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Abstract: To scientifically predict the future energy demand of Shandong province, this study chose
the past energy demand of Shandong province during 1995–2015 as the research object. Based on
building model data sequences, the GM-ARIMA model, the GM (1,1) model, and the ARIMA model
were used to predict the energy demand of Shandong province for the 2005–2015 data, the results of
which were then compared to the actual result. By analyzing the relative average error, we found
that the GM-ARIMA model had a higher accuracy for predicting the future energy demand data.
The operation steps of the GM-ARIMA model were as follows: first, preprocessing the date and
determining the dimensions of the GM (1,1) model. This was followed by the establishment of the
metabolism GM (1,1) model and by calculation of the forecast data. Then, the ARIMA residual error
was used to amend and test the model. Finally, the obtained prediction results and errors were
analyzed. The prediction results show that the energy demand of Shandong province in 2016–2020
will grow at an average annual rate of 3.9%, and in 2020, the Shandong province energy demand will
have increased to about 20% of that in 2015.

Keywords: energy demand; energy prediction; GM-ARIMA model; GM (1,1) model; ARIMA model;
Shandong province

1. Introduction

The energy consumption of Shandong province was 36,759.2 million tons of standard coal
equivalent in 2015, and the average growth rate has been increasing by up to 5% over the past
years [1–3]. Energy consumption inspired an economic boom, and an exact prediction of the future
energy demand is required for accurate forecasting of the required energy supply. In addition, energy
consumption typically increases more rapidly than the GDP, and high-speed economic growth is
also largely dependent on massive energy consumption [4–12]. A significant number of studies have
focused on energy demand prediction, especially during recent years [13–16]. In 1976 and based on
the ARMA model, Box and Jenkins [17] proposed the autoregressive integrated moving average model
(ARIMA model). To obtain a stationary sequence, they processed the non-stationary time series with
differential treatment, disposed the stationary sequence with the autoregression and moving average
processes, and determined the parameters of the ARMA model, using both a correlation coefficient
and a partial autocorrelation coefficient. Grey theory is a truly multidisciplinary and generic theory,
originally developed by Deng [18]. Countries pay more attention to their energy supply, focusing
on areas such as the development of shale gas [19–21] and renewable energy [12,22,23], to ensure
a sufficient energy supply as the foundation of economic development. The grey theory has been
applied in many applications of systems analysis [24–26].
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This study utilized the energy demand of Shandong province for the years of 1995–2015 as the
object of study. The innovation point is that the adopted GM-ARIMA model forms a combination of
the grey model and the ARIMA model. Firstly, for the nonlinear and large amounts of data sequences,
the metabolic GM (1,1) model was used to fit the trend component of the time series. Secondly,
establishing the differential equation and keeping new data in process generated forecast dates. Lastly,
the ARIMA model was used to analyze and test the residuals to achieve the purpose of the prediction.
This model can effectively improve the accuracy of the prediction, and provide a scientific and reliable
theoretical basis for the prediction of the energy demand in Shandong province and inform related
policy decisions. This paper is organized as follows: The first section describes the research background.
The second section introduces the construction of the single prediction models, mainly the ARIMA
model and the GM (1,1) model. The third section introduces the construction of the GM-ARIMA
model, verifies the rationality of this model construction, compares the average relative error of the
single model and the GM-ARIMA model, measures the accuracy of the combined model prediction,
and obtains the forecast results for the next five years. The fourth section summarizes the entire text,
suggests prospects of future work, and develops relevant suggestions.

2. Single Model Based Prediction of Future Energy Demand Based on Past Energy Demand

Energy is an important factor to maintain the development of society, and it is the most important
factor to restrict the development of productive forces, while ensuring steady and healthy growth of
the economy [12,27–29]. At present, the energy demand of Shandong province is increasing annually,
the demand gap is large, and the main source of supply depends on a single supply. According to the
“statistical yearbook of Shandong” survey data, coal consumption accounted for 79.48% of the total
energy consumption in Shandong province in 2015 [1]. This shows a prominent contradiction between
energy supply and demand, and the coal supply gap is relatively large. To ensure a healthy structure
for energy consumption as well as to ensure green development when using large amounts of energy to
promote economic development, a rational analysis of the factors that affect energy demand is critical.
This study selected the energy demand of the years of 1995–2015 of Shandong Province, as shown in
Table 1, as reference data, generated forecasts, and analyzed the energy demand of Shandong Province
for the next five years.

Table 1. The energy consumption of Shandong province from 1995 to 2015.

