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Abstract: This article is motivated by a conundrum: How can shale gas development be encouraged
and managed without complete knowledge of the associated risks? To answer this question, we
used back propagation (BP) neural networks and expert scoring to quantify the relative risks of
shale gas development across 12 provinces in China. The results show that the model performs well
with high predictive accuracy. Shale gas development risks in the provinces of Sichuan, Chongqing,
Shaanxi, Hubei, and Jiangsu are relatively high (0.4~0.6), while risks in the provinces of Xinjiang,
Guizhou, Yunnan, Anhui, Hunan, Inner Mongolia, and Shanxi are even higher (0.6~1). We make
several recommendations based on our findings. First, the Chinese government should promote shale
gas development in Sichuan, Chongqing, Shaanxi, Hubei, and Jiangsu Provinces, while considering
environmental, health, and safety risks by using demonstration zones to test new technologies and
tailor China’s regulatory structures to each province. Second, China’s extremely complex geological
conditions and resource depths prevent direct application of North American technologies and
techniques. We recommend using a risk analysis prioritization method, such as BP neural networks,
so that policymakers can quantify the relative risks posed by shale gas development to optimize the
allocation of resources, technology and infrastructure development to minimize resource, economic,
technical, and environmental risks. Third, other shale gas industry developments emphasize the
challenges of including the many parties with different, often conflicting expectations. Government
and enterprises must collaboratively collect and share information, develop risk assessments,
and consider risk management alternatives to support science-based decision-making with the
diverse parties.
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1. Introduction

China has become the top energy consumer in the world [1]. At the same time, China is facing
intense international and domestic pressure to reduce the greenhouse gas and other emissions resulting
from its primarily coal-based energy system [2–4]. Given these twin pressures of increasing energy
demand while controlling emissions, the development of China’s shale gas industry has emerged as a
strategic national priority [5]. In Table 1, we compare the shale gas reserves, resource potential, and
status of industry development in China, the United States, and Canada.
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Table 1. Comparison of shale gas development in China, the United States, and Canada.

China United States Canada

Depths of shale gas deposits 3000–8000 m A few hundred to 3000 m 1000–5000 m

Resource potential (reserves) 134.4 trillion m3 1 141.6–169.9 trillion m3 68.3 trillion m3 2

Recoverable resource
potential 25.1 trillion m3 1 24.4 trillion m3 16.2 trillion m3

History of the development Since 2009 More than 80 years A few decades, behind
only the United States

Market conditions Transition from
monopoly to competition Robust competition Emergence of market

competition

Investment (through 2014) $3.76 billion Unknown Unknown
Volumes produced in 2015 5.2 billion m3 432.3 billion m3 68.2 billion m3

Source: Adapted from Zhao et al. [6], Sun [7], EIA [8] and Mlada [9]. 1 Excluding Qinghai-Tibet; 2 Western
Canada only.

Shale gas development in China can be divided into two main phases: the benchmarking
phase (1990–2005), which involved observing, summarizing and evaluating shale gas industry
development in North America; and the local study phase (2006–present), which involves preliminary
assessments of shale gas resource potential and the identification of favorable development areas,
applying internationally developed technologies for tight gas exploration, characterization, modeling,
and exploitation in the Chinese context [10]. As a result, substantial exploration and production
breakthroughs have been made in the Chinese shale gas industry since 2009 [11].

According to China’s Shale Gas Resources Report issued in May 2015, China’s shale gas geological
resource potential is 134.4 trillion m3, which is almost twice the amount of conventional natural gas
resources in China; recoverable reserves are estimated at 25.1 trillion m3 (excluding those in the
Qinghai-Tibet) [11]. The shale gas resource distribution in China is illustrated in Figure 1. Seven
provinces—Sichuan, Xinjiang, Chongqing, Guizhou, Hunan, Hubei and Shanxi—account for 68.9% of
the nation’s total reserves [12].
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Although developing China’s shale gas resources could help address the growing need for cleaner
energy, production trails other countries (Table 1). To catalyze this process, in its 12th Five-Year Plan
issued in March 2012, China articulated its first national development plan for shale gas, including
priorities and objectives for 2011–2015, and an outlook to 2020. The plan called for the completion
of basic research and an assessment of China’s shale gas resource potential and its distribution,
a selection of a batch of shale gas prospect areas (about 30–50) and favorable target areas (about 50–80),
implementation of several shale gas exploration and development areas, development of exploration
technology and equipment suited to China’s geological conditions, and initial achievement of scale
production by 2015. Shale gas production goals were 6.5 billion m3 in 2015 and 60–100 billion m3 by
2020. To attract foreign investment, in December 2011, the Foreign Investment Industry Guidance
Catalogue reclassified foreign investments in shale gas exploration and development in the form of joint
ventures with Chinese partners as “encouraged”, thereby providing foreign investors some tax and
administrative benefits. Additionally, Sichuan, Chongqing, Guizhou, Hunan, Hubei, Yunnan, Jiangxi,
Anhui, Jiangsu, Shannxi, Henan, Liaoning, and Xinjiang were defined as key provinces, without
providing detailed instructions as to how this development was to occur. In terms of environmental
issues, the plan only required the supervision and control of vegetation destruction, water pollution,
and the recycling of fracturing fluid.

