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Abstract: China’s nationwide emission trading scheme (CN-ETS) is scheduled to be launched in
2017. It is of great urgency and necessity to obtain a good understanding of the participating sectors
of CN-ETS in terms of energy utilization and CO2 emissions. In this regard, it should be noted
that the findings may be biased without taking industry heterogeneity into consideration. To this
end, a meta-frontier framework with the directional distance function is employed to estimate the
CO2 emission performance (CEP), mitigation potential (MP), and marginal abatement cost (MAC)
at sector levels under the meta-frontier and the group-frontier. The results indicate that significant
disparities in the CEP, MP, and MAC exist under both frontiers among various sectors, and the sectoral
distributions of CEP, MP, and MAC are found to be different between the two frontiers. Additionally,
the differences between the two frontiers in terms of CEP, MP, and MAC are considerable, and exhibit
unequal distributions among these sectors. Notably, MAC under both frontiers and the difference
between them are found to be significantly correlated with the carbon intensity. Finally, policy
implications are provided for the government and participating enterprises, respectively.

Keywords: China’s nationwide emission trading scheme; directional distance function; meta-frontier
analysis; CO2 emission performance; mitigation potential; marginal abatement cost

1. Introduction

With climate change becoming an increasingly serious issue, the reduction of carbon dioxide
(CO2) emissions has attracted extensive attention worldwide. As the greatest CO2 emitter in the
world [1,2], China has shown its determination for developing a low-carbon economy and promised
to abate its CO2 emissions per unit of gross domestic product (GDP) (i.e., carbon intensity) by 40–45%
by 2020 compared with that in 2005 [3]. Further, China set the latest target of abating carbon intensity
by 18% by 2020, with 2015 as the reference year [4]. In order to achieve the above international
commitments for mitigating CO2 emissions, China’s National Development and Reform Commission
(NDRC) has launched seven pilot emission trading schemes (ETS) since 2013 [5], which are specifically
located in Shenzhen, Guangdong, Shanghai, Beijing, Tianjin, Chongqing, and Hubei. These regional
carbon markets are considered as experimental explorations for the establishment of China’s nationwide
emission trading scheme (CN-ETS), which is scheduled to be launched in 2017. It is reported the CN-ETS
will cover seven emission-intensive industries, including paper making, electricity generation, metallurgy,
non-ferrous metals, building materials, the chemical industry, and the aviation service industry [6].
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In the context of achieving the construction and operation of CN-ETS, it is of great urgency and
necessity to obtain a good understanding of the participating sectors in terms of energy utilization and
CO2 emissions [7]. In this regard, estimating the CO2 emission performance (CEP), mitigation potential
(MP), and marginal abatement costs (MAC) for these sectors can provide valuable information for
the governments and participating enterprises. From the perspective of the government, a good
knowledge of CEP, MP, and MAC could help design appropriate market mechanisms for the CN-ETS,
e.g., the estimated MAC may be used as a reference for carbon pricing [8,9]. On the other hand,
a comprehensive acquaintance of MAC among the participating sectors could help the participating
enterprises to determine the best mitigation strategies [10]. Moreover, to the best knowledge of the
authors, there have been few studies on the CEP, MP, and MAC of the sectors covered in the CN-ETS,
and this paper aims to fill this research gap.

Additionally, it is accepted that there exists significant heterogeneity in terms of the production
technology among various sectors [11], which is regarded as an obstacle to the objective evaluation of
CEP, MP, and MAC [12]. Therefore, taking the technology heterogeneity into consideration, we employ
a joint framework consisting of the directional distance function (DDF) and meta-frontier analysis to
estimate CEP, MP, and MAC under the meta-frontier and the group-frontier, respectively. Following
this, we investigate the sectoral distributions of CEP, MP, and MAC under both frontiers, and analyze
the differences between the two frontiers at sector levels. Finally, several policy recommendations for
the CN-ETS are made based on the conclusions. The rest of the paper proceeds as follows: Section 2
provides a literature review. Section 3 introduces the methods and materials. Section 4 presents the
empirical results and discussion. Section 5 draws conclusions and policy implications.

2. Literature Review

DDF, theorized and developed by Chung et al. [13] and Chambers et al. [14,15], has been widely
employed to study energy and environmental issues [16–20]. The main advantage of the DDF is that
it can achieve the expansion of desirable outputs and reduction of undesirable outputs (e.g., CO2),
simultaneously [18]. Generally, two estimation techniques are often employed to estimate the DDF,
namely the parametric and non-parametric methods. Compared with the former, the non-parametric
technique does not need to pre-determine any functional and parametric forms, thereby avoiding the
impacts of subjective factors on the results [17]. In this regard, the data envelopment analysis (DEA),
a well-developed nonparametric frontier tool, is often combined with DDF to evaluate CEP [21–23],
MP [9,24], and MAC [25–27]. For instance, Watanabe and Tanaka [21] employed the DEA-DDF to
estimate the environmental performance for China’s industrial sector at province levels from 1994
to 2002. Liu et al. [26] evaluated the carbon emission performance and marginal abatement cost for
provinces in China by using a non-parametric DDF. Additionally, the same method was applied by
Wei et al. [9] to measure the reduction potential of CO2 emissions for the thermal power plants in
China’s Zhejiang province.

