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Abstract: Specific spatial information about medicinal plants is becoming an increasingly important
part of their conservation. Gynostemma pentaphyllum (Thunb.) Makino is a traditional Chinese medical
plant, and gypenosides is one of the main active components of G. pentaphyllum. In our research,
many samples of G. pentaphyllum and the data of gypenosides content in these samples were collected
from 43 sampling sites, and based on the Fuzzy Matter Element model (FME), the relationships
between gypenosides content and 19 environmental variables were established. Then, the maximum
entropy model was used to determine the relative importance of each environmental variable, and
thus determine the most limiting habitat criteria. Finally, the weighted average method was applied
to determine the potential distribution of G. pentaphyllum in China, which was based on the content
of gypenosides. The results showed that the areas of marginally suitable and suitable habitats
for G. pentaphyllum in China were approximately 1.2 × 106 km2 and 0.3 × 106 km2, respectively.
The suitable habitats were mainly located in southern China, including Hunan, Hubei, Chongqing,
Anhui, Jiangxi, Zhejiang, Shaanxi, and other regions. In conclusion, the FME model could accurately
evaluate the habitat suitability of G. pentaphyllum, quantify the area of a suitable habitat, and analyze
the spatial distribution.

Keywords: Gynostemma pentaphyllum (Thunb.) Makino; Fuzzy Matter Element model; gypenosides;
GIS; membership function; habitat suitability

1. Introduction

Medicinal plants and their natural compounds play a significant role in the treatment of many
diseases in many developing countries. The importance of medicinal plants is increasing rapidly
due to their multiple benefits [1,2]. With the increasing demand of medicinal plants in domestic and
international pharmaceutical markets and the influence of human activities, many medicinal plant
species are severely threatened by over exploitation and habitat destruction [3]. Artificial cultivation is
the most viable way of protecting the wild resources, while meeting the market demand. Meanwhile,
successful artificial cultivation with a high quality of medicinal plants not only depends on good
germplasm resources, but is also closely related to suitable environmental conditions [3,4]. Thus,
determining the environmental requirements of the high quality of medicinal plants by correlating the
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content of the effective components of the target species with the physical environment will facilitate
more effective plant cultivation, whilst also being an important part of species conservation [5].
Additionally, cultivation is also based on the specific information on the habitat requirements of
medicinal plants; we can map the distributions of the high quality of medicinal plants across landscapes
and extrapolate these across space and time [3,4,6].

Gynostemma pentaphyllum (Thunb.) Makino is an herbaceous climbing plant in the gourd (god)
family, which is a traditional Chinese medical plant. Its natural distribution is limited to damp
areas under trees at an altitude that ranges between 200 and 3200 m. It is widely distributed in the
south of China, Japan, Korea, India, Nepal, Malaysia, and other regions due to its strong ability
to adapt to the environment [7]. During the growth process of G. pentaphyllum in the south of
China, the period of sprouting leaves is from late March to early April. The leaf expansion period
continues until the end of April, and is then followed by a peak-growth period. The blossom period
starts between July and September. In mid-November, with the withering of the parts above the
ground, the plant growth decreases [7–9]. In traditional Chinese medical science, the whole plant of
G. pentaphyllum can be used as medicine. Modern pharmacology has confirmed that the gypenosides
extracted from the G. pentaphyllum exhibits anti-tumor and anti-aging properties, as well as lowering
cholesterol and enhancing immunity [8,9]. With a wide range of growth, high yield, and great market
potential, G. pentaphyllum has been included in the List of National Protected Plants, and at the
end of the last century, G. pentaphyllum became popular in Europe [10]. Currently, the research of
G. pentaphyllum mainly focuses on pharmacological analyses, breeding germplasm resources, and
population genetics [11–13]. However, only a few of them refer to the potential distribution area of
this species, especially for high-quality G. pentaphyllum.

