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Abstract: Building energy renovation quotas are not currently being met due to unfavorable conditions
such as complex building regulations, limited investment incentives, historical preservation priorities,
and technical limitations. The traditional strategy has been to incrementally lower the energy
consumption of the building stock, instead of raising the efficiency of the energy supply through
a broader use of renewable sources. This strategy requires an integral redefinition of the approach
to energy building renovations. The joint project SWIVT elaborates on a district redevelopment
strategy that combines a reduction in the energy demand of existing buildings and their physical
interconnection within a local micro-grid and heating network. The district is equipped with energy
generation and distribution technologies as well as hybrid thermal and electrical energy storage
systems, steered by an optimizing energy management controller. This strategy is explored through
three scenarios designed for an existing residential area in Darmstadt, Germany, and benchmarked
against measured data. Presented findings show that a total primary energy balance at least 30% lower
than that of a standard building renovation can be achieved by a cluster of buildings with different
thermal qualities and connected energy generation, conversion, and storage systems, with only
minimal physical intervention to existing buildings.

Keywords: building renovation; primary energy demand; smart district; micro grid; district heating;
energy storage; renewable energy generation; energy management; energy efficiency

1. Introduction and Motivation

The existing built environment embodies a large potential within the German governmental
energy policy goals of halving primary energy need and increasing the ratio of renewable energy
to gross final energy consumption to 60% by 2050 [1]. Buildings represent almost 40% of primary
energy consumption in Germany, of which almost 70% consists of thermal energy. Most of Germany’s
current stock of 19 million residential buildings is, partially or not, energetically renovated. While up
to 80% of their energy need could be offset [2], building renovation rates have not reached targeted
goals for many years. Time-consuming planning due to cost-intensive accompanying measures
and complex boundary conditions required to comply with the strict normative for energy savings
(“Energieeinsparverordnung”, in short EnEV) play a role in this [3]. The current ordinance allows a
primary energy balance for renovated buildings of 140% compared to a reference building for a new
construction [4]. The calculation of primary energy need takes into account both the quality of the
thermal envelope and the efficiency of the energy supply chain, from generation to storage, conversion,
and distribution. Building installations and the choice of energy systems thus play a decisive role in
the evaluation of renovation concepts.
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An array of different energy technologies for renewable as well as decentralized energy generation,
efficient energy storage and distribution are both available on the market and being currently
developed. There is, nevertheless, no integral concept for their physical connection and networked
operation as a building energy system. Improving the thermal envelope, on the other hand, has
proven controversial due to aesthetic limitations, problematic end-of-life scenarios (insulation creates
waste with no residual value, which is also difficult to separate and recycle [5]), incompatibility with
historical preservation, fire hazards, and the need for extensive modification of construction details
(i.e., roof projections).

The approach developed in SWIVT, an acronym for “district energy modules for existing
residential areas—impulses for linking energy efficient technologies” (in German “Siedlungsbausteine
für bestehende Wohnquartiere—Impulse zur Vernetzung energieeffizienter Technologien”), focuses
on entire districts instead of single buildings in order to exploit stochastic and synergetic
potentials of an efficient local energy generation and distribution system. The developed approach
combines interventions to reduce the energy demand of the current building stock with its physical
and operational connection within a local heat network and power micro-grid equipped with
energy generation and storage technologies. The district’s operation is regulated through an
energy-management unit called SWIVT-Controller, which optimizes energy flows through a control
strategy. Thanks to the flexibilities offered by the components and the control strategy, the system can
react to volatility in renewable energy generation and consumption, while optimizing energy efficiency
and operational costs. The joint project, led by TU Darmstadt and developed in collaboration with
University of Stuttgart and AKASOL GmbH, a supplier of lithium-ion batteries, sets the following
goals: the use of technological innovations in energy efficiency for the built environment, the linking
of different disciplines and actors, and the development of new methods for monitoring and energy
management. Figure 1 shows a diagram of the SWIVT concept.
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Figure 1. The SWIVT concept for energy efficiency in existing residential areas through the integration
of a micro grid, district heating distribution system, energy generation and storage technologies, as well
as the use of ICT.