Considering the technology heterogeneity across decision making units (DMUs), Battese et al. [28]
and O’Donnell et al. [29] incorporated the meta-frontier approach into DDF to formulate a joint
framework. In the framework, DMUs with different production technologies are classified into several
groups in which DMUs are deemed to be homogeneous, and then evaluated under the meta-frontier
and the group-frontier, respectively. Recently, this combined methodology has been widely applied in
the energy and environmental field [30–39]. For instance, using the combined method of DDF and the
meta-frontier approach, Lin et al. [33] evaluated the environmental performance of 63 countries during
the period from 1981 to 2005. Further, Zhang et al. [34] proposed a meta-frontier non-radial DDF by
combining the meta-frontier approach with the non-radial DDF, and used it to assess the energy and
CO2 emission performance of electricity generation in Korea. Furthermore, the model was applied
by Yao et al. [36] to estimate China’s energy efficiency, carbon emission performance, and mitigation
potential at regional levels. Additionally, based on the same model, Li and Song [38] constructed a
green development growth index to assess China’s green development at province levels.
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The literature on energy and environmental issues is abundant at industry levels [7,10,27,40,41].
For instance, Lee and Zhang [27] measured the reduction potential and marginal abatement cost of
CO2 emissions for 30 of China’s manufacturing industries. Yuan et al. [40] estimated the shadow prices
of CO2 emissions for China’s industrial sectors with the use of non-parametric DDF. Teng et al. [41]
employed multiple methods to derive the marginal abatement cost curves for China’s energy-intensive
industries. Zhou et al. [10] applied multiple distance function approaches to approximate the
shadow prices of CO2 emissions for Shanghai’s industrial sectors. Xiao et al. [7] estimated the
marginal abatement costs of CO2 emissions for China’s industrial sectors during 2005–2011 by using
a parametric DDF. Notably, it is found that the above studies mainly focus on the industrial sectors,
while a comprehensive investigation on the participating sectors of CN-ETS has not been conducted.
Furthermore, to the best of our knowledge, few studies take the industry heterogeneity into account,
in addition to Xie et al. [11] and Chung and Heshmati [12]. In this context, we attempt to perform an
empirical study on the participating sectors of CN-ETS in terms of CEP, MP, and MAC, taking into
consideration the industry heterogeneity.

3. Methods and Materials

3.1. Environmental Production Technology

Consider a productive process in which various inputs of energy and non-energy resources are utilized
to jointly produce desirable outputs and undesirable outputs. Mathematically, the joint production can
be presented as Equation (1), which is the so-called environmental production technology.

P(x) = {(y, b) : x can produce (y, b)} (1)

where x ∈ <I
+ denotes the input vector, y ∈ <J

+ denotes the desirable output vector, and b ∈ <K
+

denotes the undesirable output vector. Notably, in the joint-production process, the inputs and the
desirable outputs are usually presumed to be strongly disposable, while the undesirable outputs are
weakly disposable.

3.2. Directional Distance Function

The directional distance function (DDF) has been widely utilized to characterize the environmental
production technology. Compared with traditional distance functions, DDF can achieve the
simultaneous extension of desirable outputs and shrinkage of undesirable outputs, which can be
mathematically defined in Equation (2).

→
D
(

x, y, b; gy, gb
)
= max

{
β :
(
y + βgy, b + βgb

)
∈ P(x)

}
(2)

where
(

gy, gb
)

is the direction vector indicating the scale directions for the desirable outputs and
undesirable outputs, which is generally specified as (y, −b). β is the outcome of DDF that estimates
the greatest extent to which y and b can be respectively expanded and reduced given x.

Following Boyd et al. [42], the non-parametric DEA-DDF with constant returns to scale (CRS) is
presented as follows:

→
D(x, y, b; y,−b) = maxβ0

N
∑

j=1
λjxj ≤ x0

N
∑

j=1
λjyj ≥ (1 + β0)y0

N
∑

j=1
λjbj = (1− β0)b0

β0 ≥ 0, λj ≥ 0

(3)
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where x0, y0, b0, respectively, denote the inputs, desirable outputs, and undesirable outputs for the
observed production unit, and λj is the intensity variable. Notably, the equal sign of the third constraint
in Equation (3) reflects the weak disposability assumption of the undesirable outputs.

