
sustainability

Article

Urban Competitiveness Measurement of Chinese
Cities Based on a Structural Equation Model

Zhiyuan Yuan, Xinqi Zheng *, Lulu Zhang and Guoliang Zhao

School of Information Engineering, China University of Geosciences, Beijing 100083, China;
zyyuan@cugb.edu.cn (Z.Y.); Luluzhang@Cugb.edu.cn (L.Z.); zhaogl@cugb.edu.cn (G.Z.)
* Correspondence: zxqsd@126.com; Tel.: +86-10-8232-2116

Academic Editor: Yehua Dennis Wei
Received: 12 January 2017; Accepted: 12 April 2017; Published: 22 April 2017

Abstract: In the current era, competition among countries and regions is in fact among cities. Thus,
how to measure urban competitiveness precisely is a basic and important question. The two main
approaches to this are comprehensive evaluation based on a set of indicators and network analysis
based on inter-city relations. However, both have shortcomings. In this study, we introduced
structural equation model (SEM) into urban competitiveness measurement to integrate the two
approaches. We built a partial least squares structural equation model (PLS–SEM) according to
the analysis of causal relationship among urban attribute indicators→ urban functions→ urban
competitiveness→ urban flow intensities. Following the processes of algorithm selection, model
building, fitting and assessment, and modification in PLS-SEM modeling, we measured the urban
competitiveness of Chinese cities in 2010 and analyzed its distribution quantitatively and spatially.
The results revealed relationships between factors contained in the model and urban competitiveness
and proved that the PLS-SEM urban competitiveness measurement approach we proposed is
theoretically reliable and statistically valid.

Keywords: urban competitiveness; structural equation model (SEM); partial least squares (PLS);
China; cities

1. Introduction

Cities have always been among the most important objects of geography research. In this
era of globalization, the competitiveness of a city in the urban system or network decides how
many resources, funds and talents it can abstract and how it should develop according to its
comparative advantages [1,2]. Urban competitiveness measurement offers a basic evaluation for a city’s
development statue, potential and influence. There are two main approaches: one is comprehensive
evaluation based on indicators reflecting cities’ internal attributes, and the other is judging in a city
network by network analysis.

Comprehensive evaluation based on urban attribute indicators is the traditional approach to urban
competitiveness measurement. Population and GDP are the most used indicators in the early studies,
and are still widely used in empirical studies. As research continues, scholars have realized that what
affects cities’ functioning and resource-flow control includes not only economic spatial agglomeration,
but also the synthetic action of the local social, ecological, and political environment. Therefore,
selecting indicators that can truly reflect urban characters and organizing an indicator system have
become an important approach to the comprehensive measurement of urban competitiveness. Scholars
have attempted to use different angles in indicator selection [1,3–6]. However, there are shortcomings
to this approach: the selection of indicators and the decision of relationships among indicators are
inevitably subjective [3].
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On the other hand, evaluating urban competitiveness in an urban network has become a popular
approach since Friedmann [7] proposed the world city hierarchy in 1986 and Sassen’s writing on
global city [8]. From this perspective, urban competitiveness is viewed as the capacity of a city to
dominate and control resources. Stronger cities have bigger outer influence in both agglomeration and
radiation forms, and, therefore, can attract and expose more resource flows in the urban network [9].
GaWC research team has done significant researches on urban competitiveness (mainly on economic
success) in global scale by considering it as a networked phenomena and measuring the quantity and
quality of the connections a city has with other (world) cities [10–12]. Other scholars have measured
urban competitiveness through calculating and analyzing the network, which usually consists of cities
as nodes and urban flows as connections, such as population migration [13], traffic flow [14], and
economic flow [15]. Currently acknowledged urban flows representing inter-city connections mainly
include population migration flow, logistics flow, fund flow, information flow, and technology flow [16].
However, this approach has defects. It is mostly used in global context studies, which are supported
by relatively large-scale flow data. When the study scale is smaller, the urban network becomes more
elaborate, and therefore, the requirements for the inter-city flow data are refined and the data are more
difficult to acquire. Taking China’s urban level as an example, because of the comprehensive traffic
situation and abstraction of information flow and technology flow, it is difficult to acquire enough
necessary flow data for an urban network, in which inter-city connections are measured by interactions
among cities. When the necessary flow data for the whole network is difficult or even impossible
to acquire, the connections a city has with other cities in a city network should be considered as the
reflection of urban competitiveness rather than the cause.

Therefore, although both main approaches to urban competitiveness measurement have been
developed fully in theory and practice, they still have defects. Scholars have proved there is a certain
relationship between indicators presenting urban attributes and urban flows reflecting inter-city
connections. According to Martin [17], for example, observers and analysts have claimed population
mobility is affected by business and job opportunities, the promise of wages and fortunes, the scope for
consumption, and the array of cultural and leisure amenities. At the meantime, urban competitiveness
is affected by both internal and external factors, which correspond to comprehensive evaluation and
urban network analysis respectively. Therefore, taking urban competitiveness as an intermediate
context, we proposed hypotheses of two sets of causality relationships: one is between the internal
attributes of cities presented by indicators and the results of urban competitiveness, and the other is
between urban competitiveness and urban flow intensities. Based on these hypotheses, this study
attempted to find a new approach that can combine the perspectives of comprehensive evaluation and
urban flow calculation for urban competitiveness measurement.