Year Energy Consumption/Tons of Standard Coal

1995 9938.71
1996 10,117.67
1997 10,128.81
1998 10,028.80
1999 10,104.56
2000 9977.11
2001 11,649.88
2002 13,121.91
2003 15,974.50
2004 19,606.14
2005 25,687.50
2006 28,786.10
2007 31,194.99
2008 32,116.22
2009 34,535.66
2010 36,357.25
2011 31,211.80
2012 32,686.70
2013 34,234.90
2014 35,362.60
2015 36,759.20
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2.1. The Model of ARIMA

2.1.1. The Principle of the ARIMA Model

The ARIMA model describes the approximate process of data sequences over time, uses the own
lag term and random error term of variable Yt to explain variables, and consequently predicts the
future with a certain mathematical model [30–32]. The acronym stems from the univariate Box–Jenkins
autoregressive integrated moving average (ARIMA) [7] analysis, which has been widely used for
modeling and forecasting in many fields, such as medical, environmental, financial, and engineering
applications [17,33–36]. Furthermore, the forecasting of energy consumption is significant to control
carbon emissions [37,38]. In recent years, many countries pay increasing attention on developing
greenhouse gas (GHG) emission inventories to reduce global warming [12,39–41]. China has realized
this importance and initiated many actions to reduce carbon emissions and climate change [12,42–44].
Its specific form can be expressed as ARIMA (p, d, q), where ‘p’ represents the order of autoregressive
processes, ‘d’ represents the order of difference, and ‘q’ represents the order of the moving average
process [45,46]. The autoregressive process is the return of current and previous data, which can obtain
the AR function represented via the correlation coefficient; the moving average (MA) process is the
return of both current error and previous errors, thus the MA function can be drawn via association
between current data and errors. The letter ‘d’ represents the order of difference: if the sequence is
stationary, then d is 0; if the sequence is non-stationary, it needs to be different to the order of d to
smooth it, and then modeling starts.

The advantage of the ARIMA model is that it can use a combination of auto regression, difference,
and moving average of different order to obtain the ARIMA (p, d, q) model, expressing various types
of information of time series when fitting time series. Accurate predictions can be obtained by selecting
appropriate parameters. This study used the ARIMA model to predict the model parameters and used
SPSS software to determine model parameters and fit the sequence. Then, we obtained prediction data
and average relative error.

2.1.2. The Construction of the ARIMA Model

An important assumption of the classical linear regression model is that random error items in
the overall regression function satisfy the same variance, i.e., they all have the same variance. If this
assumption is not satisfied, i.e., the random error term has different variances and the linear regression
model is heteroscedastic. If the linear regression model displays such heteroscedasticity, the estimated
parameters are not valid estimators after using the traditional least squares method to estimate the
model. At this point, the significance test was invalid. To eliminate the possibility of heteroscedasticity
in the original time series Y, we used the log of Y, i.e., Q = log(Y), and then tested the stationarity of
the sequence via the Augmented Dickey Fuller (ADF) unit root test [47–49] (Test results are shown in
Table 2. ADF test results show that the original sequence was stable after zero order difference, i.e.,
d = 0.

Table 2. The stationarity test of energy demand time series in Shandong Province.

Sequence ADF Statistic
Critical Value

Value of p
1% 5% 10%

Q −3.648121 −4.667883 −3.733200 −3.310349 0.0577
Q* −2.280862 −4.532598 −3.673616 −3.277364 0.4233
Q** −5.709960 −4.571559 −3.690814 −3.286909 0.0012

Note: Augmented Dickey Fuller (ADF). Q* is the first order difference of Q. Q** is the two-order difference of Q.

After the difference order d had been determined, the data sequence was a stationary sequence;
thus, the autoregressive and moving average (ARMA) processes were started. Before modeling the
ARMA model, it was necessary to first determine the order p and q of each process. This order was
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obtained by calculating both autocorrelation coefficients and partial autocorrelation coefficients. After
observing the autocorrelation function and the partial autocorrelation function, obtaining the order of
magnitude, which leads to a function of zero, and researching truncation and tailing, the model type
and its corresponding order could be determined. If the autocorrelation (or partial autocorrelation)
coefficient were to be suddenly converged to the critical level range, and the value of them were
suddenly to become very small, we would call this truncation. If the autocorrelation (or partial
autocorrelation) coefficient were to drag a long tail, and the value of them were to be slowly reduced, we
would call this trailing. These are the definitions of truncation and trailing. If the sample autocorrelation
coefficient (or partial autocorrelation coefficient) were obviously larger than the standard deviation
range of 2 times in the initial d order, almost 95% of the sample autocorrelation (partial autocorrelation)
coefficients would fall within 2 times the standard deviation range, and the process of decaying from
non-zero autocorrelation (or partial autocorrelation) to small fluctuations would be very sudden, and
consequently, we would consider autocorrelation (or partial autocorrelation) coefficient truncation.
If more than 5% of the samples were to fall outside the standard deviation range of 2 times, or a
process of fluctuation, attenuated by a significant non-zero correlation function, were to be slow or
very continuous, we would consider autocorrelation (or partial autocorrelation) coefficient trailing.
The basic principles of model recognition are shown in Table 3.