In recent years, most studies have focused on the plant species distribution and habitat suitability
simulation, and statistical species distribution models (SDMs) are the main tools for such research [14].
Through building a correlation between species occurrence (or abundance) and environmental
estimates, SDMs can predict distributions across landscapes. Over the past two decades, with
technological advancements, numerous SDMs from a range of methods have become widely available
for describing patterns and performing predictions [14]. Among these models, maximum entropy
(MaxEnt) [15,16] is currently the most popular SDM, Bayesian networks (BN) have been increasingly
used for the habitat suitability modelling of threatened species due to their potential to construct
robust models with limited survey data [17], and the Fuzzy Matter Element model (FME) [3,4,6] can
predict changes in the medicinal compositions of plants in different geographical conditions. When
comparing the strengths and weaknesses of these three modelling techniques (Table 1), we found that
the FME model was most suitable for this study.

In this study, the data of G. pentaphyllum samples at 43 sampling sites in China were collected
and gypenosides was extracted as an index of the medicinal materials quality. Following this,
we used a geographic information system (GIS) and FME model to estimate the spatial distribution of
high-quality G. pentaphyllum in China. The objective was to construct maps of the potential distributions
of high-quality G. pentaphyllum, and identify the key environmental factors influencing its ranges and
the suitable habitat characteristics for G. pentaphyllum with a high content of gypenosides. Our results
will supply advice for artificial planting and the choice of GAP (Good Agricultural Practices) base for
G. pentaphyllum, establishing measures and proposals for the protection and sustainable utilization of
this species.
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Table 1. Strengths and weaknesses of MaxEnt, BN, and the FME model.

Model Strengths and Weaknesses

MaxEnt
[15,16]

Strengths
MaxEnt prediction accuracy is always stable and reliable, even with incomplete data and
small sample sizes.
MaxEnt is a method that only needs presence data of species, and for environmental data
both continuous and categorical data can be used as input variables.
MaxEntis is free, and it has a user-friendly operational interface.
Weaknesses
MaxEnt cannot predict the change of plants’ medicinal component contents in different
geographical conditions.

BN [17,18]

Strengths
The potential to use both expert knowledge and empirical data; an important advantage
in cases of limited data availability.
The suitability of BN models in a participatory modelling approach.
Their explicit treatment of uncertainties.
The availability of a variety of model validation tools.
Weaknesses
The directed acyclic graph (DAG) representing the dependencies between related nodes
(variables) is the foundation of constructing BN models, however, for high quality of
medicinal plants without certain criteria of habitat suitability, there is lacking sufficient
expert knowledge or experimental data to build an authentic DAG.
Their limited capacity to model systems mechanistically and dynamically.
Exclusive use of discrete variables which often results in significant information loss.

FME [3,4,6]

Strengths
FME model not only can predict the potential distribution of species, but also can predict
the change of medicinal compositions of plant in different geographical conditions.
Based on fuzzy theory, FME model determines the fuzzy membership functions
according to the relationship between evaluation factors and active ingredient of plants.
FME can standardize environmental variables with no prior knowledge as well as retain
information about the original data.
FME has good extrapolation performance even with incomplete data and small
sample sizes.
Weaknesses
FME model not only needs presence data of species, but also need the data of effective
components content for every samples site.
The samples data in FME model were collected by field work; all the samples consumed
extremely labor, material, and financial resources, especially in mountains or regions of
complex terrain.

2. Materials and Methods

2.1. Species Data Collection

Sampling data of the species G. pentaphyllum were obtained from the research group of Prof.
Yaping Xiao (Figure 1) at Shaanxi Normal University [13]. The research group collected the samples
on the basis of relevant literature about the distribution of G. pentaphyllum throughout southern
China, including the Shaanxi, Henan, Hubei, Hunan, Yunnan, Guizhou, Guangxi, Jiangxi, and
Anhui provinces, from 2004 to 2010 (Figure 2). The sampling sites were selected on the basis of
different environmental conditions when compared the traditional and original producing area of
G. pentaphyllum. There were 43 sampling sites of G. pentaphyllum and more than 10 samples were
collected from each site. The HPLC test was applied at each sampling site to examine the gypenosides
content. We used the mean value of the gypenosides content of multiple samples at each sampling site
to ensure that the data regarding the gypenosides content were representative for each region.
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2.2. Collection and Selection of Environmental Variables

To determine the geographic distribution of suitable habitats for a target species, a set of
environmental characteristics for this species must be defined [14,19–21]. Hence, three types of
predictors, including 23 climatic variables, 10 soil variables, and three topographic variables, were
chosen to simulate the distribution of high-quality G. pentaphyllum.

