,757 4,184,102 479,452 1,425,485
2016 1,895,702 1,614,803 884,397 3,511,734 523,888 1,653,908

Table 2 shows prediction results associated with ex post testing for the original GM(1,1), the
MCGM(1,1), the SGM(1,1), the MCSGM(1,1), and the CMCSGM(1,1), and Table 3 shows those for
the proposed SC-MCGM(1,1) with different values for m. For the proposed SC-MCGM(1,1), it
seems that the worse results can be obtained for m = 1. When m ≥ 2, the results obtained by the
proposed SC-MCGM(1,1) is comparable or superior to those described in Table 2. For instance, the
SC-MCGM(1,1) with m = 2, 3, 4 outperform the SGM(1,1), MCSGM(1,1), and CMCSGM(1,1) for Japan,
Hong Kong/Macao, Korea, China, and Southeast Asia. Since the number of visitors from China
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to Taiwan dramatically declined in 2016, as shown in Table 1, the results of the ex post testing are
relatively poor for every prediction model. However, the proposed SC-MCGM(1,1) outperforms the
others, even with this significant temporal fluctuation.

Table 2. Absolute percentage errors obtained by different forecasting methods for Case I.

Economy GM(1,1) MCGM(1,1) SGM(1,1) MCSGM(1,1) CMCSGM(1,1)

Japan 11.01 12.41 6.50 5.62 4.27
Hong

Kong/Macao 2.40 6.58 6.36 6.83 7.40

Korea 33.35 17.96 0.47 1.21 3.76
China 58.05 61.54 45.79 49.32 50.19
USA 11.40 13.18 0.88 0.45 0.10

Southeast Asia 3.44 1.16 7.59 7.13 6.52

Table 3. Absolute percentage errors obtained by the proposed SC-MCGM(1,1) with different transitions
for Case I.

Economy
SC-MCGM(1,1)

m = 1 m = 2 m = 3 m = 4

Japan 6.41 1.31 3.72 2.96
Hong Kong/Macao 5.52 5.36 4.71 4.60

Korea 3.47 0.38 0.46 0.05
China 40.58 41.60 41.91 40.91
USA 0.78 0.30 0.36 0.59

Southeast Asia 6.94 5.03 4.95 4.78

5.2. Prediction of Foreign Tourists for China

Historical annual data from 1997 to 2013 published by the China National Tourism Administration
were used. The collected data described the number of foreign tourists from eight main economies,
including Japan, Korea, Malaysia, Mongolia, Philippines, Russia, Singapore, and USA. Following
Sun et al. [1], year 2013 was used for ex post testing using a one-step transition probability matrix.
Performing the rolling mechanism, 2005–2012 data from Korea, Japan, USA, and Malaysia; 2006–2012
from Russia, 2003–2012 from Mongolia and Philippines; and 2004–2012 from Singapore were used to
construct the SGM(1,1), MCSGM(1,1), CMCSGM(1,1), and proposed SC-MCGM(1,1) models.

Table 4 shows prediction results for all compared models, and Table 5 shows those for the
proposed SC-MCGM(1,1) with different m. The original GM(1,1) and MCGM(1,1) were significantly
poorer than the other methods considered. The results obtained by the proposed SC-MCGM(1,1) with
different m is comparable or superior to those described in Table 4. For instance, the SC-MCGM(1,1)
outperform the prediction methods considered for Korea and Mongolia for all m considered, and
outperform the compared models for USA and Singapore for m = 2, 3, 4.

Table 4. Absolute percentage errors obtained by different forecasting methods for Case II.

Economy GM(1,1) MCGM(1,1) SGM(1,1) MCSGM(1,1) CMCSGM(1,1)

Korea 35.90 30.38 0.84 1.32 0.97
Japan 39.57 15.26 20.93 21.02 15.69
Russia 44.13 36.42 2.72 3.05 2.90
USA 20.5 13.68 5.22 2.95 2.92

Malaysia 28.81 27.81 11.73 11.50 7.24
Mongolia 1.39 3.12 0.79 1.62 1.82

Philippines 10.16 7.63 0.67 0.69 0.91
Singapore 31.68 18.92 12.85 5.83 8.03
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Table 5. Absolute percentage errors obtained by the proposed SC-MCGM(1,1) with different transitions
for Case II.