3.3. Meta-Frontier and Group-Frontier

Considering the existence of heterogeneity among various sectors in terms of energy utilization
and carbon emissions, we thereby incorporate a meta-frontier analysis into the above DDF. Suppose N
DMUs (industries in this paper) can be classified into I (I ≥ 1) groups. The number of DMUs in the

ith group is Ni(i = 1, 2, . . . , I), and
I

∑
i=1

Ni = 1. Thus, the environmental production technologies of

the meta-frontier and group-frontier can be described as follows:

PM(x) = {(y, b) : x can produce (y, b)} (4)

PG−i(x) = {(y, b) : x can produce (y, b)}, i = 1, 2, . . . , I (5)

where both PM(x) and PG−i(x) satisfy the assumptions of disposability mentioned earlier, and PM(x)
consists of all the PG−i(x) (i = 1, 2, . . . , I) : PM(x) =

{
PG−1(x) ∪ PG−i(x) ∪ . . . ∪ PG−I(x)

}
, namely,

PM(x) includes all DMUs and envelops all group frontiers.
Applying the DDF depicted in Equation (2) to specify Equations (4) and (5), we can obtain the

meta-frontier DDF and the ith group-frontier DDF:

→
D

M(
x, y, b; gy, gb

)
= max

{
βM :

(
y + βMgy, b + βMgb

)
∈ PM(x)

}
(6)

→
D

G−i(
x, y, b; gy, gb

)
= max

{
βG−i :

(
y + βG−igy, b + βG−igb

)
∈ PG−i(x)

}
, i = 1, 2, . . . , I (7)

Finally, we employ Equation (3) to estimate the DDF values under the meta-frontier
(

βM) and
group-frontier

(
βG−i), respectively.

3.4. CO2 Emission Performance and Mitigation Potential

According to Hu and Wang [43], Zhou and Ang [44], and Choi et al. [45], the CEP can be measured
by the ratio of target CO2 emissions to the actual CO2 emissions:

CEPj =
Cj − β jCj

Cj
= 1− β j (8)

where CEPj, Cj, and β j denote the CEP, actual CO2 emissions, and DDF value of DMUj, respectively.
In addition, β jCj denotes the excessive CO2 emissions of DMUj compared with the frontier, which is
considered as achievable emission reductions. Thus, the MP of DMUj can be measured by Equation (9):

MPj =
β jCj

Cj
× 100% = β j × 100% (9)

where MPj denotes the MP of DMUj, and the sum of CEPj plus MPj equals 1, which implies that a
greater reduction potential signifies a worse environmental performance of the observation.

3.5. Shadow Price

The shadow price is often utilized to approximate the marginal abatement cost of undesirable
outputs, which is generally read as the opportunity cost of eliminating one extra unit of undesirable
output in terms of lost desirable outputs in the production process. In this context, Färe and
Grosskopf [16] developed the duality relationship between the distance function and revenue function,
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which is of great significance for the derivation of the shadow price of undesirable outputs. With the
use of the Lagrangian technique and the envelope theorem, the shadow price of undesirable outputs is
derived as follows:

pb = −py ×
∂
→
D
(
x, y, b; gy, gb

)
/∂b

∂
→
D
(
x, y, b; gy, gb

)
/∂y

(10)

Noticing the deficiency that different observations sharing the same frontier point enjoy at the
same shadow price, Lee et al. [46] thereby incorporated an inefficiency factor into Equation (8) and
reformulated the shadow-pricing equation as:

pb = −py ×
∂
→
D
(
x, y, b; gy, gb

)
/∂(σbb)

∂
→
D
(
x, y, b; gy, gb

)
/∂(σyy)

× σb
σy

(11)

where py and pb, respectively denote the shadow prices of the desirable and undesirable outputs.
According to Färe et al. [47], py is usually assumed to equal its market price (i.e., 1). σy, σb are the
inefficiency factors and σb/σy equals (1− β)/(1 + β).

3.6. Materials

3.6.1. Sectors and Variables

It is reported that the CN-ETS will cover the emission-intensive industries of paper making,
electricity generation, metallurgy, non-ferrous metals, building materials, the chemical industry, and
the aviation service industry [6]. According to the Standard Industrial Classification formulated by
the National Bureau of Statistics of China (NBSC), the seven industries covered in the CN-ETS can be
further divided into 39 sectors. Furthermore, according to the carbon intensity, the 39 sectors can be
classified into three groups: high-carbon, medium-carbon, and low-carbon groups, and each group
consists of 13 sectors. The specific sectors of the three groups are listed in Table 1.

Table 1. Specific sectors and codes for high-, medium-, and low-carbon groups.

High-Carbon Group Medium-Carbon Group Low-Carbon Group

Electricity Generation and Supply (S1) Manufacture of Glass Products (S14) Manufacture of Paper (S27)

Pressing of Steel (S2) Manufacture of Ceramics Products (S15) Manufacture of Paper Products (S28)

Smelting of Steel (S3) Manufacture of Glass Fiber Products (S16) Manufacture of Paper Pulp (S29)

Casting of Ferrous Metals (S4) Manufacture of Glass (S17) Manufacture of Synthetic Fibers (S30)

Smelting of Ferroalloy (S5) Manufacture of Raw Chemical
Materials (S18) Manufacture of Fiber Materials (S31)

Smelting of Iron (S6) Manufacture of Special Chemical
Products (S19) Pressing of Non-ferrous Metals (S32)

Processing of Petroleum (S7) Manufacture of Synthetic Materials (S20) Smelting of Common Non-ferrous
Metals (S33)

Processing of Coking (S8) Manufacture of Fertilizers (S21) Smelting of Non-ferrous metal
alloy (S34)

Manufacture of Tile and Construction
stone (S9) Manufacture of Paints and Pigments (S22) Smelting of Precious Metals (S35)

Manufacture of Cement and
Limestone Products (S10)