Table 3. The basic principles of model recognition.

Autocorrelation Function Partial Autocorrelation Function Type of Model

Trailing P order truncation AR (p)
Q order truncation Trailing MA (q)

Trailing Trailing ARMA (p, q)

After fitting of a series using SPSS software, the autocorrelation coefficients and partial autocorrelation
coefficients can be obtained as shown in Figure 1.
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Figure 1. Autocorrelation and partial autocorrelation function diagram of energy demand in Shandong
Province. (a) indicated that the autocorrelation function is tailed; (b) indicated that the partial autocorrelation
function is truncated.

After the previous explanation, it can be seen that the p values are very small, thus the sequence
can be determined as a sequence of non-white noise [50]. However, the autocorrelation function is
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not zero after a certain step, but follows the form of a sine wave; thus, the autocorrelation function
is trailing. Furthermore, the partial autocorrelation function is zero after the 6th order and has a
truncation property. In summary, the sequence should be tested with the AR (1) model.

After the model type had been determined, the SPSS software could be used to fit the model.
The fitting results are shown in Tables 4 and 5.

Table 4. Model Statistics.

Model Stationary R Squared Sig. Number of Outliers

Energy Consumption 0.162 0.976 0

Table 5. ARIMA Model Parameters.

Model Constant AR(Lag1) Difference Numerator

Energy Consumption 47,096.394 −0.382 2 −23.446

As is shown by Tables 4 and 5, the fitting degree was very good, the coefficient of AR was −0.382,
and the constant was 47,096.394. Then, the autocorrelation and partial autocorrelation maps of the
residuals as shown in Figure 2 revealed stationary fitted sequences, therefore, it was reasonable to use
AR (1) model fitting, and the relative average error was 6.309%.
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Figure 2. The autocorrelation and partial autocorrelation maps of the residuals.

Thus, the result of the ARIMA model was: ∆Xt = 47096.394 − 0.382∆Xt−1 + εt. Finally, via fitting
prediction as shown in Figure 3, it could be verified that the fitting effect was good.
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2.2. Grey GM (1,1) Model

The application of the grey model has been extended to many fields, such as economy, energy,
technology, management, and others. If a system has fuzzy hierarchy, structure relation, dynamic
randomness, is incomplete, or contains uncertainty of index data, we call the system grey. Energy
consumption dates have these characteristics. The advantage of using the grey model is that it does
not require a large number of samples, and the effect of short-term prediction is good. This is the
central reason why the grey model can be used for energy consumption forecasting.

From previous forecasting results, we know that grey models are widely used in forecasting
carbon emissions, which provides reference for future economic development. In this study, we
used the grey GM model to explain the relationship between energy consumption and economic
development. Since the energy consumption is closely linked with many economic aspects, it would
not only help to adjust the future energy supply and demand, but also spur the search for a combination
point between economic development and new energy technology.

2.2.1. The Principle of the GM (1,1) Model

The GM (1,1) model is characterized by a small amount of data (typically 5–10) to predict future
trends [18,24–26]; therefore, the grey model features several advantages over the prediction of a small
capacity sample. The basic idea of the grey theory is: to combine the known time series according to
specific rules to form either a dynamic or non-dynamic combination, and then to solve the law of future
development according to specific criterion and solution [26,51,52], which adopt the essential part of
the Grey system theory [53]. The core of grey theory is the establishment of differential equations.
The reason why differential equations can be established for complex data and systems is that a
certain rule must be present in the data sequence. The solution of the differential equation is solved
with the least square method, and the parameters are taken into account to solve the predicted data
sequence. In this paper, the five-dimensional GM (1,1) model prediction method was used, and the
model was constructed with Excel to solve the parameters. Due to the significant change of oil in the
last years [54–58], forecasting the energy consumption relatively exactly is of great importance. After
the prediction data were obtained, we compared the prediction dates with the data of the years of
1996–2015, and obtained the average relative error of the model.
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2.2.2. Building the GM (1,1) Model