Economy
SC-MCGM(1,1)

m = 1 m = 2 m = 3 m = 4

Korea 0.47 0.72 0.77 0.77
Japan 21.08 20.74 20.17 20.83
Russia 1.01 1.63 0.67 3.40
USA 5.36 0.90 2.38 1.36

Malaysia 10.79 9.86 7.03 7.62
Mongolia 0.16 0.11 0.27 0.23

Philippines 0.23 0.07 1.66 1.00
Singapore 11.04 5.22 6.74 6.54

5.3. Statistical Analysis

We investigated if the SC-MCGM(1,1) model prediction accuracy could be improved by tuning
m, compared to the m = 1 case. We compared outcomes for the fourteen data sets (six economies for
Taiwan and eight for China) using the non-parametric Friedman test [38] with the post-hoc test, the
Bonferroni–Dunn test [39]. The Friedman test checks whether average ranks are significantly different,
ranking the SC-MCGM(1,1) model for all m separately for each data set, with increasing rank number
implying lower prediction accuracy. In case of ties, the average rank was assigned.

Let rj, k1, and k2 denote the average rank of prediction method j, number of prediction methods,
and number of data sets used, respectively; and prediction methods 1, 2, 3, and 4 denote SC-MCGM(1,1)
with m = 1, 2 , 3, and 4, respectively. Therefore, k1 = 4, k2 = 14; and r1 = 3.14, 1.93, 2.61, and 2.32 for
m = 1, 2, 3, and 4, respectively. The Friedman statistic [40],

FF =
(k2 − 1)χ2

F
k2(k1 − 1)− χ2

F
(24)

is distributed according to the F distribution, and χ2
F is

χ2
F =

12k2

k1(k1 + 1)
[

k1

∑
j=1

r2
j −

k1(k1 + 1)2

4
] (25)

Since FF = 2.41 is greater than the critical value F(k1 − 1, (k1 − 1)(k2 − 1)) at the 10% level (i.e.,
F(3, 39) = 2.23), the null hypothesis is rejected.

Subsequently, the Bonferroni–Dunn test was used to detect any significant differences among
m = 1, 2, 3, and 4. Significant differences in the prediction accuracy of the two forecasting methods can
be probed by the difference in their average ranks, with the critical difference at the 10% level being

CD = q0.1

√
k1(k1 + 1)

6k2
(26)

where q0.10 = 2.128. The difference is significant when CD > 1.03. Thus, SC-MCGM(1,1) with m = 2 is
significantly superior than with m = 1, whereas m = 3 and 4 are not. Thus, long term transitions in the
Markov model could be useless for tourism demand forecasting.

6. Discussion and Conclusions

Accurate foreign tourist forecasting is critical for governmental tourism development policies.
However, time series data for tourism often have temporal fluctuation and trend changes, making
precise predictions challenging. Over or under estimation of foreign tourist numbers could lead to
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inappropriate governmental investment in tourist infrastructures [41]. This study proposed a novel
grey residual modification model incorporating soft computing, including SLP, FLN, and GA, into the
Grey–Markov model.

Historical annual data for foreign tourists collected from Taiwan and China official institutions
were used to evaluate prediction accuracy of the proposed model. Soft computing constructs a
computationally intelligent system that can learn to achieve better accuracy for changing environments
and confront real world problems [42]. Therefore, this study proposed a residual modification model
called SC-MCGM(1,1) by incorporating soft computing techniques into the Grey–Markov model.
The proposed SC-MCGM(1,1) model was capable of estimating not only the adjusted volume associated
with a new residual value for a predicted value from the GM(1,1), but also avoided the troublesome
bounds of individual states for the Markov chain. The degree to which a representative point in each
state can contribute to a new residual value was based on the sum of transition probability matrices
with different steps.

It is found that the growth rate of foreign tourists to Taiwan from Japan and Korea is greatly
increased to 22% in 2016. To effectively stimulate the increase of the number of inbound visitors
from Northeast Asia, Taiwan authorities should think about how to further work in close cooperation
with related economies. Several relevant tourism development and marketing strategies should be
put forth to promote the tourism industry. For instance, more bilateral routes that should be taken
into account, the promotion for more attractive itineraries with shopping and accommodation, and
environmental impact assessment. Since the SC-MCGM(1,1) model among the compared models
performs very well for predicting visitors from Northeast Asia, this suggests that Taiwan authorities
can leverage the proposed model to set up tourism development plans for Northeast Asia for a few
years. As for China, the SC-MCGM(1,1) model performs very well for predicting visitors from Korea,
Russia, US, Mongolia, Philippines, and Singapore. Similarly, China authorities can set up appropriate
tourism policies by using the proposed SC-MCGM(1,1) model to predict the number of inbound
visitors from those economies for a few years. After all, a prediction model can play a significant role
on implementation of tourism development plans [41].