Manufacture of Common Chemical
Products (S23) Smelting of Rare Earth Metals (S36)

Manufacture of Cement and
Limestone (S11) Manufacture of Pesticides (S24) Casting Pressing of Non-ferrous

Metals (S37)

Manufacture of other Non-metallic
Mineral Products (S12)

Manufacture of Explosives and
Fireworks (S25) Manufacture of Plastics Products (S38)

Manufacture of Fireproof
Materials (S13) Civil Aviation Services (S26) Manufacture of Rubber Products (S39)

Note: sector’s carbon intensity gradually decreases from S1 to S39.
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Following the common practice in the literature, this paper selects five variables as the input-
output indicators. Specifically, three variables of capital stock, labor employment, and energy
consumption serve as the inputs, while the industrial value added (IVA) and CO2 emissions are
viewed as the desirable output and the undesirable output, respectively. The input-output variables
are summarized in Table 2.

Table 2. Variables of inputs and outputs.

Category Variable Unit

Input
Capital 100 million Yuan
Labor 10 thousand persons

Energy 10 thousand tons of coal equivalent (10,000 tce)
Desirable output IVA 100 million Yuan

Undesirable output CO2 emission 10 thousand tons

Note: Yuan denotes Chinese currency.

3.6.2. Data

A statistical description of the input-output data is shown in Table 3, and a detailed description of
the data sources of each variable is provided below.

Table 3. Descriptive statistics of input-output data (2014 and 2017).

Year Items
Inputs Desirable Output Undesirable Output

Capital Labor Energy IVA CO2

2014

Mean 4394.54 66.93 7393.14 2284.41 25,858.95
Std. dev. 10678.39 64.43 22,921.26 2857.27 87,583.80

Max 66,386.48 259.51 138,403.59 13,761.05 536,897.12
Min 55.01 1.59 14.95 37.31 55.93

2017

Mean 6108.10 69.16 8418.21 2839.78 28,994.29
Std. dev. 14,842.20 66.58 26,099.32 3551.90 98,203.14

Max 92,272.49 268.17 157,593.40 17,106.51 601,994.73
Min 76.46 1.64 17.02 46.38 62.71

Note: due to limitations of statistical data, the data in this paper only contain industrial enterprises above
designated size.

Capital stock is generally estimated by the Perpetual Inventory Method (PIM), which requires the
data of the initial capital stock and industrial capital depreciation rate. However, due to the limitations
of statistical data, these data also need to be estimated. Thus, to decrease the deviation from data
estimation, we adopt an alternative approach of taking the net value of fixed assets as the capital
stock [48], which are collected from the “China Industrial Economic Statistical Yearbook 2015 [49]”.
Moreover, the data of the “Civil Aviation Services (S26)” are collected from “From the Statistical View
of Civil Aviation 2015 [50]”.

Labor employment is directly collected from the “China Industrial Economic Statistical Yearbook
2015 [49]” and “From the Statistical View of Civil Aviation 2015 [50]”.

Energy consumption denotes the comprehensive consumption of end-use energy, which includes
17 fuels of raw coal, cleaned coal, other washed coal, coke, coke oven gas, other gas, other coking
products, crude oil, gasoline, kerosene, diesel oil, fuel oil, liquefied petroleum gas (LPG), refinery gas,
other petroleum products, natural gas, and liquefied natural gas (LNG). The related data are obtained
from the “China Energy Statistical Yearbook [51]” and “From the Statistical View of Civil Aviation
2015 [50]”. All kinds of energy usages are converted into standard coal equivalents with the use of
conversion factors which are provided in Appendix IV of the China Energy Statistical Yearbook.

Considering that IVA cannot be directly gathered from relevant statistical yearbooks since 2008,
we calculate the data in 2014 by multiplying those in 2007 with the growth rates of the industrial added
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value, which are acquired from the National Data Website [52]. Notably, the industrial added value of
the Civil Aviation Service industry is converted from the main business income, by multiplying the
ratio of the industrial added value of the entire industrial sector to the corresponding main business
income. The main business income of the Civil Aviation Service industry is gathered from “From the
Statistical View of Civil Aviation 2015 [52]”.

CO2 emissions are generally estimated with the reference approach of the Intergovernmental
Panel on Climate Change (IPCC), due to the lack of official statistical data on CO2 emissions in China.
Therefore, this paper also adopts the approach to estimate CO2 emissions with the use of energy
usage data:

CO2 emissions = ∑i Ei × NCVi × CEFi × COFi × (44/12) (12)

where Ei denotes the final usage of energy source i; NCVi (net caloric value),
CEFi (CO2 emission factor), and COFi (CO2 oxidation factor) denote the heat equivalent, the
CO2 emission factor, and the CO2 oxidation factor, respectively. 44/12 is the ratio of the CO2 molecular
weight (44) to the C atomic weight (12), which is named the CO2 gasification coefficient.