The data of energy demand in Shandong Province for the past 1995–1999 years were selected to
establish the original time series X0 = (x0

1, x0
2, · · · , x0

m). Among these, x0
m was the energy demand for

each year. To reduce the randomness of time series, we calculated the primary accumulation sequence

X1 = (x1
1, x1

2, · · · , x1
m), besides, x1

k =
k
∑

i=1
x0

i (k = 1, 2, · · · , m).

The GM (1,1) model was established via X1, and the corresponding differential equation
was [24,59,60]: dx1

dt + ax1 = b. Besides, ‘a’ is the coefficient of development of GM (1,1); ‘b’ is a
grey function.

Using least squares to estimate parameters: [a, b]T =
(

BT B
)−1BTY.

B =

 −
(

x1
1 + x1

2
)
/2 1

...
...

−
(

x1
m−1 + x1

m
)
/2 1

, Y =

 x0
2
...

x0
m

 (1)

According to related data of the energy demand in Shandong during 1995–1999, we obtained:

(
BT B

)−1
BTY =

(
0.0014

10136.6236

)
=

(
a
b

)
(2)

a = 0.0014, b = 10136.6236

The A and B introduced into the differential model corresponding to the GM (1,1) model, and the
response function could be solved:

x̂1
k+1 =

(
x0

1 −
b
a

)
e−ak +

b
a

, k = (1, 2, · · · , m) (3)

After restoring the response function, the GM (1,1) prediction model is:

x̂0
k+1 = x̂1

k+1 − x̂1
k = (1 − ea)

(
x̂0

1 −
b
a

)
e−ak, k = (1, 2, · · · , m) (4)

The residual of the K moment is: ε0
k = x0

k − x̂1
k , x0

k , which is the original demand for the K moment;
x̂1

k is the predicted demand for the K moment.
The mean of the original demand is:

x =
1
m

m

∑
k=1

x0
k

The residual mean is:

ε =
1
m

m

∑
k=1

ε0
k =

1
m

m

∑
k=1

(x0
k − x̂1

k)

The variance of the original demand is:

S2
1 =

1
m

m

∑
k=1

(
x0

k − x
)2

The residual variance is:

S2
2 =

1
m

m

∑
k=1

(
ε0

k − ε
)2
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The posterior difference ratio is:

C =
S2

S1

The posterior difference ratio C is the index of the accuracy of the reaction model. The smaller C,
the higher the accuracy of the model will be. After testing, C = 14.6433

39.1499 = 0.37 < 0.65. The inspection
standard revealed that the GM model was feasible if the value of C is below 0.65. Apparently, the
C value conformed to the inspection standard. Therefore, the GM (1,1) model could be used to test
the energy demand of Shandong province. The prediction results and residual values of the GM (1,1)
model are shown in Table 6.

Table 6. The prediction results and residual values of GM (1,1) model.

Year Actual Value/Tons
of Standard Coal

Predicted Value/Tons of
Standard Coal

Residual/Tons of
Standard Coal

Relative
Error

1995 9938.71 9938.71 0 0%
1996 10,117.67 10,115.627 −2.0432 0.02%
1997 10,128.81 10,101.475 −27.3351 0.27%
1998 10,028.80 10,087.343 58.5426 0.58%
1999 10,104.56 10,073.23 −31.3297 0.31%
2000 9977.11 10,059.138 82.0276 0.82%
2001 11,649.88 10,045.065 −1604.82 13.78%
2002 13,121.91 10,031.012 −3090.9 23.56%
2003 15,974.50 10,016.978 −5957.52 37.29%
2004 19,606.14 10,002.964 −9603.18 48.98%
2005 25,687.50 9988.9695 −15,698.5 61.11%
2006 28,786.10 9974.9948 −18,811.1 65.35%
2007 31,194.99 9961.0395 −21,234 68.07%
2008 32,116.22 9947.1039 −22,169.1 69.03%
2009 34,535.66 9933.1876 −24,602.5 71.24%
2010 36,357.25 9919.2909 −26,438 72.72%
2011 31,211.80 9905.4136 −21,306.4 68.26%
2012 32,686.70 9891.5558 −22,795.1 69.74%
2013 34,234.90 9877.7172 −24,357.2 71.15%
2014 35,362.60 9863.8981 −25,498.7 72.11%
2015 36,759.20 9850.0984 −26,909.1 73.20%

The formula for the arithmetic mean of the average relative error is:

X =
X1 + X2 + · · ·+ Xn

n
=

0% + 0.02% + · · ·+ 73.20%
21

= 44.38 (5)

After calculation, the average relative error predicted by the GM (1,1) model (5th dimension)
was 44.38%.