Buildings with different thermal qualities can be connected within a district heating distribution
system and supplied efficiently at different working temperatures, thus minimizing the need for
renovation measures. Roofs and cellars, currently excluded from profit generation, can be rented out to
the district operator for the placement of energy system components. The developed control strategy
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can maximize self-consumption of locally generated energy and avoid generating any unused heat,
thus minimizing overall system losses. Other than selling energy to tenants, the investment can be
supported by offering flexible energy supply and capacity in power markets. Thanks to better resilience
of the system to fluctuations in energy availability, the share of renewably generated energy within
the power distribution network can be increased without expensive conversion measures. Thanks to
clustering flexibilities at the distribution level, the necessary computing power to address complex
forecasts of balancing energy capacities at the power transmission level can be reduced. By introducing
a new actor who sets-up, operates, and maintains the energy system of the district, energy providers
can remain in the value-chain while housing companies can focus on their physical assets. The creation
of a feasible investment model can help increase market penetration of innovative energy technologies,
such as storage systems.

A successfully realized example of energy efficiency in existing residential buildings is the project
Lichterfelde in Berlin. The buildings were renovated and equipped with energy generation and storage
components, as well as an energy management unit. The system delivers a net balance of heating
supply from renewable sources [6]. However, by addressing single buildings, the concept misses
essential synergies, especially from the perspective of electrical energy. The role of smart districts [7]
within a power network supplied by a high share of renewable energy has been explored by different
research projects. In particular, the model developed for the city of Mannheim in the project “moma”
foresees clusters of buildings serving as flexible energy units within greater balancing regions [8].
The essential role of transparent but still secure digital communications between flexible energy units
was one focal point of the project Flex4Energy, which develops an open platform for regional energy
markets [9]. The district envisioned in the SWIVT project would find here its ideal application.

This paper presents the approach to building renovation developed within the SWIVT concept.
Interdependent parameters between renovation measures, the addition of new, energy-efficient
living area, and different thermal and electrical systems on district scale are explored through three
scenarios—High-Exergy, Mid-Exergy, and Low-Exergy—developed for an existing residential area in
Darmstadt, Germany. Findings support the implementation of an energy system on district scale as a
more resource-efficient solution for building renovations than the improvement of the thermal envelope
of individual buildings. The primary energy balance of existing residential areas can be improved by
more than 30% compared to a standard renovation through minimal intervention measures on the
existing building stock, thanks to an efficient energy supply system on district scale and the connection
of its components within an operational strategy.

2. Documentation of Current Building Stock on Project Site Moltkestraße 3 to 19 in Darmstadt

The project site is located in the district Bessungen in Darmstadt and consists of five multifamily
social housing buildings property of the consortium Bauverein AG, with a total living floor area of
3.630 m2 on a 10.453 m2 plot. The northeast to southwest oriented linear apartment blocks were built
in the years 1949–1952 and consist of two- to three-floor-high lightweight concrete constructions with
saddle roofs and cellars. The small residential district has a total of 87 apartments with an average of
23.4 m2 per resident. The lot is suitable for densification measures and for the introduction of new
communal functions in the currently underused green areas between the buildings [10]. The original
plans divide the buildings in three categories: Ledigenheim I and II (literal translation: home for
unmarried), Types E/F, and Type P. Ledigenheim I and II (LI and LII) consist of 1-person apartments
accessed through an open gallery on the northeast side. The two twin constructions of Types E/F
consist of 2–3-person apartments spanning the whole width of the construction and connected vertically
through three stairwells per building. Both categories have small southwest balconies. Type P consists
of a 2-floor construction with four 3-person apartments and no balconies, with a northwest to southeast
orientation. This categorization is clearly recognizable in the floorplans of the buildings, shown on site
in Figure 2.
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Figure 2. Floorplans of Moltkestraße 3 to 19. Areas marked in red are suitable for extensions. 
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application of roof insulation where the living area was extended to the attic floor, which is the case 
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thermal quality, leakage, and condensation problems. Ceilings, staircases and outer doors are 
insufficiently acoustically insulated and necessitate fire-proofing measures, while apartments lack 
barrier-free access. Deficiencies of the façade were determined through a detailed inspection with an 
infrared camera performed at 5 a.m. on 4 February 2015. Strong losses through the outer walls were 
observed together with thermal bridges, especially pronounced along the balconies, the window 
lintels, and the cellar floor. While helping with the analysis of site-specific deficiencies, these images, 
shown in Figure 3a,b, show a typical picture of the conditions of the non-renovated building stock 
from the 1950s to the 1960s. 
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Figure 3. (a) East façade of Moltkestraße 19. (b) Infrared picture of the east façade of Moltkestraße 19. 