Given the complex geological conditions [6] and limited experience with relevant shale gas
exploration and production technologies, the industry struggled to achieve the shale gas targets set
out in the 12th Five-Year Plan [14]. First, shale gas had not been well characterized and proven;
only a few blocks within the Sichuan Province basin had proven reserves [11]. By the end of 2014,
only 21,818 km of 2D seismic and 2134 km2 of 3D seismic tests had been completed, mainly in the
Fuling block (in Chongqing Province) and Changning-Weiyuan blocks (in Sichuan Province) [11].
By contrast, no 2D seismic exploration had been performed in provinces such as Shaanxi. Second,
the costs of exploration and production proved much higher than anticipated; as a result, some
state-owned oil companies, such as China Petrochemical Corporation (Sinopec) and China National
Petroleum Corporation (CNPC), managed to produce a small amount of shale gas, but with huge
deficits. For instance, by the end of 2013, Sinopec and CNPC reported the total investment of
$370 million and $640 million, respectively, but produced only 2.58 billion cubic feet and 2.47 billion
cubic feet, respectively, resulting in short-term losses of about $1 billion on their shale gas projects [15].
Third, some bid-winning non-oil-and-gas enterprises, such as Chongqing Energy Investment Group
Limited Corporation, struggled to meet their shale gas exploration and production targets because
they lacked the necessary expertise and investments in reservoir characterization [12,13]. Fourth,
some international oil companies have divested their shale gas assets in China (e.g., Shell and
ConocoPhillips) [16]. As a result, shale gas development is mainly being left to the state-owned
oil and gas companies. Further, by regulation, produced shale gas cannot be sold freely in the
Chinese energy market and its price remains uncompetitive with conventional gas. The Chinese
government provides subsidies to companies that produce shale gas, but the margins are still tight.
Thus, international oil companies are choosing other, more profitable projects.

Taking these issues into consideration, the national energy administration of China has modified
the shale gas production target for 2020 from 60–100 billion m3 to 30 billion m3, and the Ministry of
Land and Resources has repeatedly postponed the third round of bidding for shale gas prospecting
rights [14,17]. This suggests that China’s production targets have not reflected the operating and
regulatory environment, and that the policies made by the Chinese government have not catalyzed the
desired development. Underlying this is insufficient characterization of shale gas resources and the
risk associated with their development.

We make three contributions to the extant literature. First, we extend and deepen the risk
assessment system for China’s provincial shale gas industry by considering resource, economic,
technical, environmental, and social and policy risks (with 16 subordinated tertiary indicators). Second,
we leverage experts’ evaluations of shale gas development risks for 12 different provinces in China.
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Third, we extend the use of BP neural networks by demonstrating that this approach can be used to
quantitatively estimate the risks associated with shale gas development in different regions of China.

The rest of this paper is organized as follows. In Section 2, we review prior research and describe
how we identified and selected risk indicators and developed our risk assessment system for China’s
provincial shale gas industry. In Section 3, we introduce our methodology and data. In Section 4, we
present and discuss our results before making some policy suggestions in Section 5.