3. GM-ARIMA Model Based Prediction of Energy Demand Based on Energy Demand

The average relative errors of the ARIMA model and the GM (1,1) model were 6.309% and 44.38%,
respectively. The average relative error was not ideal, and each model had its own shortcomings:
the ARIMA model required the data sequence to not be following a trend, while the GM (1,1) model
required less data. Combined with the original data characteristics shown in Table 1, we find that the
original data of this paper followed a trend, and the amount of data was large. Therefore, using the
ARIMA model or the GM (1,1) model to predict data would result in vulnerabilities. The combination
model had the characteristics of pursuing advantages, while avoiding disadvantages. Via combination
of both models, the advantages of a single model could be achieved, while drawbacks could be avoided.
This is also the reason that forces us to build combinatorial models and achieve lower relative errors.
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The GM-ARIMA model constructed in this paper is a combination model, combining the metabolic
GM (1,1) model and the ARIMA model [61–63]. The metabolic GM (1,1) model is a dynamic process
that adds new data, while removing old data. By adding new data into the model, the factors that
influence the system over time can be overcome. The metabolic GM model encourages the system to
update and develop; therefore, it is more practical for larger sets of data. The ARIMA model treats
the data sequence of the predicted object over time as a random sequence, and uses a mathematical
model to approximately describe its sequence. In the GM-ARIMA model, we used the ARIMA model
to predict the residual sequence, to correct the prediction results, and improve accuracy.

The core of this model is the priority of the utilized model. We used the metabolic GM (1,1) model
to first predict the data. After comparing the predicted data with the original data, we obtained the
residual error. The ARIMA model was used to later correct the residual sequence. The specific building
process was as follows: First, the raw sequence was pre-processed so that it had the appropriate
condition to apply the metabolic GM (1,1) model. Then, the dimension of the metabolic GM (1,1)
model was determined with the criterion of the minimum residual sum of squares, and then the data
was predicted. Next, the ARIMA model was used to predict the results of this residual correction.
Finally, combined with the correction results, the prediction data were modified, thus obtaining the
final prediction data.

We used the average relative error value to judge the accuracy of the composite model. Compared
to the average relative error value of both ARIMA and GM (1,1) models, and if the average relative
error of composite model was small, we could take it for granted that the application of the GM-ARIMA
model increased the prediction accuracy of energy demand compared to that of a single model, and it
would arrive at a higher predictive value.

3.1. Data Analysis

The premise of modeling that uses the ARMA model is that the time series is a non-white noise
sequence. The sequence diagram shows that the time series has an apparent tendency; therefore, it is
a white noise sequence, and does not have the characteristics that enable using the ARIMA model.
Furthermore, the GM (1,1) modeling condition was 5–10 data points, and the amount of data points
used in this problem was 20, which does not conform to the condition of pure grey system modeling.
Therefore, metabolic GM (1,1) should be used to predict the data. It was necessary to verify the
nonlinearity of the original sequence when we used the grey model of metabolism. The judgment of
the nonlinear sequence [64–66] could be made via histogram, skewness, variance, conditional mean
estimation, and two-order linear indexing. In this study, we adopted the histogram judgment method.
The criterion was: if the histogram were normal, the sequence would be linear. If the histogram were
not normal, the sequence would be non-linear. The following provides the trend analysis and nonlinear
judgment of the original sequence.

3.1.1. The Tendency of Raw Data Sequences

The energy consumption of Shandong province from 1995 to 2015 is shown in Table 1 [1–3].
The sequence diagram is shown in Figure 4.
The diagram shows that the data sequence follows an apparent tendency. Therefore, a white noise

sequence can be obtained with the traditional difference method, and the model cannot be modeled
via ARMA. Therefore, the metabolic grey GM (1,1) model was considered. The premise of establishing
a metabolic grey model is that the data is required to contain nonlinear sequences, making it necessary
to test for nonlinearity of the data first.
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3.1.2. Verifying the Nonlinearity of the Raw Data Sequence

According to known theory, for a nonlinear sequence, whether the histogram of data is normal
curve can be used as the basis to judge whether the data is linear. The raw data histogram, drawn from
the SPSS software, is shown in Figure 5.
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Figure 5 shows that the distribution of the sequence is obviously different from the normal
distribution, and the data sequence could be determined as a nonlinear sequence. Therefore, the grey
GM (1,1) model could be considered for the data sequence.