Thermal energy is supplied through a floor gas heating system. LI and LII have significantly 
higher gas consumption. LII supplies LI through two constant temperature boilers located in the 
cellar. The pipes are in good condition and largely insulated, but the control is not efficient. Both 
boilers are always running together and working temperatures are fixed, so that high amounts of 
unnecessary heat is produced. The heat-delivering elements are large-volume radiators with manual 
control valves. Type P’s high heating demand can be justified by a larger surface area to its volume. 
Figure 4 shows the energy consumption for the five buildings according to the evaluation of project 
partners ENTEGA AG (Darmstadt, Germany) the energy provider, and of Bauverein AG, 

Figure 2. Floorplans of Moltkestraße 3 to 19. Areas marked in red are suitable for extensions.

The buildings are not renovated except for a window replacement in the 1980s and the application
of roof insulation where the living area was extended to the attic floor, which is the case for
two apartments per block in buildings of Types E/F. The building envelope presents poor thermal
quality, leakage, and condensation problems. Ceilings, staircases and outer doors are insufficiently
acoustically insulated and necessitate fire-proofing measures, while apartments lack barrier-free access.
Deficiencies of the façade were determined through a detailed inspection with an infrared camera
performed at 5 a.m. on 4 February 2015. Strong losses through the outer walls were observed together
with thermal bridges, especially pronounced along the balconies, the window lintels, and the cellar
floor. While helping with the analysis of site-specific deficiencies, these images, shown in Figure 3a,b,
show a typical picture of the conditions of the non-renovated building stock from the 1950s to the 1960s.
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Thermal energy is supplied through a floor gas heating system. LI and LII have significantly
higher gas consumption. LII supplies LI through two constant temperature boilers located in the cellar.
The pipes are in good condition and largely insulated, but the control is not efficient. Both boilers are
always running together and working temperatures are fixed, so that high amounts of unnecessary
heat is produced. The heat-delivering elements are large-volume radiators with manual control valves.
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Type P’s high heating demand can be justified by a larger surface area to its volume. Figure 4 shows
the energy consumption for the five buildings according to the evaluation of project partners ENTEGA
AG (Darmstadt, Germany) the energy provider, and of Bauverein AG, (Darmstadt, Germany) the
housing company. The district’s energy demand balanced on net floor area is 211 kWh/m2 for heating
and warm water, which corresponds to the typical consumption for buildings of the same typology
and location based on EN ISO 15316 [11] and 49 kWh/m2 for power demand.
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3. Setup and Nature of the Study

SWIVT develops its specific approach to integral planning through a design methodology based
on scenarios consisting of four modules: energy load, energy generation, energy conversion, and energy
storage. Involved stakeholders agree on the requirements for each module at the start of the concept
phase, taking into account mutually influencing parameters in order to create different design scenarios.
This enables disciplines to develop specific approaches and solutions, while collaborating to the
same overall goals. Three design scenarios were developed: High-Exergy (S1), Mid-Exergy (S2),
and Low-Exergy (S3). These are evaluated against two reference scenarios: current stock (R1) and
standard renovation (R2). Energy demand in R1 and R2 are benchmarked on measured data provided
by ENTEGA AG. R2 represents the renovation of four buildings in Moltkestraße 27–37 performed
in 2009, which achieves a total primary energy balance of 56 kWh/m2·a [12]. Each design scenario
should reach a 30% lower energy balance than the traditional renovation approach benchmarked by R2.
An optimized implementation scenario, which will be built on site in the follow-up pilot project SWIVT
II, projected to start in 2018, will be designed based on the results collected through the evaluation of
the three design scenarios. The five scenarios and the requirements set within the modules are shown
in Table 1.

The parametric study presented in the manuscript is carried out within a mathematical model
developed in Microsoft Excel. The model integrates parameters from the building concept with
parameters from the energy concept to show how different thermal loads for the renovated surface
affect primary energy need on a district level. Within the model, it is possible to evaluate the interaction
between differently renovated and new, energy-efficient living areas. Selected variables are the
extension of each type of area and the final thermal load for the renovated portion, while the thermal
load per square meter of new living area is kept constant. The next step will be a modeling study
with the software Hottgenroth Energieberater 18599. The study will evaluate the necessary building
refurbishment measures to meet thermal loads for each type of renovated living area according to the
implementation scenarios. The overall aim is to prove a more efficient strategy for investing economic
and ecological resources through minimal renovation and the use of renewable generated energy on
site, against a standard renovation concept based on façade insulation.
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Table 1. Requirements for different modules of design scenarios S1, S2, and S3, as well as for reference
scenarios R1 and R2.