To maximize prediction accuracy, representative points, state bounds for the Markov chain, and
FLN connection weights were automatically determined by GA, using a relatively simple computer
program. Historical annual data involving foreign tourist collected from Taiwan and China official
institutions were used to evaluate prediction performance of the proposed SC-MCGM(1,1). As for ex
post testing, we can see that the proposed SC-MCGM(1,1) with m = 2 is comparable or superior to the
compared models. Tables 1 and 3 show that the proposed model outperforms the other methods for
11 of the 14 data sets. These results validate that combining neural networks and GA is advantageous
for intelligent prediction models.

The proposed SC-MCGM(1,1) with pre-specified GA parameters, including population size,
number of generations, and crossover and mutation parameters, performed well. Thus, fine parameter
tuning was not required. FLN used the hyperbolic tangent as the output neuron’s activation function,
computing a weighted sum of a vector of connection weights with an enhanced pattern. This assumes
additivity among individual variables in the enhanced pattern [43]. However, these criteria are not
always independent [9,43–48]. Therefore, future research will investigate the impact of non-additivity
on prediction performance of the proposed SC-MCGM(1,1) model.

Acknowledgments: The author would like to thank the anonymous referees for their valuable comments.
This research is partially supported by the Ministry of Science and Technology of Taiwan under grant
MOST 104-2410-H-033-023-MY2.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Sun, X.; Sun, W.; Wang, J.; Gao, Y. Using a Grey-Markov model optimized by Cuckoo search algorithm to
forecast the annual foreign tourist arrivals to China. Tour. Manag. 2016, 52, 369–379. [CrossRef]

http://dx.doi.org/10.1016/j.tourman.2015.07.005


Sustainability 2017, 9, 1228 11 of 12

2. Deng, J.L. Control problems of grey systems. Syst. Control Lett. 1982, 1, 288–294.
3. Liu, S.; Lin, Y. Grey Information: Theory and Practical Applications; Springer: Berlin, Germany, 2010.
4. Liu, S.; Yang, Y.; Forrest, J. Grey Data Analysis: Methods, Models and Applications; Springer: Berlin, Germany, 2017.
5. Suganthi, L.; Samuel, A.A. Energy models for demand forecasting—A review. Renew. Sust. Energ. Rev. 2012,

16, 1223–1240. [CrossRef]
6. Cui, J.; Liu, S.F.; Zeng, B.; Xie, N.M. A novel grey forecasting model and its optimization. Appl. Math. Model.

2013, 37, 4399–4406. [CrossRef]
7. Feng, S.J.; Ma, Y.D.; Song, Z.L.; Ying, J. Forecasting the energy consumption of China by the grey prediction

model. Energ. Source Part B 2012, 7, 376–389. [CrossRef]
8. Hsu, C.C.; Chen, C.Y. Applications of improved grey prediction model for power demand forecasting.

Energy Convers. Manag. 2003, 44, 2241–2249.
9. Hu, Y.C.; Chiu, Y.J.; Liao, Y.L.; Li, Q. A fuzzy similarity measure for collaborative filtering using nonadditive

grey relational analysis. J. Grey. Syst. 2015, 27, 93–103.
10. Lee, Y.S.; Tong, L.I. Forecasting energy consumption using a grey model improved by incorporating genetic

programming. Energy Convers. Manag. 2011, 52, 147–152. [CrossRef]
11. Li, D.C.; Chang, C.J.; Chen, C.C.; Chen, W.C. Forecasting short-term electricity consumption using the

adaptive grey-based approach-An Asian case. Omega 2012, 40, 767–773. [CrossRef]
12. Mao, M.Z.; Chirwa, E.C. Application of grey model GM(1,1) to vehicle fatality risk estimation.

Technol. Forecast. Soc. Chang. 2006, 73, 588–605. [CrossRef]
13. Wei, J.; Zhou, L.; Wang, F.; Wu, D. Work safety evaluation in Mainland China using grey theory. Appl. Math.