3.2. Establishing the Metabolic GM (1,1) Model

The GM (1,1) model is a modeling method that is based on small capacity samples, and the
optimal amount of data is 5–10. Directly building the grey model with all 21 data of 1995–2015 years
sample would violate this modeling criterion of the grey model; therefore, the establishment of a
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metabolic grey GM (1,1) model was considered. The principle of the Gray Metabolic Forecast Model is:
After the initial sequence X(0) = (x(0)(1), x(0)(2), · · · , x(0)(n)) has been modeled and the predicted
data has been calculated, the latest information x(0)(n + 1) is inserted, while the oldest information
x(0)(1) is removed [63,67]. Then, the new sequence X(0) = (x(0)(2), x(0)(3), · · · , x(0)(n + 1)) is used
to establish the GM (1,1) model until all data has been predicted.

However, the problem of grey model computation is how to choose the dimension of the data
in the metabolic GM (1,1) model. To improve accuracy, the data of 5–10 dimensions were fitted
respectively, and the square sum of residuals was calculated according to the result of each fitting
and the original data. The sum of squares of residuals of each dimension was calculated as shown in
Table 7.

Table 7. The sum of squares of residuals of each dimension.

Dimension

Sum of Squares
of Residuals

5 6 7 8 9 10

135,452,583 166,026,131 209,743,846 274,770,956 345,088,570 409,611,901

As shown in Table 7, the square sum of residuals in the 5th dimension is minimum; consequently,
the data length was 5.

The specific steps for establishing a metabolic model are as follows: First, we selected the first

5 data points and accumulated the data: x(1)(t) =
t

∑
i=1

x(0)(i), t = 1, 2, 3, 4, 5; Then, we fitted the data

of the cumulative series with the aid of Excel, and obtained the predicted values:
{

x̂(1)(t)
}

, t =

1, 2, 3, 4, 5, 6; Next, the accumulation date should be returned to the original data sequence according
to the following formula: x̂(0)(t) = x̂(1)(t)− x̂(1)(t − 1), t = 2, 3, 4, 5, x̂(0)(1) = x̂(1)(1); Finally, we
removed the first date and added the most recent data point using the metabolism method, repeating
this to obtain all the predicted data.

The fitting results are shown in Table 8.

Table 8. Trend item fitting results.

Year Predicted Value/Tons of
Standard Coal

True Value/Tons
of Standard Coal

Absolute Error/Tons of
Standard Coal Relative Error

1995 9938.71 9938.71 0 0.00%
1996 10,115.63 10,117.67 2.04 0.02%
1997 10,101.47 10,128.81 27.34 0.27%
1998 10,087.34 10,028.8 58.54 0.58%
1999 10,073.23 10,104.56 31.33 0.31%
2000 10,059.14 9977.11 82.028 0.82%
2001 9963.672 11,649.88 1686.208 14.47%
2002 11,717.69 13,121.91 1404.219 10.70%
2003 14,228.42 15,974.5 1746.084 10.93%
2004 18,377.62 19,606.14 1228.516 6.27%
2005 23,139.35 25,687.5 2548.148 9.92%
2006 31,575.46 28,786.1 2789.358 9.69%
2007 35,700.99 31,194.99 4506 14.44%
2008 36,807.63 32,116.22 4691.409 14.61%
2009 35,166.92 34,535.66 631.259 1.83%
2010 36,460.9 36,357.25 103.649 0.29%
2011 38,279.69 31,211.8 7067.891 22.64%
2012 33,350.04 32,686.7 663.335 2.03%
2013 31,120.65 34,234.9 3114.254 9.10%
2014 32,375.9 35,362.6 2986.705 8.45%
2015 36,998.49 36,759.2 239.292 0.65%
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This study compared the predicted results with the data in the Shandong statistical yearbook,
and calculated the average relative error. Consequently, the average relative error of the fitting model
using metabolic GM (1,1) was 6.57%.