Based on the economic development strategy and mitigation policy objectives which are included
in “China’s 12th Five Year Plan [53]”, “China’s 13th Five Year Plan [4]”, and the “Industrial Action
Plan on Climate Change (2012–2020) [54]”, we calculate the annual growth rates of capital stock, labor
employment, energy consumption, IVA, and CO2 emissions. For instance, the annual average growth
rates of energy consumption and CO2 emissions are calculated based on the projected goals set for
the energy consumption reduction per unit of GDP and CO2 emissions reduction per unit of GDP.
Additionally, the annual growth rates of the capital stock and labor employment are assumed to be
unchanged during the two periods [55]. Table 4 reports the annual growth rates of the variables.
By multiplying the respective annual growth rate, the input-output data in 2014 are used to forecast
those in 2017, and the results are listed in Table 3.

Table 4. Annual growth rate of input and output variables.

Annual Growth Rate 2011–2015 2016–2020

ϕk 11.59% 11.59%
ϕl 1.11% 1.11%
ϕe 6.53% 3.43%
µ 9.60% 6.50%
η 6.05% 2.75%

Note: ϕk , ϕl , and ϕe denote the annual growth rate of capital stock, labor employment, and energy consumption,
while µ and η denote that of IVA and CO2 emission.

4. Results and Discussions

In this section, we first report the estimates of DDF values (β), CO2 emission performance
(CEP), mitigation potential (MP), and marginal abatement cost (MAC) under the meta-frontier and
group-frontier at group levels. Then, we investigate the sectoral distributions of CEP, MP, and MAC
under both frontiers, and analyze the differences between the two frontiers in terms of the CEP, MP,
and MAC at sector levels.

4.1. Statistical Summary of Estimates

4.1.1. DDF Values

DDF values under the meta-frontier (βM) and the group-frontier (βG) are estimated by combining
Equation (3) with Equations (6) and (7), respectively, and the results are listed in Table 5. From the table,
it can be observed that βM and βG vary from 0 to 0.888 and from 0 to 0.687, respectively. Moreover,
the mean values of βM are generally larger than those of βG. From the perspective of total sectors,
the average βM is found to be 0.544, which is more than twice that of βG (0.225), indicating that there is a
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significant difference. Additionally, the differences in the average DDF value between the two frontiers
are found to be considerable at group levels, especially for the high-carbon and medium-carbon
groups. Specifically, the average βM (0.688) of the high-carbon group is found to be almost three times
that of βG (0.234). Further, the average DDF value of the medium-carbon group varies between the
meta-frontier and group-frontier at greater levels, which is found to jump from 0.169 to 0.672. As for
the low-carbon group, the difference between the two frontiers could be neglected. Notably, there are
significant differences among the DDF values of the three groups when the meta-frontier is used as the
basis of evaluation, while relatively moderate distinctions are observed when using the group frontiers.

Table 5. Estimates of DDF values.

Groups N Min Max Mean Std. Dev.

Meta-frontier

High-carbon 13 0.000 0.888 0.688 0.214
Medium-carbon 13 0.000 0.840 0.672 0.211

Low-carbon 13 0.000 0.635 0.271 0.216
Total 39 0.000 0.888 0.544 0.285

Group-frontier

High-carbon 13 0.000 0.687 0.234 0.217
Medium-carbon 13 0.000 0.532 0.169 0.209

Low-carbon 13 0.000 0.635 0.271 0.216
Total 39 0.000 0.687 0.225 0.213

4.1.2. CO2 Emission Performance

Table 6 reports the estimates of CO2 emission performance under the meta-frontier (MCEP) and
the group-frontier (GCEP). From the table, it is found that MCEP and GCEP vary from 0.112 to 1 and
from 0.313 to 1, respectively. Moreover, the mean values of GCEP are generally higher than those
of MCEP. From the perspective of total sectors, the average GCEP is found to be 0.775, while that
under the meta-frontier is only 0.456, which indicates that there is a significant difference. Additionally,
the differences in the average CEP scores between the two frontiers are found to be considerable at
group levels, especially for the high-carbon and medium-carbon groups. Specifically, the average
GCEP (0.766) of the high-carbon group is found to be more than twice that of MCEP (0.312). Similarly,
the average CEP of the medium-carbon group is found to jump from 0.328 to 0.831, which is an
increase of 153%. As for the low-carbon group, the difference between the two frontiers could be
neglected. Notably, there are significant differences among the CEP scores of the three groups when
the meta-frontier is used as the basis of evaluation, while relatively moderate distinctions are found
when using the group frontiers.

Table 6. Estimates of CO2 emission performance.

Groups N Min Max Mean Std. Dev.