The climatic variables included two types of data: one was bioclimatic variables, which were
downloaded from the WorldClim database at a resolution of 30” (approximately 1 km2). The bioclimatic
variables included 19 bioclimatic variables, which were derived from the monthly temperature and
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rainfall values. Previous studies have indicated that bioclimatic variables are useful for SDMs, and
these variables are one of the most widely used environmental variables in the practice of SDMs [22,23].
The other types of climatic variables were downloaded from the Data Center for Resources and
Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn), including
an accumulated temperature above 0 ◦C (AAT0), accumulated temperature above 10 ◦C (AAT10),
the aridity index (AI), and the moisture index (MI), at a resolution of 1 km2. The climatic variables
were derived from a spatial interpolation method which was based on the average value of weather
station records over the last few years. Hence, these data can represent climatic conditions in the
study area. The soil variables were obtained from the harmonized world soil database (HWSD)
(http://www.fao.org/soils-portal/en) [24], at a resolution of approximately 1 km2. The HWSD soil
data incorporate the 1:1,000,000 scales Soil Map of China and other data sources, ensuring the accuracy
and reliability of the data.

Topographic variables including the elevation, slope, and aspect are important factors for the
distribution patterns of vegetation. In this study, the elevation variable was provided by RESDC at
a resolution of 1 km2. The slope and aspect variables were obtained via the ArcGIS spatial analysis
function based on the elevation variables.

In this study, principal component analysis (PCA) and correlation analysis were used for reducing
the influence of multi-collinearity of the environmental variables [25]. Furthermore, expert knowledge
and biological characteristics were also considered for the selection of environmental variables.
The detailed analysis procedure is given below:

Firstly, we used PCA to discern 23 climatic variables, and the results showed that the first three
principal components obtained with the PCA explained a total of 93.12% of the variation. Based on
the 15 climatic variables, those with the largest percentage of variance in the principal component
loadings were screened out. Following this, we ascertained 12 climatic variables for model building
(Table 2) after excluding some of the variables on the basis of the growth condition of G. pentaphyllum
and a Pearson cross-correlation coefficient value of >±0.7.

Secondly, the soil variables, including Topsoil organic carbon (TOC), Topsoil pH (H2O) (TPH),
Topsoil USDA Texture Classification (TTEX), and Subsoil pH (H2O) (S_PH) for model building,
were selected on the basis of previous literature and the biological characteristics of G. pentaphyllum.
Moreover, the three topographic variables were added, resulting in a total of 19 environmental variables
for model building analysis, as shown in (Table 2).

Table 2. Explanatory variables used to model the distribution of G. pentaphyllum.

Geographical Environment Index Code Name

Climatic factor

AAT10 Accumulated temperature above 10 ◦C
AI Aridity index
MI Moisture index

Bio1 Annual mean temperature
Bio5 Max temperature of warmest month
Bio6 Min temperature of coldest month
Bio7 Temperature annual range
Bio8 Mean temperature of wettest quarter

Bio11 Mean temperature of coldest quarter
Bio12 Annual precipitation
Bio14 Precipitation of driest month
Bio16 Precipitation of wettest quarter

Soil factor

TOC Topsoil organic carbon
TPH Topsoil pH(H2O)
TTEX Topsoil USDA Texture Classification
S_PH Subsoil pH(H2O)

Topographical factor
ASL Elevation above sea level

SLOP Slope
ASPE Aspect

http://www.resdc.cn
http://www.fao.org/soils-portal/en
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2.3. Model Evaluation

2.3.1. Fuzzy Matter Element Model

Fuzzy matter-element theory was founded in 1980s by the Chinese mathematician Cai [26],
and is a combination of Fuzzy mathematics theory and matter-element theory. With reference to
matter-element theory, in order to provide explicit conceptualizations for the practical problems which
cannot be described by precise mathematical language, a correlation function was used to produce
a quantitative description of the process of quantitative and qualitative change [6]. The matter-element
(R) consists of three fundamental elements, which can be defined as equation (Equation (1)):

R = (N, C, V) (1)

where N is the matter name, C represents the matter characteristics, and V represents the values of
matter characteristics.