Scenarios 1
Energy Demand 2 Energy Generation 3 Energy Conversion Energy Storage

Heat Power Solar
Thermal Photovoltalcs Gas

Based
Gas/El.
Based

Electricity
Based Thermal Electrical

R1 Current stock 100% 100% - - Boiler - - - -

S1 High-Exergy 70% 90% 75% 25% Aux.
Boiler CHP 4 - hybrid

TESS 6
hybrid
ESS 7

S2 Mid-Exergy 60% 90% 50% 50% Aux.
Boiler CHP 4 HP 5 hybrid

TESS 6
hybrid
ESS 7

S3 Low-Exergy 50% 90% 50% 50% Aux.
Boiler - HP 5 hybrid

TESS 6
hybrid
ESS 7

R2 Standard
renovation 40% 80% - - Aux.

Boiler
CHP 4 each

building
- - -

1 R = Reference, S = Scenario; 2 As a share of residual energy demand; 3 As a share of energy generating surface;
4 Combined Heat and Power; 5 Hear Pump; 6 Thermal Energy Storage System; 7 Electricity Storage System.

4. Building Concepts

4.1. Building Renovation

The energy loads of the buildings on site are compiled and balanced on total square meters of net
living area on a district level. Targeted values for the residual thermal energy demand of renovated
buildings are set at 70%, 60%, and 50% of current, while values for electrical energy demand are set at
90% of current. Yearly thermal energy demand for the renovated living area needs to decrease from
211 kWh/m2 to 148 kWh/m2 in S1, 127 kWh/m2 in S2, and 105 kWh/m2 in S3. In order to create
different load profiles, two renovation concepts were designed: minimal and standard. The minimal
renovation concept consists in the insulation of cellar ceilings and the replacement of windows and
doors. Because of the strong temperature difference between the colder surface of the existing wall
and the warmer surface of the new windows, these require a ventilation system in order to avoid
condensation problems. The standard concept consists in the minimal concept with the addition
of façade insulation and, where no additional floors are built, roof insulation. In this concept, new
windows do not need an in-built ventilation system, because a lower temperature difference between
insulated wall and glass panes will prevent cold bridges and thus the formation of condensation.
All renovated buildings are provided with new balconies and/or terraces, replacing the old ones
through detached structures to prevent cold bridges. Some balconies and terraces can be designed as
winter gardens for passive solar gains and in order to introduce a distinctive architectural feature to
the district.

The main cause of thermal energy loss at a district level is the thermal bridge created by the
open gallery of buildings LI and LII. It is therefore decided to extend the living area to include the
gallery and close the façade with a new outer wall. Due to normative regulation, an extension of the
living area can only be approved if new walls comply with the minimum U-Value requirements [9],
thus preventing the application of innovative architectural solutions, such as a winter garden, whose
energy performance balances out on a system level but not on a component level. Since the two larger
buildings on site require façade insulation the standard renovation concept is applied to them in all
three scenarios. Since Building Type P is balanced as a new construction, only buildings of Types E/F
are eligible to be modeled according to the minimal concept.

4.2. District Consolidation

Due to explicit requirements of the project partner Bauverein AG, the housing company,
the renovation concepts are to be combined with the structural consolidation of the district through
the creation of a new living area. This was benchmarked on R2, where net floor area increased by 87%
through additional floors on top of existing buildings [12]. A new building in place of Moltkestraße 3,
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with a net living area of 550 m2 on four floors, was modeled with the software IDA-ICE in order to
create an estimate benchmark of the energy load of the new living areas. The building is optimized
for passive energy conservation through a compact shape and a lightweight construction with high
heat storage capacity thanks to wooden-fiber insulation. The apartments’ floorplans cross-span the
building’s short side in a north–south layout, and a roofed balcony on the south side avoids overheating
by completely shielding the south façade from direct sunlight during the summer months. The façade’s
window-to-wall ratio (WWR) is 0.7 on the south side, 0.1 on the east and west sides, and 0.25 on the
north side. The building energy simulation results are 34 kWh/m2·a for thermal energy demand and
74 kWh/m2·a for total electricity demand, out of which 10 kWh/m2·a are allocated to auxiliary power
for mechanical ventilation and for the operation of a heat pump. To render this approximation more
fitting, all new volumes should present the same construction type and building services together with
a comparable surface area-to-volume ratio and WWR.