Meta-frontier

High-carbon 13 0.112 1.000 0.312 0.214
Medium-carbon 13 0.160 1.000 0.328 0.211

Low-carbon 13 0.365 1.000 0.729 0.216
Total 39 0.112 1.000 0.456 0.285

Group-frontier

High-carbon 13 0.313 1.000 0.766 0.217
Medium-carbon 13 0.468 1.000 0.831 0.209

Low-carbon 13 0.365 1.000 0.729 0.216
Total 39 0.313 1.000 0.775 0.213

4.1.3. Mitigation Potential

Table 7 reports the estimates of Mitigation Potential under the meta-frontier (MMP) and the
group-frontier (GMP). From the table, it can be observed that MMP and GMP vary from 0% to 88.8%
and from 0% to 68.7%, respectively. Moreover, the mean values of MMP are generally higher than
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those of GMP. From the perspective of total sectors, the average MMP is found to be 54.4%, which
is more than twice the mean value of GMP (22.5%), indicating that there is a significant difference.
Additionally, the differences in the average MP values between the two frontiers are found to be
considerable at group levels, especially for the high-carbon and medium-carbon groups. Specifically,
the average MMP of the high-carbon group (68.8%) is found to be almost three times that of GMP
(23.4%). Further, the average MP value of the medium-carbon group varies between the meta-frontier
and group-frontier at greater levels, which is found to jump from 16.9% to 67.2%. As for the low-carbon
group, the difference between the two frontiers could be neglected. Notably, there are significant
differences among the MP values of the three groups when the meta-frontier is used as the basis of
evaluation, while relatively moderate distinctions are observed when using the group frontiers.

Table 7. Estimates of mitigation potential.

Groups N Min Max Mean Std. Dev.

Meta-frontier

High-carbon 13 0.0% 88.8% 68.8% 0.214
Medium-carbon 13 0.0% 84.0% 67.2% 0.211

Low-carbon 13 0.0% 63.5% 27.1% 0.216
Total 39 0.0% 88.8% 54.4% 0.285

Group-frontier

High-carbon 13 0.0% 68.7% 23.4% 0.217
Medium-carbon 13 0.0% 53.2% 16.9% 0.209

Low-carbon 13 0.0% 63.5% 27.1% 0.216
Total 39 0.0% 68.7% 22.5% 0.213

4.1.4. Marginal Abatement Cost

Table 8 reports the estimates of the marginal abatement cost under the meta-frontier (MMAC)
and the group-frontier (GMAC). From the table, it is found that MMAC and GMAC vary from
240 to 12,970 Yuan/ton and from 160 to 16,160 Yuan/ton, respectively. From the perspective of
the meta-frontier, the low-carbon group is found to have the highest weighted average MMAC of
4970 Yuan/ton, followed by the medium group with a value of 1310 Yuan/ton, and the high-carbon
group is at the bottom, with a value of 500 Yuan/ton. On the other hand, the weighted average
GMAC values of the three groups also follow the same order, which are found to be 10,320, 2080, and
400 Yuan/ton. The differences between the mean values of MMAC and GMAC at group levels are
considerable, especially for the low-carbon group, which is found to have a twofold change in the
values. Additionally, the average weighted MAC values of the total sectors under the group-frontier
and the meta-frontier are found as 670 and 770 Yuan/ton, respectively. As a matter of fact, the sectors
have to sacrifice relatively more IVA for reducing an additional unit of CO2 emissions, if they are
producing at the more efficient overall production frontier with relatively less mitigation potential. So,
in general, marginal abatement costs are negatively correlated with the mitigation potential.

Table 8. Estimates of marginal abatement cost (unit: 10,000 Yuan per ton).

Groups N Min Max Weighted Mean 1 Std. Dev.

Meta-frontier

High-carbon 13 0.024 0.246 0.050 0.054
Medium-carbon 13 0.083 0.506 0.131 0.110

Low-carbon 13 0.242 1.297 0.497 0.329
Total 39 0.024 1.297 0.067 0.343

Group-frontier

High-carbon 13 0.016 0.147 0.040 0.033
Medium-carbon 13 0.079 0.258 0.208 0.074

Low-carbon 13 0.361 1.616 1.032 0.447
Total 39 0.016 1.616 0.077 0.485
1 Weight is the share of each sector’s emissions in the all.
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It is interesting to compare our MAC estimates with those of previous studies. A summary
of MAC estimates is reported in Table 9. From the table, it can be observed that the estimates of
the previous studies lie in different ranges. The different samples and approaches in these studies
are the main reasons for the differences in the results. The results of this study are found to be
apparently lower than those of Xiao et al. [7] in terms of the mean and weighted mean of MAC. This is
reasonable because our study only covers the emission-intensive industries of the industrial sector,
while Xiao et al. [7] consider all industrial sectors as research objects, which is more expensive to
reduce emissions. Additionally, the significant disparity of the average MAC between Yuan et al. [40]
and Xie et al. [11] can also be attributed to the difference in research objects.

Table 9. Summary of MAC estimates (unit: Yuan per ton).

Studies Methodology Sample Mean Weighted Mean

Lee and Zhang (2012) [27] IDF/P/T 30 Manufacturing
industries, 2009 19.7 /

Yuan et al. (2012) [40] DDF/N/DEA 24 Industrial sectors,
2004 and 2008 16,360 /

Zhou et al. (2015) [10] MDF/N/T/Q Shanghai’s industrial
sectors / 394.5–1906.1

Xie et al. (2016) [11] DDF/N/Three-stage
DEA

9 key industries,
2005–2014. 1345 /

Xiao et al. (2017) [7] DDF/P/Q 39 industrial sectors,
2005–2011 13,131 3517

This paper Meta-DDF/N/DEA 39 participating sectors
of CN-ETS 3180 and 4240 670 and 770

Note: P = Parametric; N = Nonparametric; T = Translog functional form; Q = Quadratic functional form; IDF = Input
distance function; DDF = Directional distance function; MDF = Multiple distance function; CN-ETS = China’s
nationwide emission trading scheme.