In the Equation (1), if V is a fuzzy set, then R should be defined as a fuzzy matter element.
Furthermore, we defined Rnm (Equation (2)) as a compound matter element which contains n
dimensions of m matter elements.

Rnm =


M1 M2 · · · Mm

C1 µ11 µ12 · · · µ1m
C2 µ21 µ22 · · · µ2m

· · ·
Cn µn1 µn2 · · · µnm

 (2)

where µi j (i = 1, 2, · · · , n; j = 1, 2, · · · , m) is the value of the jth matter characteristics of the ith
matter elements.

2.3.2. Establishing the Fuzzy Correlation Function

For high-quality G. pentaphyllum, there is no prior knowledge about its explicit habitat
requirements, and thus, it can be considered as a fuzzy matter element. The suitability of each
environmental factor to the matter-element is fuzzy, so it is necessary to establish a fuzzy membership
function to standardize the variables and correlative transformation. In this study, to ensure consistency
between the sampling data and the environmental data, we extracted environmental variable values
from the sampling sites, producing environmental data sequences for model training [4]. Using the
statistical association between the data of gypenosides and the value of environmental variables from
the samples sites, we built fuzzy membership for every environmental variable to quantify the relation
between the value of environmental variables and habitat suitability.

During the modelling process, 80% of the sample sites data were used for model calibration, and
the remaining sample sites data were used to test the predictive ability of the model. According to
the data characteristics and biological characteristics of G. pentaphyllum, the Gaussian membership
function (Equation (3)) and the Trapezoidal membership function (Equations (4) and (5)) were used to
normalize each environmental variable, and we used Fitting degree (R-square) to control the fitting
error (Table 3).

A(x) = e−( x−a
σ )

2
, −∞ < x < ∞ (3)

where x is the independent variable, and a, σ are the parameters.

A(x) =


1, x < a

b − x
x − a

, a ≤ x ≤ b

0, b < x

(4)
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A(x) =


0, x < a

x − a
b − a

, a ≤ x ≤ b

1, b < x

(5)

In Equations (4) and (5), where x is the independent variable, a, b are the parameters.
For the Topsoil USDA Texture Classification (TTEX), the grade value has been determined by

means of pairwise comparison methods [3] (Table 4). The membership function illustrates how the
grade of membership changes as each environmental variable changes. For this reason, the optimum
and threshold values for the environmental variables were calculated within the distribution area of
high-quality G. pentaphyllum.

2.3.3. Correlative transformation

According to the fuzzy membership function of Tables 3 and 4, the correlation coefficient is
constructed, presenting the fuzzy matter element Rζ :

Rξ =


M1 M2 · · · Mm

C1 ξ11 ξ12 · · · ξ1m
C2 ξ21 ξ22 · · · ξ2m

· · ·
Cn ξn1 ξn2 · · · ξnm

 (6)

where ξij = µij (i = 1, 2, · · · , n; j = 1, 2, · · · , m), which represents the value of the ith
sample site membership grade to the jth environmental variables after normalization by the fuzzy
membership function.

Table 3. Membership function of the evaluation factors and fitting degree.