2. Developing the Risk Assessment System

While research on the risks associated with conventional energy and renewable energy in
China has been comprehensive, risks associated with shale gas development were not considered
until 2012 when production began. Previous work on shale gas has identified the risks associated
with geological conditions [18,19], technology [20,21], yield prediction [22–24], and strategic and
government policy [6,25–27], yet less attention has been paid to overall industry development
risks [5,28–30]. Processing of minerals is associated with a number of development risks, including
various economic, environmental and social issues [31]. These risks have prompted members of
the shale gas industry to engage in the sustainability debate. The ideal way to deal with these
potential risks generally is through a combination of enhanced socioeconomic growth and development,
and improved environmental protection and pollution prevention [32]. This indicates insufficient
breadth in the research on shale gas development risk; scholars typically focus on one or two
specific industry risks [33–42], rather than engaging in a comprehensive analysis of all risks. It
also indicates an insufficient depth of analysis, with most risks being assessed qualitatively rather than
quantitatively [33–41]; quantitative analysis supports more complex assessment [43] and evaluative
tradeoffs amongst a range of diverse risks [44]. Quantitative evaluations of China’s shale gas industry
development risks are scarce and province-scale analysis is absent, yet necessary to analyze site-specific
information (e.g., local environmental conditions or community characteristics) [5]. The most recent
research summarizes scientific activities in terms of who is engaged in research and what they are
researching [45,46], but does not provide a comprehensive analysis of development risks. For instance,
according to Feng [47] (p. 23):

“Currently, environmental supervision regarding shale gas development in China mainly
references the regulations and technical guidelines developed for conventional resources . . .
These policies do not fully consider the specific environmental issues brought by this new
mineral resource. [Further], the authorities have yet to consider environmental protection,
ecological and human health impacts when selecting sites for shale development, and no
research has been conducted on pollution levels from China’s shale developments.”

To address this gap, we analyze the resource, economic, technical, and environmental risks
associated with China’s provincial shale gas development, using back propagation (BP) neural
network modeling. Neural network analysis is used for “categorization and . . . prediction problems,
particularly when there are a large number of inputs which are related in nonlinear ways” [48]. Indeed,
neural networks outperform traditional statistical methods, especially for problems with incomplete
data, when inputs and constraints are related in complex, nonlinear ways [49,50]. Feed-forward
back-propagation is a well-known learning algorithm for training neural networks, which can
supplement existing theoretical analyses and decision-making processes.

The risks discussed in this paper are on an industry level and are not specific to a particular shale
gas project. The risks can be divided into internal industry risks (i.e., resource potential, economic,
technical and environmental) and external socio-political risks such as China’s domestic policy system
and international geopolitical factors. The shale gas industry in China is in an early stage, so data are
relatively scarce. However, since the shale gas and conventional oil and gas industries share many
characteristics in terms of exploration and production, transportation and downstream markets, we
consulted experts (see Figure 2) to identify risks. Figure 2 illustrates how we developed a neural
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network-based risk assessment system for shale gas development in China. We discuss the preparation
of our training data, development of our neural network, and the simulation of the relative risks in the
next section.

The advantage of expert-based models is that they do not require inventory data for model
training; however, the disadvantage is the subjectivity of experts’ judgments about the importance
of conditional factors. To improve the reliability of our model, we selected a committee of
12 experts in the shale gas field. Since state-owned oil companies are currently engaged in shale gas
exploration and development [15], we selected one expert from each of the research institutions of five
state-owned petroleum enterprises, namely Sinopec (China Petrochemical Corporation) Exploration
and Development Research Institute, Sinopec Economic and Technology Research Institute, China
National Petroleum Corporation (CNPC) Exploration and Development Research Institute, CNPC
Economic and Technology Research Institute, and China National Offshore Oil Corporation (CNOOC)
Energy Economic Research Institute. We also selected an expert from a foreign-funded enterprise (i.e.,
Schlumberger) and an expert from a private enterprise (i.e., Anton Oilfield Services Group) because
these two companies play an important role in providing the engineering and technical services for
China’s shale gas industry [51]. Since scholars from China University of Petroleum (Beijing), Southwest
Petroleum University and Yangtze University have published many papers about shale gas [10], we
chose experts from each of these three universities. Finally, we selected one expert from each of the
two research institutions engaged in long-term research on China’s shale gas industry: Oil and Gas
Resources Research Center of China Geological Survey and China Energy Website [51].
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A comprehensive risk evaluation system is key to ensuring that the evaluation results are practical
and reliable. Therefore, system development should not only follow general principles such as being
scientific, comprehensive, quantitative and feasible, but also include research findings related to
industrial risk index systems in China and elsewhere. While considering inter-industry differences,
we primarily focused on the research findings of energy-related risk index systems and the feasibility
of their application in the shale gas industry (see Table 2). Since our focus is on the risks associated
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with shale gas industry development, we focused first on three representative studies on this topic:
Guo et al. [52], Yu [53] and Krupnick et al. [5]. Second, we considered studies related to coal, the
dominant source of conventional fuel energy in China. However, since coal is abundant, the technology
is mature, the market is completely competitive, and the regulatory system is established, the risks
related to the industry are less applicable. Third, we reviewed literature related to the development of
the renewable energy industry (i.e., biomass and solar) because there are similarities in terms of national
policy support, market competition, environmental impacts, and technical requirements for industry
development. Importantly, we did not consider literature related to the nuclear industry because
it is completely different in terms of developmental stage, technology, regulation, and long-term,
immeasurable risks [54].