4.2. Sectoral Analysis

4.2.1. Distribution Analysis

Figure 1 indicates the estimates of CEP, MP, and MAC under the meta-frontier and the
group-frontier at the sector level. From the figure, we can observe that there exist significant disparities
in the CEP, MP, and MAC under both frontiers among the 39 sectors. Specifically, from the meta-frontier
perspective, the sectoral distribution of MCEP presents an increasing trend from S1 to S39 (i.e., the
decreasing order of carbon intensity), while that of MMP presents the opposite tendency. Similarly,
the sectoral distributions of GCEP and GMP show the upward and downward trends along with the
decrease of carbon intensity in their respective groups, respectively. For instance, in the high-carbon
group, the sectoral distribution of GCEP presents an increasing tendency from S1 to S13, while
a decreasing trend is observed for GMP. On the other hand, it is found that both of the sectoral
distributions of MMAC and GMAC present an increasing tendency from S1 to S39.

In light of this interesting phenomenon, we conducted a correlation analysis between MMAC,
GMAC, and carbon intensity, respectively, and the results are listed in Table 10. According to
the correlation results, there exists a significantly negative correlation (p = 0.000 < 0.01, Pearson’s
r = −0.537) between carbon intensity and MMAC, which has been previously reported in the literature,
such as in Zhou et al. [10]. Additionally, GMAC is also found to be significantly negatively correlated
with carbon intensity (p = 0.000 < 0.01, Pearson’s r = −0.566).
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Table 10. Correlation analysis.

Estimates Items Carbon Intensity

MMAC
Pearson correlation −0.537 **

Sig. (2-tailed) 0.000
N 39

GMAC
Pearson correlation −0.566 **

Sig. (2-tailed) 0.000
N 39

D_MAC
Pearson correlation −0.320 *

Sig. (2-tailed) 0.047
N 39

** Correlation is significant at the 0.01 level (2-tailed); * Correlation is significant at the 0.05 level (2-tailed).
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Figure 1. Estimates of CEP, MP, and MAC by sectors.

In order to provide an intuitive understanding of the distribution patterns of CEP, MP, and MAC,
and make a comparison between the meta-frontier and the group-frontier, the kernel density curves
of CEP, MP, and MAC under both frontiers are plotted based on the R-program. From Figure 2,
it can be found that there exist some differences in the distribution patterns of CEP, MP, and MAC
between the two frontiers. Specifically, the kernel curve of CEP moves rightward and the dispersion
range of points become narrower when the evaluation basis switches from the meta-frontier to the
group-frontier, which means an increase in the mean value and a decrease in the variance of CEP,
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respectively. In the meanwhile, the kernel curve of MP moves leftward and the dispersion range of
points become narrower, which means that the mean value and the variance of MP both decrease.
On the contrary, the kernel curve of MAC holds the position unchanged, but exhibits a significant
decrease in the peak value and an expansion in the dispersion range of points when the evaluation
basis changes, which jointly means a considerable increase in the variance of MAC.Sustainability 2017, 9, 932  12 of 17 
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4.2.2. Difference Analysis

Figure 3 reports the differences in CEP, MP, and MAC between the meta-frontier and the
group-frontier at sector levels. From the figure, we can observe that there exist significant disparities
between the two frontiers in terms of CEP, MP, and MAC, and the differences exhibit unequal
distributions among the 39 sectors. The difference in CEP (D_CEP) is found to be significant in
the high-carbon and medium-carbon sectors. For instance, the D_CEP of Pressing of Steel (S2) is
found to be 0.691. Similar results can be observed for sectors such as the Manufacture of Fireproof
Materials (S13), Manufacture of Special Chemical Products (S19), and Manufacture of Explosives
and Fireworks (S25). This means that there is significant technology heterogeneity between the
meta-frontier and group-frontier for the two groups. Conversely, it is found that there is no difference
in the low-carbon sectors, which may be attributed to the fact that low-carbon sectors play an important
role in benchmarking efficiency levels under meta-frontier technologies, and thereby there are no
technology gaps for the low-carbon sectors. Similarly, the difference in MP (D_MP) between the two
frontiers is also found to be significant in the high-carbon and medium-carbon sectors, while the
opposite is true for the low-carbon sectors.
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On the other hand, the difference in MAC (D_MAC) exhibits a completely different situation, in
which the D_MAC is found to be larger, equal to, and smaller than 0, depending on the observations.
For instance, the Pressing of Non-ferrous Metals (S32) and Casting Pressing of Non-ferrous Metals
(S37) are found to have the lowest and the highest D_MAC, with values of −5610 Yuan/ton and
8680 Yuan/ton, respectively. There is no definite relationship between the MMAC and GMAC of
sectors; the MMAC of sectors can be larger, equal to, or smaller than the GMAC, depending on the
relative slopes of the meta- and the group-frontiers, respectively [19]. However, as mentioned earlier,
both MMAC and GMAC are significantly correlated with carbon intensity. Therefore, it is interesting to
explore the relationship between D_MAC and carbon intensity. In this regard, the correlation analysis
between D_MAC and carbon intensity was conducted, and the results are listed in Table 10. According
to the correlation results, there is also a significantly negative correlation (p = 0.047 < 0.05, Pearson’s
r = −0.320) between D_MAC and carbon intensity.
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4.3. Discussions