Model. 2015, 39, 924–933. [CrossRef]
14. Hu, Y.C.; Jiang, P. Forecasting energy demand using neural-network-based grey residual modification

models. J. Oper. Res. Soc. 2017, 68, 556–565. [CrossRef]
15. He, Y.; Bao, Y.D. Grey-Markov forecasting model and its application. Syst. Eng.-Theory Pract. 1992, 9, 59–63.
16. Hsu, Y.T.; Liu, M.C.; Yeh, J.; Hung, H.F. Forecasting the turning time of stock market based on Markov-Fourier

grey model. Expert Syst. Appl. 2009, 36, 8597–8603. [CrossRef]
17. Wang, C.N.; Phan, V.T. An improved nonlinear grey Bernoulli model combined with Fourier series.

Math. Probl. Eng. 2015. [CrossRef]
18. Kumar, U.; Jain, V.K. Time series models (Grey-Markov, Grey Model with rolling mechanism and singular

spectrum analysis) to forecast energy consumption in India. Energy 2010, 35, 1709–1716. [CrossRef]
19. Li, G.D.; Masuda, S.; Nagai, M. The prediction model for electrical power system using an improved hybrid

optimization model. Int. J. Electr. 2013, 44, 981–987. [CrossRef]
20. Xie, N.M.; Yuan, C.Q.; Yang, Y.J. Forecasting China’s energy demand and self-sufficiency rate by grey

forecasting model and Markov model. Int. J. Electr. 2015, 66, 1–8. [CrossRef]
21. Hsu, C.I.; Wen, Y.U. Improved Grey prediction models for trans-Pacific air passenger market. Transport Plan.

Technol. 1998, 22, 87–107. [CrossRef]
22. Hsu, L.C. Applying the grey prediction model to the global integrated circuit industry. Technol. Forecast

Soc. Chang. 2003, 70, 563–574. [CrossRef]
23. Mao, Z.L.; Sun, J.H. Application of Grey-Markov model in forecasting fire accidents. Procedia Eng. 2011, 11,

314–318.
24. Wang, C.H. Predicting tourism demand using fuzzy time-series and hybrid grey theory. Tour. Manag. 2004,

25, 367–374. [CrossRef]
25. Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: Boston,

MA, USA, 1989.
26. Ishibuchi, H.; Nakashima, T.; Nii, M. Classification and Modeling with Linguistic Information Granules: Advanced

Approaches to Linguistic Data Mining; Springer: Heidelberg, Germany, 2004.
27. Kuncheva, L.I. Fuzzy Classifier Design; Physica-Verlag: Heidelberg, Germany, 2000.
28. Osyczka, A. Evolutionary Algorithms for Single and Multicriteria Design Optimization; Physica-Verlag:

Heidelberg, Germany, 2003.
29. Hu, Y.C. Functional-link nets with genetic-algorithm-based learning for robust nonlinear interval regression

analysis. Neurocomputing 2009, 72, 1808–1816. [CrossRef]
30. Pao, Y.H. Adaptive Pattern Recognition and Neural Networks; Addison-Wesley: Boston, MA, USA, 1989.

http://dx.doi.org/10.1016/j.rser.2011.08.014
http://dx.doi.org/10.1016/j.apm.2012.09.052
http://dx.doi.org/10.1080/15567240903330426
http://dx.doi.org/10.1016/j.enconman.2010.06.053
http://dx.doi.org/10.1016/j.omega.2011.07.007
http://dx.doi.org/10.1016/j.techfore.2004.08.004
http://dx.doi.org/10.1016/j.apm.2014.06.017
http://dx.doi.org/10.1057/s41274-016-0130-2
http://dx.doi.org/10.1016/j.eswa.2008.10.075
http://dx.doi.org/10.1155/2015/740272
http://dx.doi.org/10.1016/j.energy.2009.12.021
http://dx.doi.org/10.1016/j.ijepes.2012.08.047
http://dx.doi.org/10.1016/j.ijepes.2014.10.028
http://dx.doi.org/10.1080/03081069808717622
http://dx.doi.org/10.1016/S0040-1625(02)00195-6
http://dx.doi.org/10.1016/S0261-5177(03)00132-8
http://dx.doi.org/10.1016/j.neucom.2008.07.002


Sustainability 2017, 9, 1228 12 of 12

31. Pao, Y.H. Functional-link net computing: Theory, system architecture, and functionalities. Computer 1992, 25,
76–79. [CrossRef]

32. Park, G.H.; Pao, Y.H. Unconstrained word-based approach for off-line script recognition using density-based
random-vector functional-link net. Neurocomputing 2000, 31, 45–65. [CrossRef]