Geographical Environment Index Membership Function Fitting Degree (%)

AAT10 Gaussian-type 83.89
AI Gaussian-type 77.70
MI L trapezoidal 83.36

Bio1 Gaussian-type 72.59
Bio5 Gaussian-type 81.60
Bio6 Subsection Gaussian-type 83.52
Bio7 Gaussian-type 70.00
Bio8 Gaussian-type 70.92

Bio11 Gaussian-type 91.11
Bio12 Gaussian-type 75.73
Bio14 Subsection Gaussian-type 76.42
Bio16 Gaussian-type 70.92
TOC L trapezoidal 69.39
TPH Gaussian-type 77.34
S_PH Gaussian-type 75.29
ASL Gaussian-type 80.24

SLOP D trapezoidal 85.64
ASPE Subsection Gaussian-type 64.20

Table 4. Fitting degree of TTEX.

TTEX Type Fitting Degree

silt loam 1
loam 0.76

sandy clay loam 0.73
sandy loam 0.58

others 0
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2.3.4. Determine the Weights of Environmental Variables

To eliminate the subjective influence, the maximum entropy method (MEM) was used to determine
the weights of these environmental variables. In this research, information entropy is defined by
Equation (7) [27,28]:

E = −
n

∑
i=1

m

∑
j=1

µijlnµij (7)

where µi j is the same as Equation (6), m is the number of training samples, and n is the number of
environmental variables.

Then, the entropy value of the jth indicator can be calculated using Equation (8):

ej = −k
m

∑
j=1

µij

µi
ln

µij

µi
(8)

where ui =
m
∑

j=1
uij, k = 1

lnm .

The weighting value of the jth indicator is defined as Equation (9):

wj =
1

n − E
[
1 − e(µij)

]
(9)

2.3.5. Calculation of Habitat Suitability Evaluation Index

Rk is the matter element which has m matter characteristics and Rw is the information entropy
weight vector. Then, the habitat suitability evaluation index is defined as Equation (10):

Rk = Rw Rξ =

[
M1 M2 · · · Mm

Kj K1 K2 · · · Km

]
(10)

where Ki =
n
∑

i=1
Wjξij represents the fuzzy operator in the formula uses (, + ), and Ki refers to the value

of the habitat suitability evaluation index in the ith evaluation unit, Wj is the weighting value of the jth
environmental variables, and ξij = µij is the same as Equation (6). The range of Ki is 0–1, and a higher
value means that the evaluation units are more suitable for the growth of G. pentaphyllum and the
synthesis and accumulation of gypenosides.

2.3.6. Model Validation

The accuracy of the models is evaluated using the root mean square error (RMSE) [29], which is
defined as Equation (11):

RMSE =

√
1
N ∑N

i=1(Pi − Qi)
2 (11)

where N represents the amount of test data, Pi is the prediction value of the membership of the ith test
sample, and Qi is the actual value of the membership of the ith test sample. RMSE is a widely used
evaluation index, where the smaller the RMSE is, the higher the model precision [30].

2.3.7. Mapped the Distribution of Habitat Suitability

For further analysis, with ArcGIS 9.3 (ESRI, Redlands, CA, USA) support, we classified the model
results into three classes by the value of the habitat suitability evaluation index: unsuitable habitats
(Ki < 0.3), suitable habitats (0.3 ≤ Ki < 0.6), and highly suitable habitats (Ki ≥ 0.6). We mapped the
potential distribution of habitat suitability of G. pentaphyllum in China (Figure 3) calculated the primary
area of habitat suitability distribution of G. pentaphyllum in different provinces (Figure 4).
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3. Results

3.1. The Determination of the Fuzzy Membership Functions and Model Validation

The membership function was established to explore the relationships between factors and
membership degrees by cure-fitting and drawing scatter diagrams [4]. However, the interaction
between the content of gypenosides and the value of environmental variables was quite different.
According to the shape characteristics of the fitting curve and the graphical features of different types
of membership functions, we chose different fuzzy membership functions for every environment
variable. For most environmental variables, the suitable range for the growth of G. pentaphyllum has
upper and lower limits, so we chose Gaussian-type functions to demonstrate these relationships. As for
the environmental variables, which only have lower limits, we chose the L trapezoidal function as the
fuzzy membership function. For environmental variables, which only have upper limits, we selected
the R trapezoidal function as the fuzzy membership function. The value of the average fitting degree of
all the membership functions in this study was 77.21%, which varied from 64.20% to 91.11% (Table 3).
Moreover, the RMSE of this model was 9.75%. Usually, if RMSE < 10%, the simulation is considered
excellent [29]. Thus, the model results could be considered satisfactory.