Table 2. Representative risk index system of energy industry.

Researcher Target Industry Index System Indexes Relevant to the
Shale Gas Industry

Hou [55] Biomass

Supply abundance, supply stability, technical
maturity of energy conversion technologies,
update rate of relevant equipment, technical

maturity of energy storage technologies, market
demand, public awareness, price competitiveness,

legislation, tax preference, subsidies, industrial
development management, natural disasters and

environmental changes

Technical maturity of
energy conversion

technologies, technical
maturity of energy

storage technologies,
market demand, price

competitiveness,
legislation, etc.

Zhang et al. [56] Photovoltaic power
generation

Industry scale, supply and demand, revenue
capability, technical R&D, cost structure, policy

system, concentration level, resource potential, cost
comparison, manufacturing energy consumption,

electricity price change, competition pattern,
external dependence, macro economy, financial
market, product structure, technology tendency

Supply and demand,
technical R&D, resource
potential, electricity price

change, etc.

Chi [57] Solar photovoltaic

Technical maturity, technical level, independent
R&D capacity, raw material supply, product supply

and demand, market competition, industrial
policies, industrial standards

Technical maturity, raw
material supply,

industrial standards, etc.

Guo et al. [52] Shale gas

Geological condition, recoverable reserves,
resource prospect, international collaboration,
independent R&D, talent team, technology &

equipment, production cost, environment
rehabilitation cost, operation revenue, pipeline

construction, environment deterioration, ecological
balance, environmental evaluation system,

industry standards, preferential policies

Geological condition,
recoverable reserves,

technology & equipment,
production cost, pipeline

construction

Yu [53] Shale gas Resource risk, technical risk, water consumption
risk, environmental risk, capital investment risk

Resource risk, technical
risk, water consumption
risk, environmental risk,
capital investment risk

Krupnick et al. [5] Shale gas

Lack of water resources, water pollution,
air pollution, soil pollution, community disruption,

earthquake, lack of legislation,
insufficient regulation

Lack of water resources,
water pollution, air

pollution, soil pollution,
lack of legislation,

insufficient regulation

Drawing on our experts’ suggestions and findings in the literature, we identified representative
and quantifiable indicators of risks associated with shale gas development. For example, production
cost, which is a type of economic risk, is taken directly from Guo et al. [52]. However, we identified
price competitiveness as a sole indicator of market risk, while Hou [55] also considered market
demand. In China, unconventional shale gas directly competes with conventional gas. Since there
is no significant difference in terms of production quality, consumers only care about price, not the
origins of the gas. As shown in Table 3, our risk assessment system includes five types of secondary
indicators, namely resource risk, economic risk, technical risk, environmental risk, social and policy
risk (with 16 subordinated tertiary indicators).
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Table 3. Indicators of the provincial shale gas development risks.