3.3. Residual Correction via the ARIMA Model

After using the metabolic GM (1,1) model to predict and compare to the original data, a series of
residuals of the data was obtained. The procedure for making residual corrections using the ARIMA
model is described in the following: First, the residual sequence diagram is drawn; then, a stationarity
test is conducted to determine the difference order. Subsequently, the parameters p, q, and types of
the model are determined via smearing and truncating the autocorrelation function and the partial
autocorrelation function graph. Next, the model was established and the residual sequence was fitted
to obtain the residual prediction results. Finally, the residuals of the fitted residuals were detected, and
the correctness of the prediction model was verified.

3.3.1. Residual Sequence Diagram

The residual sequence could be obtained by comparing the predicted results with the actual
results presented in the second chapter, and the residual sequence diagrams could be drawn using
SPSS software as shown in Figure 6.
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3.3.2. Stationary Test of the Residual Sequence

The premise for establishing the ARIMA model for residual data is that the residual sequence
needs to be stationary; therefore, it is necessary to test for the stability of the residual sequence. If the
model is stationary, the model can be directly built. If it is not smooth, several orders of difference need
to be made to stabilize it. The number of differences is indicated by the parameter d in the ARIMA
model. Using SPSS software, the results of unit root tests for residual sequences are shown in Table 9.
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Table 9. Unit root tests for residual sequences.

Sequences ADF Statistic
Critical Value

Value of p
1% 5% 10%

Q −2.821063 −4.498307 −3.658446 −3.268973 0.2064
Q* −4.500677 −4.571559 −3.690814 −3.286909 0.0114

Note: Q* is the first order difference of Q.

Thus, the differential first-order sequence is stationary, and d = 1.

3.3.3. Autocorrelation Coefficients and Partial Autocorrelation Coefficients

After the parameter d was determined, it became necessary to determine the parameters p and q.
The method for judging p and q has been introduced before, and the partial autocorrelation coefficient
map was drawn via SPSS software, which is determined by the graph as follows.

The diagrams as shown in Figures 7 and 8 show that the autocorrelation coefficients and the
partial autocorrelation coefficients of the residuals were all trailing; therefore, ARIMA (p, 1, q) models
are chosen. The sequence was fitted via SPSS software, and the values of p and q were repeatedly
determined. The confidence levels of the fitted sequences were compared between different p and q
values, and following that, the final model type was determined as ARIMA (2,1,2). The parameters of
the fitting result are shown in Table 10.

Therefore, the original residual sequence model is established as:

Yt = −12695.083 + 0.272Yt−1 − 0.841Yt−2 + at + 0.582at−1 − 0.653at−2
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Table 10. ARIMA Model Parameters.

Model Constant AR (Lag2) MA (Lag2) Difference Numerator

Energy Consumption −12,695.083 −0.841 −0.653 1 6.381
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3.4. Test of the Built Model

After the residuals have been fitted with the ARIMA (2,1,2) model, the residual sequence of
residuals was obtained. The autocorrelation coefficients and the partial autocorrelation coefficients are
shown as follows.

As shown in Figure 9, the fitted sequence is a white noise sequence; therefore, it could be used
for prediction.
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3.5. Prediction Results and Errors

The predicted results were combined with the residual corrected prediction, and finally the real
prediction results were obtained. These were then compared to the true value, and the average relative
error was calculated. After comparing the average relative error of the single prediction model as
calculated in the second chapter, the advantages of this combination model over the single model
prediction accuracy could be measured.

First, the metabolic GM (1,1) model was used to predict the error correction. Then, the ARIMA
(2,1,2) model was used for the error correction. The predicted results are shown in Table 11.

Table 11. Prediction results and errors.