According to the fuzzy membership function, we defined the optimum and threshold values for
every environmental variable. When the membership degree reaches its maximum, the value of the
environmental variables is the optimum variables, and when the membership degree >0.3, the range
of environmental variables is the threshold variables (Table 5).

Table 5. The optimal value, threshold value, and weights of each environment index.

Geographical
Environment Index Range and Units Optimum

Value
Threshold

Value
Weights

(%)

AAT10 0–10460 (d·◦C) 5300 3500–7158 8.07
AI 0–119 7.7 5.2–10.2 5.04
MI 0–259 253 150–259 4.09

Bio1 –22.7–26 (◦C) >17 >9.8 7.56
Bio5 –8–41.4 (◦C) 32.8 23.3–34 4.54
Bio6 –35–5.4 (◦C) 3.25 0.14–4.2 10.10
Bio7 13.7–61.5 (◦C) 32.8 20.08–36 3.99
Bio8 –15–31.9 (◦C) 14.9 16.7–27.2 6.65
Bio11 –30.1–22.2 (◦C) 7.6 0–14.3 7.33
Bio12 12–5054 (mm) 1010 850–1360 4.96
Bio14 0–229 (mm) 120 34–170 3.84
Bio16 5–3140 (mm) 530 350.2–910.7 7.25
TOC 0–3.02 (%) 0.95 0.6–1.5 6.67
TPH 4.7–8 6.8 5.5–7.6 5.94

TTEX

9 types: clay(light); silty clay
loam, clay loam, silt loam,

loam; sandy clay loam; sandy
loam; loamy sand, sand

loam

silt loam
loam

sandy clay loam
sandy loam

1.74

S_PH 4.5–8.1 6.3 5.5–8.1 1.01
ASL 0–8300 (m) 330 60–1670 5.40

SLOP 0–48 (◦) <5 <20 1.01
ASPE 0–359.95 (◦) 290 0–359.95 4.81

3.2. Distribution of Suitable Habitats

The model results indicated that the high-quality G. pentaphyllum was mainly distributed in
southern China (Figure 3), including Hunan, Hubei, Chongqing, Anhui, Jiangxi, Zhejiang, Shaanxi,
and Taiwan, etc. (Table 6). According to the results of the habitat suitability grades distribution, the
marginally suitable habitat of G. pentaphyllum is approximately 1.19 × 106 km2, and the suitable habitat
is only 0.42 × 106 km2, which accounted for 4.38% of the land area of China. The suitable habitats
are mainly located in southeastern Shaanxi, southwestern Henan, southern Anhui, western Zhejiang,
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eastern Chongqing, northwest Hubei, central and northern Hunan, and their surrounding areas.
The largest area of suitable habitat occurs from Shaanxi to Hunan, covering an area of approximately
0.32 × 106 km2, accounting for 76% of the suitable habitats of G. pentaphyllum in China. These areas
should be the first choice for the artificial planting base location of G. pentaphyllum. The marginally
suitable habitat area covers the Qinba mountain area, the middle and lower reaches of the Yangtze
River, the Yunnan-Guizhou Plateau, the northern part of the Pearl River Basin, and the middle part of
the Taiwan province.

The model indicated that, when the content of gypenosides reached its maximum, the
characteristic of the habitat should be as follows: 3.25 ◦C for Bio6 (Minimum temperature of the
coldest month), 5300 d·◦C for AAT10 (Accumulated temperature above 10 ◦C), more than 17 ◦C for
Bio1 (Annual mean air temperature), 7.6 ◦C for Bio11 (Mean temperature of the coldest quarter),
530 mm for Bio16 (Precipitation of the wettest quarter), 14.9 ◦C for Bio8 (Mean temperature of the
wettest quarter), 0.95% for TOC (Topsoil organic carbon), 6.8 for TPH (Topsoil pH), and 330 m for ASL
(Elevation above sea level).