In general, whether from the perspective of group levels or from the perspective of sector levels,
it is found that there exist significant disparities in the CEP, MP, and MAC under both frontiers among
various sectors. Additionally, the differences between the two frontiers in terms of CEP, MP, and MAC
are considerable, and exhibit unequal distributions among the 39 sectors. This can be attributed to the
significant heterogeneity of production technology among various sectors. Considering that carbon
intensity is widely considered as the measurement of carbon emission efficiency, the industries with a
relatively low carbon intensity are more efficient than those with a high carbon intensity in terms of
energy utilization and carbon emissions. Thus, low-carbon sectors are found to have a higher CEP, less
MP, and larger MAC than medium-carbon and high-carbon sectors.

As the most efficient DMUs, low-carbon sectors are found to play a more important role in
benchmarking efficiency levels under the meta-frontier. In this case, no difference between the
meta-frontier and the group-frontier for the low-carbon group in terms of CEP and MP exists, while the
opposite is true for the medium-carbon and high-carbon sectors. As a result, considerable differences
in the CEP and MP between the two frontiers are observed for the medium-carbon and high-carbon
sectors. As for MAC, theoretically, the MMAC can be larger, equal to, or smaller than the GMAC,
depending on the relative slopes of the meta-frontier and the group-frontier. Nevertheless, it is found
that D_MAC has a significantly negative correlation with carbon intensity.

5. Conclusions and Policy Implications

CN-ETS that covers seven emission-intensive industries is scheduled to be launched in 2017.
In this context, it is of great urgency and necessity to obtain a good understanding of participating
sectors in terms of energy utilization and carbon emissions. In this regard, estimating the CEP, MP,
and MAC for these sectors can provide valuable information for the governments and participating
enterprises. Therefore, taking the industry heterogeneity into consideration, we employed a joint
framework consisting of the DDF and meta-frontier analysis to estimate CEP, MP, and MAC under
the meta-frontier and the group-frontier, respectively. Following this, we investigated the sectoral
distributions of CEP, MP, and MAC under both frontiers, and analyzed the differences between the
two frontiers in terms of CEP, MP, and MAC at sector levels.

Based on the detailed analysis, the main conclusions are drawn as follows: First, there exist
significant disparities in the CEP, MP, and MAC under both frontiers among various sectors.
Specifically, high-carbon and medium-carbon sectors are found to display a low CEP, large MP,
and high MAC, while the opposite situation is observed for low-carbon sectors which have a high CEP,
small MP, and high MAC. Furthermore, the sectoral distributions of CEP, MP, and MAC are found
to be different between the two frontiers. Additionally, the differences between the two frontiers in
terms of CEP, MP, and MAC are considerable, and exhibit unequal distributions among the 39 sectors.
Notably, the MAC values under both frontiers and the difference between them are all found to be
significantly correlated with carbon intensity.

Based on the above conclusions, possible policy implications are provided for the government
and participating enterprises, respectively. First of all, based on the estimates of CEP, MP, and
MAC for sectors, our study allows policy makers to pinpoint where the greatest emissions cuts—at
the least expense—can be made in China’s emission-intensive sectors. From the perspective of the
government, different policies should be implemented for the critical emission reduction sectors based
on their CEP, MP, and MAC. In this regard, high-carbon sectors with a low CEP, large MP, and low
MAC should shoulder more responsibility for the reduction of emissions. In particular, necessary
policy measures such as introducing carbon-emission-reduction technologies, eliminating backward
production facilities, raising the industry entry threshold, and increasing the industry concentration
should be implemented for high- and medium-carbon sectors. Furthermore, the CEP, MP, and MAC
(especially GCEP, GMP, and GMAC) of participating sectors should be taken into consideration when
formulating the criteria for the initial allocation of carbon allowances before transactions. Additionally,
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the weighted average MAC could offer a reference for the carbon price of CN-ETS, since the industries
covered in CN-ETS are taken as the research objects. On the other hand, from the perspective
of enterprises, by comparing the MAC of participating sectors with the carbon price of CN-ETS,
participating enterprises could identify the least-costly emission reduction strategy from a list of
policy alternatives such as abating carbon emissions, buying carbon allowances, and selling carbon
allowances. In this context, high- and medium-carbon enterprises tend to cut their emissions and sell
carbon allowances, while low-carbon enterprises may choose to buy carbon allowances.

Despite the contributions, this paper has a limitation in assuming the same growth rate for various
sectors in light of their heterogeneity. Moreover, our study cannot consider dynamic effects since we
are limited to using a one-year data cross-section. Additionally, due to the limitation of statistical data,
this study selects 39 sectors as research objects rather than the specific enterprises covered in CN-ETS.
However, this study could be easily extended to enterprises, so future research requires the collection
of data at enterprise levels in order to obtain more accurate estimates.
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