Year
Predicted

Value/Tons of
Standard Coal

Residual
Prediction/Tons

of Standard Coal

Final Predicted
Value/Tons of
Standard Coal

True
Value/Tons of
Standard Coal

Absolute
Error/Tons of

Standard Coal

Relative
Error

1995 9938.71 0 9938.71 9938.71 0 0.00%
1996 10,115.63 −39.98 10,075.65 10,117.67 42.02 0.42%
1997 10,101.47 −28.42 10,073.05 10,128.81 55.76 0.55%
1998 10,087.34 −164.08 9923.26 10,028.8 105.54 1.05%
1999 10,073.23 −33.04 10,040.19 10,104.56 64.37 0.64%
2000 10,059.14 −232.11 9827.028 9977.11 150.082 1.50%
2001 9963.672 1655.47 11,619.142 11,649.88 30.7384 0.26%
2002 11,717.69 113.77 11,831.461 13,121.91 1290.449 9.83%
2003 14,228.42 795.83 15,024.246 15,974.5 950.254 5.95%
2004 18,377.62 −594.97 17,782.654 19,606.14 1823.486 9.30%
2005 23,139.35 746.24 23,885.592 25,687.5 1801.908 7.01%
2006 31,575.46 −5471.41 26,104.048 28,786.1 2682.052 9.32%
2007 35,700.99 −2985.75 32715.24 31,194.99 1520.25 4.87%
2008 36,807.63 −2557.42 34,250.209 32,116.22 2133.99 6.64%
2009 35,166.92 2935.6 38,102.519 34,535.66 3566.86 10.33%
2010 36,460.9 2443.12 38,904.019 36,357.25 2546.77 7.00%
2011 38,279.69 −4395.04 33,884.651 31,211.8 2672.85 8.56%
2012 33,350.04 4375.3 37,725.335 32,686.7 5038.64 15.41%
2013 31,120.65 1366.99 32,487.636 34,234.9 1747.264 5.10%
2014 32,375.9 1931.19 34,307.085 35,362.6 1055.515 2.98%
2015 36,998.49 −30.94 36,967.552 36,759.2 208.352 0.57%

Table 11 shows that the ARIMA model is capable of residual correction. The average relative error
was 5.11%; therefore, the error was smaller and the prediction result was better. In combination with
the above three methods, each accuracy could be calculated as shown in Table 12.

Table 12. Comparison results of different methods.

Method Average Relative Error

GM (1,1) 44.38%
ARIMA (1,2,0) 6.309%

Metabolism GM (1,1) 6.57%
GM-ARIMA 5.11%

The results show that the average relative error of the GM-ARIMA composite model constructed
in this paper was smaller than the resulting errors for each single model. Thus, we can conclude that
the GM-ARIMA model has higher accuracy.

This analysis showed that the GM-ARIMA model can be used to forecast the energy demand of
Shandong Province for the years of 2016–2020 and accurate forecast data can be obtained. The results
are shown in Table 13.
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Table 13. Forecast data of energy demand in Shandong in 2016–2020.

Year Energy Demand in Shandong/Tons of Stadard Coal

2016 38,208.307
2017 39,700.07
2018 41,250.076
2019 42,860.598
2020 44,534

4. Conclusions and Future Work

The GM-ARIMA model is very effective for systems with large sample size that follow
trends, and it can be appropriately applied for the future energy prediction of Shandong province.
This combination model was derived from the GM model and the ARIMA model. Through the
improvement of the calculation process, we used the metabolic GM (1,1) model to predict the data.
Then, the ARIMA model was used to obtain the results for residual correction. Finally, the residual
correction process enabled further improvement in the accuracy of the predicted results on the original
prediction. This was the major innovation of this study. Due to the complex data sequence of the
energy demand, once the model was set up, we could use the currently available data to forecast the
future data.

By analyzing and comparing the average relative error of different models, we found that the
accuracies of GM (1,1), ARIMA (1,2,0), metabolic GM (1,1), and GM-ARIMA model were 44.38%,
6.309%, 6.57%, and 5.11%, respectively. It became obvious that the combination GM-ARIMA model has
higher precision than each of the single models. The GM-ARIMA model combined advantages of both
models, while avoiding their limitations. The advantage of the combination GM-ARIMA model is that
it not only overcomes the shortcomings of the grey GM (1,1) model with less sample capacity, but also
that it uses the ARIMA model to correct the prediction results and to improve accuracy. During the
prediction process, the differential equation was used to determine the parameters, which provides a
certain degree of accuracy and is more practical for non-stationary sequences. In summary, the results
of energy consumption were reasonable.

The predicted results show that the energy consumption in Shandong province will still follow a
slow upward trend in the future. A situation where the supply is not adequate to meet the demand
may appear. To adapt to the increased energy demand, the government should take rational policy
measures, increase investment in new energy technologies, promote energy structure adjustments,
while at the same time, taking the development of green economic development into account.

The composite GM-ARIMA model provides a way to predict future energy consumption.
This provides a reference value for future energy development planning, policy formulation, and
technical direction. In the future, GM-ARIMA model predictions will be widely used in many areas:
carbon emissions from fossil fuel combustion, energy shortages, economic development indicators,
and a number of green energies. These forecasts are aimed at laying a solid foundation for the
adjustment of energy structure and for the rational adjustment of the levels of both energy supply and
demand. Through these efforts, we expect that the future energy development of Shandong will be
more diversified, balanced, and orderly.
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