The densification of the living area on site was discussed in an interview with the local department
for urban planning. According to the current energy savings normative, both buildings of Types E/F
can be extended on the southeast side up to the sidewalk, while Type E can additionally be extended
on the northwest side [10]. Vertical densification can be implemented in order to consolidate the
neighborhood without changing the quality of the green spaces, thus preserving an essential element of
the existing district’s identity. Digital models of the sun path on site have shown that the addition of up
to two floors does not impact the amount of sunlight received by neighboring buildings. Horizontal and
vertical densification is thus implemented in different combinations to create six building typologies,
shown in Figure 5: A-1 and A-2 for Li and LII; B-1a, B-1b, B-2, and B-3 for Types E/F. B-2 introduces
townhouses through the demolition of the vertical stairwells of Types E/F, while B-3 is a student
residence complex with large common areas built by joining the twin constructions around a shared
courtyard. Since neither extending the living area nor building additional floors are feasible options for
Type P, the construction is eligible to be demolished and completely rebuilt [13] (p. 14). The resulting
seven building typologies are shown in Figure 5.
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5. Energy System Concepts

5.1. Energy Generation

Heat is generated at about 60–70 ◦C through a Combined Heat and Power unit (CHP) in S1
and at 28–44 ◦C through heat pumps in S3, while S2 is equipped with both a CHP unit and heat
pumps. While all scenarios are equipped with an auxiliary high-efficiency boiler and can supply
heat at different temperatures by means of mixing water or through a cascading system, building
renovation concepts are assigned to scenarios according to the operating temperature of the main
system in order to minimize energy losses. In S1, Buildings E/F are renovated according to the minimal
concept, thus not insulated. In S2, one of the two twin constructions is renovated according to the
minimal concept, while the second building is converted into townhouses and renovated according
to the standard concept. In S3, low-temperature heating requires a higher thermal quality for the
building envelope, so the standard concept is applied to all buildings on site. Resulting scenarios are
shown in Figure 6, while Table 2 shows net floor areas for the scenarios divided into renovated and
new. Renovated net living areas do not match existing floor areas due to conversion measures and
other building interventions.
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Table 2. Net floor areas for the three scenarios divided into renovated and new.

Net Living Area in m2

Scenario Renovated Living Area New Living Area Total Living Area % Increase

R1 / / 3.630 0%
S1 3.771 3.033 6.804 87%
S2 3.152 3.833 6.984 92%
S3 3.609 2.577 6.794 87%
R2 2.242 1.960 4.206 88%

Resulting energy demand for each scenario is shown as district load in Figure 7a and balanced
on m2 net living area in Figure 7b. Total energy demand on the district level in the three scenarios is
respectively 112%, 104%, and 92% of the current demand, while specific energy demand per m2 floor
area is respectively 60%, 54%, and 49% of the current demand.

Renewable energy is generated through photovoltaic modules and solar thermal panels covering
250 m2 and 750 m2 of roof area respectively in S1, and 500 m2 each in S2 and S3. Due to collecting
surfaces with different orientations, a district approach profits from continuous energy generation
throughout the day. Table 3 shows energy generation through roof panels on site according to the
requirements set in the respective modules for the scenarios. Due to the hybrid thermal and electrical
energy storage systems steered by the SWIVT-Controller described in the following paragraph,
the share of generated heat and power used on site, comprised of direct and delayed use, is close to
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90% for power and 100% for thermal energy. This allows a high share of total energy consumption to
be covered by renewable energy generation through roof collectors despite unfavorable volumetric
ratios of roof to living area.
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Table 3. Energy generation by scenario and type of collector.