Target Layer A Criterion Layer B Index Layer C

Comprehensive evaluation of shale gas
industry development risks (A)

Resource risks (B1)
Resource prospects (C11)
Geological conditions (C12)
Resource reserves (C13)

Economic risks (B2)
Production costs (C21)
Capital risk (C22)
Market risk (C23)

Technical risks (B3)
Technology equipment (C31)
Infrastructure (C32)

Environmental risks (B4)

Water consumption (C41)
Water pollution (C42)
Air pollution (C43)
CO2/CH4 emissions (C44)
Other damage (C45)

Social-policy risks (B5)
Industrial standards (C51)
Preferential policies (C52)
Long-term planning (C53)

3. Methodology and Data

3.1. BP Neural Network

There are several different risk evaluation methods, among which the analytic hierarchy process
(AHP), grey system evaluation method, data envelopment analysis (DEA), fuzzy mathematics
comprehensive evaluation method, the multi-objective decision and expert evaluation method [58–65]
are relatively mature. BP neural networks are one of the most commonly used and most mature
artificial neural network methods [66–71]. Information processing is divided into forward data
calculation and back learning (namely the back propagation of error signals and correction of relative
values) to approximate a given expected output. A trained network can be used to predict the target
variable. This method is believed to be most applicable to simulation of the correlation of inputs and
outputs [72]. Funahashi [73] proved that the three-layer network with just one hidden layer is sufficient
to express any continuous function with any required accuracy, assuming an adequate number of
hidden layer nodes. The artificial neural network can estimate any function in a broad category and
reveal the nonlinear relationship that exists in the data sample [74,75]. BP neural networks are widely
used in risk assessment and security pre-warning systems in various industries [72,76–79]. The basic
mechanism is shown in Figure 3.
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Figure 3 illustrates the three layers of a BP neural network: the input layer, the hidden layer, and
the output layer. Two nodes of each adjacent layer are directly connected via a link. Each link has
a weighted value representing the degree of relationship between two nodes [80]. Suppose that the
number of input layer neurons is n, the number of hidden layer neurons is p, and the number of output
layer neurons is m. We can infer a training process described by the following equations to update
these weighted values, which can be divided into two steps:
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Step 1: Hidden layer stage. The output of the hidden layer neurons can be calculated as follows:

x1
i = f

(
n

∑
j=1

w0
ijxj + w0

i0

)
, i = 1, 2, . . . , p (1)

where
n
∑

j=1
w0

ijxj + w0
i0 represents the weighted sum of n input layer neurons; w0

ij is the weight coefficient

reflecting the influence level of the input layer neuron j on the hidden layer neuron i; w0
i0 is the

threshold value of the hidden layer neurons i; and f(x) is a non-memory nonlinear excitation function
used to change the output of neurons.

Step 2: Output layer stage. Similarly, the output of the output layer neurons is:

yk = f

(
p

∑
j=1

w1
jkx1

j + w0
k0

)
, k = 1, 2, . . . , m (2)

Moreover, the error function of neurons in the output layer is defined as:

E =
1
2 ∑

k

(
dk − yk

)
(3)

where dk is the target value. The error value at every node in the former layer is calculated
layer-by-layer using back propagation and corrected using the following weighted correction formula:

∆wm
ij = ηδm

j ym−1
i (4)

where η is the learning rate and δm
j is the error signal.

Prior to following these steps, data should be normalized to overcome problems arising from the
different physical significances and dimensions of the input and output data. Since we used a Tanh
activation function, we chose an interval of (−1, 1) for normalization purposes. The following formula
is commonly used:

Pi = 2× Ii − Imin
Imax − Imin

− 1 (5)

where Ii represents the input or output data, and Imin and Imax are the minimum and maximum values
of input or output data, respectively.

Thus, in this paper: (a) the input layer neurons correspond to the 16 risk evaluation indicators,
that is, n = 16; (b) in the output layer, one neuron reflects the risk level, (i.e., m = 1); and (c) the number
of hidden layer neurons, p, is usually determined from experience, by the convergence speed and error
optimization during the training process, or by the following two formulas [67]:

k <
n

∑
i=0

Ci
p, if i > p, Ci

p = 0 (6)

p =
√

n + m + a (7)

where k represents the sample number and a is an integer of the interval (1,10). Based on Formula (6),
4 ≤ p. Moreover, based on Formula (7), 6 ≤ p ≤ 14. Different precision results are shown in Table 4.

As shown in Table 4, the R-values for the training, validation and testing samples are all greater
than 0.9 as the number of neurons in the hidden layer changes from 6 to 14 after the network training
process, which indicates that the network output is strongly associated with the target expectation.
Meanwhile, MSE does not decrease significantly as the number of neurons in the hidden layer increases.
Since the precision of the model is satisfactory, having six hidden layer nodes reduces the complexity
of the network.
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Table 4. Different precision results for different numbers of neurons in the hidden layer.