Table 6. The percentage of areas of habitat suitability distribution of G. pentaphyllum in different provinces.

Province Unsuitable Habitat (%) Marginally Suitable Habitat (%) Suitable Habitat (%)

Shaanxi 63.80 23.39 12.81
Anhui 38.79 38.23 22.98

Zhejiang 12.46 56.51 31.03
Hubei 7.08 56.99 35.93

Chongqing 13.67 48.06 38.27
Fujin 47.95 49.48 2.57

Jiangxi 10.02 74.94 15.04
Hunan 1.04 43.69 55. 27

Guizhou 12.42 75.25 12.33
Yunnan 36.50 56.19 7.31
Taiwan 89.14 10.64 0.22

4. Discussion

4.1. The Rationality of the Model

Highly accurate and reliable SDMs model results depends on authentic species data, the relevance
completeness of the environmental variables, and the rationality of the mathematical algorithm [14,31].
In this study, we chose field surveys data as species distribution data to ensure the authenticity and
accuracy of the species distribution records. Only under the circumstances of appropriate temperatures
and sufficient water can plants exhibit a normal growth and accumulate particular organics [4].
Therefore, reliable and sufficient environmental variables for the environmental characteristics of a
high-quality medicinal plants distribution area are the decisive factor for model building. Three types
of environmental variables were selected to present the feature of suitable habitat characteristics,
and we used principal component analysis (PCA), correlation analysis, expert knowledge, and
biological characteristics to select the environmental variables. This ensures that the environmental
variables involved in modelling have no multi-collinearity and can effectively and reliably describe
the environmental characteristics.

FME is derived from fuzzy theory, and it represents a very useful tool for the simulation of
high-quality medic plant distributions [3,4,6]. During the modelling procedure, determining the
membership function is a key step [32–34], and usually, researchers determine the type and parameters
of fuzzy membership functions based on expert knowledge [35,36]. However, in this study, in order
to avoid the influence of subjective factors, we used the information on the relationship between the
value of 19 environmental variables and the gypenosides content of G. pentaphyllum samples to choose
the membership function type and calculate the parameters. Hence, the FME model can standardize
variables with no prior knowledge, as well as retain information about the original data.
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In practice, the FME model is a universal model for the simulation of the quality of wild herbs in
different environmental conditions, and this model only depends on the information provided by the
statistical data, determining the mathematical relationship between the value of each impact factor and
the content of effective composition in medicinal plants. It represents a tractable modelling method
when knowledge about the habitat requirements of some species is insufficient [3]. In the modelling
process, the FME model needs the data of the effective components content for every sample site.
This required all of the sample data in these models to be derived from field work, and the content of
the medicinal composition of the plant must then be tested. A large amount of labor, material, and
financial resources are consumed during this process, and then, we usually only get limited data. Thus,
only limited sample data are provided for the FME model, which will increase the model uncertainty
to some extent [4]. Future research should collect more sample data, and try to combine the FME
model with other machine learning models, in order to make the modelling more accurate and exact.

4.2. The Dominant Variables’ Response to Suitability

The quality and efficacy of medicinal plants are closely related to their geographical
environment [37,38]. In this research, the estimates of the relative contributions of the environmental
variables indicate that, among the climatic variables, Bio6 (Minimum temperature of the coldest
month), AAT10 (Accumulated temperature above 10 ◦C), Bio1 (Annual mean air temperature), Bio11
(Mean temperature of the coldest quarter), Bio16 (Precipitation of the wettest quarter), and Bio8 (Mean
temperature of the wettest quarter) are the key variables, with contribution rates 10.10%, 8.07%, 7.56%,
7.33%, 7.25%, and 6.65%, respectively. For soil variables, the key variables determining the distribution
of high-quality G. pentaphyllum are the TOC (Topsoil organic carbon) and TPH (Topsoil pH(H2O)),
with contribution rates of 6.67% and 5.94%, respectively. In addition, the ASL (Elevation above sea
level) and ASPE (Aspect) are the key variables among the topographical variables, with contribution
rates of 5.40% and 4.81%, respectively.