Renewable Energy Generation in kW·a

Scenario Solar Thermal
Panels

% of Thermal Energy
Need Covered

Photovoltaic
Panels

% of Power
Consumption Covered

S1 487.500 75% 37.500 9%
S2 325.000 62% 75.000 16%
S3 325.000 71% 75.000 18%

5.2. Energy Storage Concepts

All scenarios are equipped with a hybrid thermal and electrical system that can store and distribute
energy between the buildings. The requirement “hybrid” describes a system able to store energy for
different time spans and with different reaction speeds. On the thermal side, it also implies storing
heat at different temperatures. This is achieved through a system of heat-cascading fluid storage in the
form of concrete tanks filled with a mix of water–glycol, with in some cases the addition of paraffin
wax, a phase changing material (PCM). The PCM-system has a reaction time of 2–2.5 h due to a heat
transfer coefficient of 0.2 W/(m2K) and melts at 28–30 ◦C, while the water–glycol system releases heat
at 0.58 W/(m2K). The thermal strategy deployed through the SWIVT-Controller aims at exploiting
these characteristics to minimize heat losses from the solar thermal collectors and the operation of the
CHP unit through an algorithm based on predictive control. On the electric side, a system combining
lithium-ion batteries with a flywheel aims at minimizing power losses from the photovoltaic collectors
and the co-generated power from the CHP unit through dynamic power distribution. The base load
is stored in batteries with a combined energy content of 140–200 kWh, while peak loads are stored
in a flywheel with an energy content of 8–10 kWh. The electrical strategy deployed through the
SWIVT-Controller aims on the one hand at optimizing the use of the battery in order to prolong its life,
and on the other hand at an economically ideal operation through an intelligent operating algorithm
able to forecast energy flows and power market prices.

Primary energy demand is calculated for heating, warm water, and auxiliary power according
to DIN 18599 and DIN 4108-6. In S1 and S2, the CHP unit covers half of the residual thermal load
and generates electricity as a by-product at a 50/50 ratio. In S1, an auxiliary heater (boiler) covers
the residual thermal load, while in S2 this is shared between heat pumps and an auxiliary heater.
In S3, heat pumps cover half of the thermal load of the district, and a boiler covers the remaining load.
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Figure 8a shows the distribution of energy sources to cover the energy need of the district in the three
scenarios. Assuming a primary energy factor (PEF) for natural gas of 1.24 and a PEF for grid power of
2.4 yearly, the primary energy need for the three scenarios is evaluated at 28 kWh/m2, 25 kWh/m2,
and 35 kWh/m2, respectively, as shown in Figure 8b. All three scenarios reach at least 30% lower
balances than R2, which has a primary energy need of 55.7 kWh/m2.
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6. Results

Results are interpreted as follows:

(1) The design of an energy system on a district scale, while allowing higher residual thermal loads
from individually renovated buildings compared to a standard renovation, reaches 91%, 92%,
and 87% lower primary energy balance than the existing stock.

(2) Replacing requirements for the design of building renovations based on minimal U-Values for
single components with one based on a system-scaled primary energy balance would allow the
implementation of original architectural design solutions.

(3) In order to succeed, this concept requires an operational strategy able to deliver the required
performance from each energy supplying, converting, and storing component. This operational
strategy is largely in place in the SWIVT project, and should be validated on site in the follow-up
pilot project, SWIVT II.

(4) Furthermore, the concept requires a business model able to finance a profitable investment
for all parties involved, and a contracting model able to clarify and define stakeholders’ roles
and obligations.

7. Discussion

• The need for less intervention could help investment in more qualitative assemblies. For example,
organic insulation such as wood fiber or wool could be chosen over mineral and synthetic products.

• Local energy generation is an essential step towards climate protection goals [1]. The results
presented in this paper suggest that coupling technologies for energy generation, storage,
and distribution on a district level has a higher impact on lowering the primary energy need
compared with the renovation measures for building envelopes. Whether this is a more
resource-efficient solution with respect to costs and environmental impact, for example, by taking
greenhouse gas emissions during manufacturing into consideration, needs to be validated.
There is, however, evidence that this is already the case for photovoltaics [14].
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• Different models for selling locally generated heat and power to tenants are currently employable
in Germany [15]. However, the profit margin is not sufficient to finance a broader investment,
neither in complex or innovative technologies nor on a wider scale. This is partially due to the
current regulatory framework (“Erneuerbare Energie Gesetz”, in short EEG), which states that
locally generated power is not freed from the levy on renewables, whenever it is not directly
consumed by the owner of the installation. Locally generated power stored for later use, for
example in batteries, is also subject to the levy [16]. The German parliament voted to change this
levy in the amendment to the EEG 2016, which comes into effect in 2017 [17].

• Future energy prices and the introduction of a carbon tax have a crucial impact on the design of
the operational strategy, thus altering the life-cycle cost analysis and hence the financial model for
the concept. Close collaboration between policy makers and the industry is required in order to
work towards aligned goals.

• A further open question is tenants’ willingness to subscribe to the proposed contract. Even though
users can be incentivized by the quantifiable financial advantages and low environmental impact
of a high share of locally generated energy, the profit margin of the system will not be available
if a determined share of local users opts out. Therefore, it is essential to involve the user in the
discussion of a feasible business model.
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