Network
Number of Neurons in

the Hidden Layer
Training

Algorithms
Training Validation Testing

R MSE R MSE R MSE

1 6 LM 0.996 0.004 0.980 0.073 0.980 0.034
2 7 LM 0.973 0.066 0.948 0.099 0.997 0.191
3 8 LM 0.989 0.044 1.000 0.242 0.980 0.071
4 9 LM 0.999 0.008 0.999 0.269 0.939 0.214
5 10 LM 0.973 0.078 0.995 0.118 0.995 0.064
6 11 LM 0.988 0.056 1.000 0.005 0.974 0.127
7 12 LM 0.949 0.046 0.997 0.168 0.935 0.170
8 13 LM 0.967 0.029 0.986 0.103 0.994 0.256
9 14 LM 0.986 0.023 1.000 0.091 1.000 0.240

Note: R measures the correlation between the output and target values. A value close to 1 indicates a close
relationship; 0 represents a random relationship. MSE is the mean squared error, which is the average squared
difference between output and target. Lower values are better; 0 indicates no error.

We trained the constructed risk assessment BP network model using the MATLAB neural network
toolbox. Taking early stopping into consideration, we randomly divided the samples into training
(50%), validation (25%), and testing (25%) subsamples. The target error requirements are satisfied
in these different situations through the MATLAB simulation. The BP algorithm has a reliable basis,
discrete derivation, high accuracy and universality. We adopted the improved Levenberg–Marquardt
(L-M) algorithm, which combines the gradient descent method and the Gauss-Newton algorithm,
where the “tansig” function is used as the transfer function, and the “train lm” function is used as the
training function. We used a 1000-cycle training process with a 5% learning rate and target error of
1 × e−3.

3.2. Input and Output Data

To assess risks associated with shale gas exploration and development in China, we used data
from the 12 Chinese provinces where relevant activities are under way. We used actual or virtual values
as inputs for risk indicators in accordance with the practical shale gas conditions of each province (e.g.,
1 = existing; 0 = not existing).

For each province, we determined the values for: (a) resource prospects based on the amount of
proven recoverable reserves; (b) geological conditions based on the area of the favorable shale gas
play (104 km2) [12]; and (c) resource reserves based on the amount of technical recoverable reserves.
Since data related to production costs are lacking, we used interval scales (i.e., >3.1, 2.8~3.1, 2.5~2.8,
2.2~2.5, and <2.2) to reflect relative costs in China [81]. Using an average value of about 2.49 RMB/m3,
the corresponding values for each interval are 1, 0.9, 0.8, 0.7 and 0.6, respectively; the accuracy of
production cost values were verified by the expert committee. We determined the values for capital
risk based on the cumulative capital investment made by each province. Market risk values reflect
the value of the natural gas price divided by the shale gas price, based on the provincial gate station
price of natural gas inventory and the tax-included factory price at the break-even point based on
data from the National Development and Reform Commission [17,82]. We determined technology
and equipment values based on the number of shale gas technical patents from the Patent Search and
Analysis of State Intellectual Property Office (SIPO) [83]. Infrastructure values are based on pipeline
network density (km/km2), and water consumption values are based on data from the Aqueduct Water
Risk Atlas issued by the World Resources Institute [84]. We used virtual values for water pollution,
air pollution, greenhouse gas emissions, and other damages (noise pollution and earthquake risk),
preferential policies and long-term planning based on the data from each province’s department of
environmental protection. We determined values for industrial standards based on the number of oil
and gas inspectors from the Ministry of Land and Resources in each province [85]. We present the
input source data in Table 5.
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Table 5. Shale gas development risk indicators and their values of different provinces.

Province Sichuan Xinjiang Chongqing Guizhou Hubei Hunan Shaanxi Jiangsu Inner Mongolia Yunnan Shanxi Anhui

Resource prospects/(109 m3) 0 0 134.74 0 0 0 0 0 0 0 0 0
Geological conditions/(104 km2) 43.24 4.01 7.56 4.23 7.91 1.30 10.00 5.07 1.65 2.34 0.64 0.05

Resource reserves/(1012 m3) 27.50 16.01 12.75 10.48 9.48 9.19 7.17 5.33 3.29 2.14 2.14 2.12
Production cost 0.6 0.8 0.6 0.7 0.8 0.8 0.7 0.8 0.8 0.7 0.9 0.8