33. Hu, Y.C. Electricity consumption forecasting using a neural-network-based grey prediction approach. J. Oper.
Res. Soc. 2016. [CrossRef]

34. Imbusch, G.F.; Yen, W.M. The McCumber and sturge formula. J. Lumin. 2000, 85, 177–179. [CrossRef]
35. Hu, Y.C. Grey prediction with residual modification using functional-link net and its application to energy

demand forecasting. Kybernetes 2017, 46, 349–363. [CrossRef]
36. Hu, Y.C. A multicriteria collaborative filtering approach using the indifference relation and its application to

initiator recommendation for group-buying. Appl. Artif. Intell. 2014, 28, 992–1008. [CrossRef]
37. Murata, T.; Ishibuchi, H.; Tanaka, H. Multi-objective genetic algorithm and its applications to flowshop

scheduling. Comput. Ind. Eng. 1989, 30, 957–968. [CrossRef]
38. Friedman, M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat.

1940, 11, 86–92. [CrossRef]
39. Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30.
40. Iman, R.L.; Davenport, J.M. Approximations of the critical region of the Friedman statistic. Commun. Stat.

1980, 9, 571–595. [CrossRef]
41. Lin, C.J.; Chen, H.F.; Lee, T.S. Forecasting tourism demand using time series, artificial neural networks and

multivariate adaptive regression splines: Evidence from Taiwan. Int. J. Bus. Adm. 2011, 2, 14–24.
42. Jang, J.S.R; Sun, C.T.; Mizutani, E. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and

Machine Intelligence; Prentice-Hall, Upper Saddle River, NJ, USA, 1997.
43. Hu, Y.C.; Tseng, F.M. Functional-link net with fuzzy integral for bankruptcy prediction. Neurocomputing

2007, 70, 2959–2968. [CrossRef]
44. Hu, Y.C. Nonadditive grey single-layer perceptron with Choquet integral for pattern classification problems

using genetic algorithms. Neurocomputing 2008, 72, 332–341. [CrossRef]
45. Onisawa, T.; Sugeno, M.; Nishiwaki, M.Y.; Kawai, H.; Harima, Y. Fuzzy measure analysis of public attitude

towards the use of nuclear energy. Fuzzy Set Syst. 1986, 20, 259–289. [CrossRef]
46. Wang, Z.; Leung, K.S.; Klir, G.J. Applying fuzzy measures and nonlinear integrals in data mining.

Fuzzy Set. Syst. 2005, 156, 371–380. [CrossRef]
47. Wang, Z.; Leung, K.S.; Wang, J. A genetic algorithm for determining nonadditive set functions in information

fusion. Fuzzy Set. Syst. 1999, 102, 463–469. [CrossRef]
48. Wang, W.; Wang, Z.; Klir, G.J. Genetic algorithms for determining fuzzy measures from data. J. Intell.

Fuzzy Syst. 1998, 6, 171–183.

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/2.144401
http://dx.doi.org/10.1016/S0925-2312(99)00149-6
http://dx.doi.org/10.1057/s41274-016-0150-y
http://dx.doi.org/10.1016/S0022-2313(99)00184-2
http://dx.doi.org/10.1108/K-05-2016-0099
http://dx.doi.org/10.1080/08839514.2014.962279
http://dx.doi.org/10.1016/0360-8352(96)00045-9
http://dx.doi.org/10.1214/aoms/1177731944
http://dx.doi.org/10.1080/03610928008827904
http://dx.doi.org/10.1016/j.neucom.2006.10.111
http://dx.doi.org/10.1016/j.neucom.2008.01.008
http://dx.doi.org/10.1016/S0165-0114(86)90040-0
http://dx.doi.org/10.1016/j.fss.2005.05.034
http://dx.doi.org/10.1016/S0165-0114(98)00220-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	NNGM(1,1) for Generating Predicted Values 
	The Proposed SC-MCGM(1,1) Model 
	Generating Transition Probability Matrices 
	Determining Centers for Individual States 
	Computing Predicted Residual Values 
	FLN for Determining New Predicted Values 

	A Genetic Algorithm for Constructing the SC-MCGM(1,1) 
	Selection 
	Crossover 
	Mutation 
	Algorithm for Constructing the Proposed Model 

	Empirical Results 
	Prediction of Foreign Tourists for Taiwan 
	Prediction of Foreign Tourists for China 
	Statistical Analysis 

	Discussion and Conclusions 

