Next Article in Journal
A Smart MCDM Framework to Evaluate the Impact of Air Pollution on City Sustainability: A Case Study from China
Previous Article in Journal
Potentials for Improvement of Resource Efficiency in Printed Circuit Board Manufacturing: A Case Study Based on Material Flow Cost Accounting
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle
Sustainability 2017, 9(6), 910; doi:10.3390/su9060910

The Most Economical Mode of Power Supply for Remote and Less Developed Areas in China: Power Grid Extension or Micro-Grid?

1,2,* , 1,2
and
1,2
1
School of Economics and Management, North China Electric Power University, Beijing 102206, China
2
Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Changping, Beijing 102206, China
*
Author to whom correspondence should be addressed.
Academic Editor: John K. Kaldellis
Received: 1 May 2017 / Revised: 23 May 2017 / Accepted: 26 May 2017 / Published: 29 May 2017
View Full-Text   |   Download PDF [2972 KB, uploaded 30 May 2017]   |  

Abstract

There are still residents without access to electricity in some remote and less developed areas of China, which lead to low living standards and hinder sustainable development for these residents. In order to achieve the strategic targets of solving China’s energy poverty, realizing basic energy service equalization, and comprehensively building up a moderately prosperous society, several policies have been successively promulgated in recent years, which aim to solve the electricity access issue for residents living in remote and less developed areas. It is of great importance to determine the most economical mode of power supply in remote and less developed areas, which directly affects the economic efficiency of public investment projects. Therefore, this paper focuses on how to select the most economical power supply mode for rural electrification in China. Firstly, the primary modes to supply electricity for residents living in the remote and less developed areas are discussed, which include power grid extension mode and micro-grid mode. Secondly, based on the levelized cost of electricity (LCOE) technique, the life cycle economic cost accounting model for different power supply modes are built. Finally, taking a minority nationality village in Yunnan province as an example, the empirical analysis is performed, and the LCOEs of various possible modes for rural electrification are accounted. The results show that the photovoltaic (PV)-based independent micro-grid system is the most economical due to the minimum LCOE, namely 0.658 RMB/kWh. However, other power supply modes have much higher LCOEs. The LCOEs of power grid extension model, wind-based independent micro-grid system and biomass-based independent micro-grid system are 1.078 RMB/kWh, 0.704 RMB/kWh and 0.885 RMB/kWh, respectively. The proposed approach is effective and practical, which can provide reference for rural electrification in China. View Full-Text
Keywords: power supply; economical mode; levelized cost of electricity (LCOE); rural electrification; China power supply; economical mode; levelized cost of electricity (LCOE); rural electrification; China
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Guo, S.; Zhao, H.; Zhao, H. The Most Economical Mode of Power Supply for Remote and Less Developed Areas in China: Power Grid Extension or Micro-Grid? Sustainability 2017, 9, 910.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sustainability EISSN 2071-1050 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top