Capital risk/(108 RMB) 55.0 0 130.90 3.20 1.07 1.76 7.20 0 0 13.00 1.70 1.00
Market risk 0.87 0.68 0.87 0.89 0.98 0.98 0.75 1.06 0.75 0.89 0.96 1.03

Technology equipment/(ea) 25 0 12 0 15 0 25 16 0 0 1 0
Infrastructure/(km/km2) 0.027 0.006 0.081 0.007 0.014 0.005 0.026 .037 0.002 0.003 0.032 0.013

Water consumption 0.38 10.97 0.01 0.11 0.01 0.16 1.74 0.04 11.61 0.06 2.22 0.04
Water pollution 1 1 1 1 1 1 1 1 1 1 1 1

Air pollution 1 1 1 1 1 1 1 1 1 1 1 1
CO2/CH4 emissions 0 0 0 0 1 0 1 1 1 0 0 0

Other damage 1 1 1 1 1 1 1 1 1 1 1 1
Industrial standards/(ea) 13 15 11 11 10 11 18 15 18 3 16 7

Preferential policies 1 1 1 1 1 1 1 1 1 1 1 1
Long-term planning 1 1 1 0 1 0 1 0 1 0 0 0

Risk score 0.40 0.60 0.40 0.60 0.55 0.65 0.50 0.55 0.65 0.60 0.65 0.60
Normalized risk score 0.6 1 0.6 1 0.2 1 0.6 −0.2 0.6 0.2 −1 −1
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As for the output layer, the risk values were determined by expert scoring, considering 16 input
layer C indices at the same time. Here, we divided shale gas industry development risks into four
levels, low risk, relatively low risk, relatively high risk and high risk, respectively, corresponding to
the intervals of (0, 0.2), (0.2, 0.4), (0.4, 0.6), and (0.6, 1). The output source data can be seen in Table 5.
The normalized processing results for the data in Table 5 are shown in Table A1 in Appendix A.

4. Results and Discussion

The results of one trained neural network are shown in Figure 4. The correlation coefficient
between the output and target values for the training sample is 0.99878, which indicates the BP
neural network training grid is satisfactory. The correlation coefficients for the validation and testing
samples are 0.9922 and 0.98938, respectively, which shows that the trained BP neural network grid
and prediction accuracy of the neural network on the sample are both satisfactory, and overfitting
phenomenon did not happen [72].
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Figure 4. Training, validation, testing, and full sample regression curves.

The above neural network has been trained, which means it has already satisfied the target error
of 1× e−3 mentioned in Section 3.1. As shown in Figure 5, for the whole sample, the error between the
prediction output values and the target values are small. The error is minimal in the training sample,
and a little bit larger in the validation and testing samples, but still well below the accepted threshold
of 10% [86]. The figure represents a visual representation of the degree of membership associated with
the shale gas industry development risk level.
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Figure 5. BP network predicted output and expected output.

Figure 6 is a more intuitive expression of the prior figure. The relative error between the predicted
output value of the BP neural network and the target value can be seen clearly. Although the curve
has higher amplitude fluctuation, the value of the fluctuation is small. It reveals that the error between
network output and target value is small (less than 7%).
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Figure 6. Relative error of BP neural network output and expected output.

We present detailed results for the provinces comprising our validation and testing samples in
Tables 6 and 7, respectively. Relative to the four risk levels mentioned before (see Section 3.2), the
model results correspond closely with the expected results, indicating that the trained network has
excellent generalization capacities [72], and hence, can be used to monitor and evaluate risks of shale
gas development in China at the provincial-level.

Table 6. Results for validation sample.

Province Guizhou Sichuan Inner Mongolia

Expected risk value 0.60 0.40 0.65
Model risk value 0.6390 0.3944 0.6581
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Table 7. Results for testing sample.

Province Jiangsu Shanxi Anhui

Expected risk value 0.55 0.65 0.55
Model risk value 0.5684 0.6519 0.5516

After the network model is trained, the prediction process is simplified, requiring only monitoring
data for the risk assessment target sample to produce results. After building this system model based
on the corresponding provincial risk index data, the overall risks of the shale gas industry can then be
assessed. Although the BP neural network method has some challenges (primarily related to small
sample size), it is a novel research approach that can be used to design a risk assessment system for
the emerging shale gas industry in China. In the future, researchers can build on this study and others
to improve the method and the risk assessment system.