According to the fuzzy membership functions, we calculated the optimal value (membership
degree = 1) and the suitable ranges of environmental variables for the distribution area of
G. pentaphyllum (membership degree > 0.5) [4]. The results showed that the optimal values are
5300 d·◦C for AAT10, 17 ◦C for Bio1, 3.25 ◦C for Bio6, 7.6 ◦C for Bio11, 14.9 ◦C for Bio8, and 530 mm
for Bio16. These data summarized the environmental characteristics of high-quality G. pentaphyllum,
namely, warm humid climates. The ranges are 16.7–27.2 ◦C for bio8 and 350–910 mm for Bio16, and
these data indicate that during the summer growing season, low temperatures and drought would be
disadvantageous for the growth of G. pentaphyllum and the synthesis and accumulation of gypenosides.

Li and Zhou [39] produced a preliminary summary of the climatic environmental characteristics
in G. pentaphyllum-producing areas. They reported that in such areas, the accumulated temperature
above 10 ◦C was greater than 3660 d·◦C, the annual average temperature was 14–25 ◦C, the annual
precipitation was above 850 mm, and the precipitation in the summer growing season accounts
for more than 80% of the annual precipitation. This record was consistent with the results of our
research. Because of the shallow fleshy stem roots, it is easy to cause damage to G. pentaphyllum
under the condition of an extremely low temperature and continuous low temperature in winter.
The results show that the suitable ranges are 0.14–4.2 ◦C for Bio6 and 0–14.3 ◦C for Bio11, and these
data describe the climatic characteristic of a milder winter, consistent with the biological characteristics
of G. pentaphyllum.

This study indicated that the silt loam was the most suitable for the accumulation of gypenosides
content of G. pentaphyllum, followed loam and sandy clay loam. At the same time, the suitable range of
TPH is 5.5–7.6 and the optimal value is 6.8, and the TOC optimal value is 0.95%, which means a high
soil carbon content. These data describe the soli characteristics of suitable habitats for G. pentaphyllum,
namely, subacidity and a high carbon content in soil. Pang [40] studies have shown that sandy loam
soil and humus soil with a high carbon content are the most appropriate soil types for the growth
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of G. pentaphyllum, and the most appropriate soil pH for this plant was 6.5–7.0. This record is also
consistent with the results of our study.

According to the result of membership function, the suitable range for altitude is 60–1670 m,
and Zhang [41] has shown that the most appropriate altitude for the growth of G. pentaphyllum
is 200–2000 m; our results show that the optimal aspect value is 290 degrees, which means that the
northwest is suitable for the growth of G. pentaphyllum. It is consistent with the biological characteristics
of G. pentaphyllum, which love shadowy places.

5. Conclusions

We have successfully predicted the suitable habitats of high-quality G. pentaphyllum in China.
Moreover, the FME model has provided satisfactory results based on the data of the gypenosides
content of G. pentaphyllum derived from field work and three types of environmental factors,
which are selected from the result of PCA, correlation analysis, expert knowledge, and biological
characteristics. According to the result of membership function, we can obtain suitable range of each
factor for G. pentaphyllum, and this information is significant for the management and protection of
G. pentaphyllum resources. Based on the results of this research, combined with the environmental
characteristics of key variables which have greatly influenced the distribution of G. pentaphyllum, we
can make a reasonable plan for the introduction and cultivation of these species.

The ability of drought resistance of G. pentaphyllum is poor, and only in the condition of high
humidity and a high soil moisture content can it grow well. Hence, when planting in the field, we
should first select the suitable habitat area for G. pentaphyllum, and then conserve soil and water,
improve soil moisture, and during the winter cold season, insulation measures should be taken.
Finally, we need to provide a good developmental situation for G. pentaphyllum by providing shading
conditions or intercropping with other tall crops and fruit trees.
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