5. Policy Recommendations for China’s Provincial Shale Gas Industry Development

Our efforts have yielded several findings. First, shale gas development in China is associated
with high levels of risk, due to delayed exploration and production efforts and immature market
and regulatory structures. Some provinces have relatively high levels of risk (Sichuan, Chongqing,
Shaanxi, Hubei, and Jiangsu), while other provinces have even higher levels of risk (Xinjiang, Guizhou,
Yunnan, Anhui, Hunan, Inner Mongolia, and Shanxi) based on varying levels of regulatory support
at the provincial level. We recommend that more attention be paid to environmental, health, and
safety issues. In the provinces with highest levels of risk, demonstration zones can be used to test
new technologies in China’s complex geological conditions, and China’s regulatory structures can be
adapted to ensure that risk management is tailored to each province [13]. For example, since water is
more limited in Chongqing than in Sichuan [84], fiscal policies related to water pricing require greater
attention in Chongqing.

Second, the differences between China and other shale gas producing countries such as the United
States and Canada should be noted. Such differences include China’s extremely complex geological
conditions and resource depths that prevent direct application of North American technologies and
techniques. Thus, technology research and development and resource exploration and production
should be expanded to improve risk management and environmental protection. BP neural networks
can be used to quantify the relative risks posed by shale gas development, and hence, risk management
priorities. Our approach could be used to optimize the allocation of resources, technology and
infrastructure in shale gas development to minimize resource, economic, technical, and environmental
risks in China.

Finally, development of the shale gas industry involves many parties [87] with different and
sometimes conflicting expectations [54,88], thus, broad-based risk management efforts are required.
The government should strengthen the supervision of resources, market and environmental protection
to ensure that risks are minimized. Oil and gas companies should enhance research and development
activities and improve their identification, assessment, and risk management options. Implementing
these recommendations will support collective contributions to data collection and sharing, as well as
risk assessment and management activities to support for science-based decision-making.
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Appendix A

Table A1. Normalized processing results.

Province Sichuan Xinjiang Chongqing Guizhou Hubei Hunan Shaanxi Jiangsu Inner Mongolia Yunnan Shanxi Anhui

Resource prospects −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1
Geological conditions −0.8940 −0.9421 −1 −0.9727 −0.6360 −0.9259 −0.8064 −0.5393 −0.8166 −0.7675 1 −0.6522

Resource reserves −0.9984 −0.4429 −1 −0.9984 −0.4200 −0.9078 −0.3412 −0.6021 0.0946 −0.7470 1 −0.1623
Production cost −0.3333 0.3333 0.3333 1 0.3333 0.3333 −0.3333 −0.3333 0.3333 0.3333 −1 −1

Capital risk −0.8014 −0.9731 −0.9847 −0.9740 −0.9837 −1 −0.9511 −0.8900 −1 −1 −0.1597 1
Market risk 0.1053 0.5789 0.8421 0.4737 0.5789 −0.6316 0.1053 −0.6316 −1 1 −2.22 × 10−16 −2.22 × 10−16

Technology equipment −1 −1 −1 −0.92 0.2 −1 −1 1 −1 0.28 1 −0.04
Infrastructure −0.9747 −0.9241 −0.7215 −0.2405 −0.6962 −1 −0.8734 −0.3924 −0.8987 −0.1139 −0.3671 1

Water consumption −0.9914 −0.9741 −0.9948 −0.6190 −1 1 −0.9828 −0.7017 0.88975 −0.9948 −0.9362 −1
Water pollution 1 1 1 1 1 1 1 1 1 1 1 1

Air pollution 1 1 1 1 1 1 1 1 1 1 1 1
CO2/CH4 emissions −1 −1 −1 −1 1 1 −1 1 −1 1 −1 −1

Other damage 1 1 1 1 1 1 1 1 1 1 1 1
Industrial standards −1 0.0667 −0.4667 0.73333 −0.0667 1 0.0667 1 0.6 0.6 0.3333 0.06667
Preferential policies 1 1 1 1 1 1 1 1 1 1 1 1
Long-term planning −1 −1 −1 −1 1 1 −1 1 1 −1 1 1

Risk score 0.6 1 0.6 1 0.2 1 0.6 −0.2 0.6 0.2 −1 −1
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