Structural equation model (SEM) was first proposed in 1970 by Jöreskog [18]. It is theoretically
based on mathematical statistics. It can describe and measure complex causality correlations between
latent variables as well as between each latent variable and corresponding observed variables.
Therefore, we introduced SEM into this research for a new approach to urban competitiveness
measurement, combining and cross-corroborating the two abovementioned perspectives. This enabled
us to verify our hypotheses by building a mathematical matrix SEM and undertaking statistical testing.
We attempt to offer a new perspective and approach to urban competitiveness measurement that is
theoretically feasible and statistically reliable.

We conducted our research on urban scale in China in 2010, and focus on municipal districts of
cities, which to some extent follow the typical downtowns of Western cities. Cities in our research
include the four municipalities directly under the central government (Beijing, Tianjin, Shanghai and
Chongqing) and prefecture-level cities which were included in the state-generated statistics, namely
286 municipal districts of China in 2010. To investigate the urban competitiveness of these cities,
we built an SEM to measure urban competitiveness and analyzed the results.

The rest of this paper is organized as follows. Section 2 outlines the data used. Section 3 presents
our approach and explains the rationale of SEM as well as the model process in the order of algorithm
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selection, model building, model fitting and assessment, and model modification. The measurement
results are described and analyzed in Section 4. Section 5 discusses the advantages and disadvantages
of this approach compared with other measurement results, and expounds the statistical reliability of
the proposed approach. Section 6 concludes.

2. Data Resource

The data for this research include statistical data reflecting socio-economic status and urban flow
intensity. Urban flow data contain all available statistical data relating to population migration flow,
logistics flow, fund flow, information flow, and technology flow. The decennial population census is
the only official statistical data for population migration in China. The last national population census
was organized in 2010 and, as all data collected for measurement should be consistent in statistical
time points, the other data should also be for 2010. Therefore, population-related data in our research
were collected from the Tabulation on the 2010 Population Census of the People's Republic of China by
County [19], while other data are from the 2011 Urban Statistical Yearbook of China [20]. Only municipal
district data are considered. All 123 indicators presenting urban attributes offered in the statistics are
initially collected, while only 20 representative ones are used in the final model. The detailed steps are
described in Section 3.2.2. There are 286 Chinese cities in the 2010 statistics that are included in our
sample. Some cities or districts not included in the statistics are also not included in our research, such
as autonomous prefectures as well as Hong Kong, Macao and Taiwan.

3. Model Building

3.1. Rationale for SEM

SEM is widely applied in business, psychology, management, and social sciences to reveal
actual correlation by estimating and testing relationships between model variables [21]. SEM
comprehensively combines and improves traditional statistical methods, including exploratory factor
analysis, confirmatory factor analysis, path analysis, multiple regression, and variance analysis. SEM
has advantages in many aspects, such as handling variables simultaneously, estimating factor structure
and factor correlation simultaneously, considering measure errors of variables in model estimating,
and testing goodness-of-fit of the whole model. Scholars have developed several kinds of software for
model calculation.

Variables in SEM include latent and observed variables. Latent variables cannot be measured
directly, but can be estimated by corresponding observed ones. SEM is formally defined by two sets of
models: inner model and outer model. The outer model specifies relationships between latent variable
and corresponding observed variables, while the inner model specifies relationships between latent
variables. The outer model includes reflective and formative modes. The causal relationship in the
reflective mode is from the latent variable to observed variables, whereas that in the formative mode
is the inverse. Assessment and testing methods differ for the two modes. Figure 1 below depicts the
structure and rationale of SEM, in which the exogenous outer model is formative and the endogenous
outer model is reflective.
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Figure 1. Structure and rationale of structural equation model (SEM).

According to algorithms of parameter estimation, SEM can be categorized into two groups: one
is covariance-based SEM (CBSEM) [18], and the other is variance-based SEM, of which the most
prominent example is partial least squares (PLS) path modeling [22–24]. The CBSEM focuses on
the total variation of coefficients of the sample matrix and model expectation value, and has higher
requirements for data distribution and sample volume. On the other hand, variance-based SEM
focuses on the explanatory ability of the model for endogenous variables, but the data requirements are
lower [25–27]. PLS path modeling is a prediction-oriented SEM technique based on the PLS algorithm.
It includes two types according to different algorithms developed by Wold [23] and Lohmöller [28].
The calculation for both algorithms is a process of loop iteration for gradually approximating true
parameter values.

3.2. Model Building for Urban Competitiveness Measurement

As shown in Figure 2, there are four main procedures in our approach. First, the algorithm of
SEM has to be selected according to data characteristics, which determine the subsequent procedures.
The second and most important part is building the model in the software tool, that is, the model
design, confirmation of each part, and model drawing. Third, model fitting and assessment test
statistical rationality to check whether the original model is statistically satisfied. Last, in model
modification, the model is adjusted to be satisfactory. We provide a detailed explanation for each part
in subsections hereafter.
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3.2.1. Algorithm Selection

First, a proper algorithm should be selected from the two families of SEM mentioned in Section 3.1
according to their suitable conditions. The sample size for our research is relatively small and not all
variable data necessarily accord with normal distribution, and, thus, we selected PLS path modeling
for our SEM. Meanwhile, a strength of PLS is its latent variable explanatory power, which would be
helpful for revealing influences of each indicator to urban competitiveness. Based on our algorithm
selection, we used SmartPLS software tool [29] for the modeling procedure, which was developed
according to Lohmöller’s PLS algorithm.

3.2.2. Model Building

Model Design

Our research aims to provide an SEM approach to urban competitiveness measurement that can
cross-corroborate comprehensive evaluation of urban internal attributes and inter-city connections
perspectives. Therefore, we considered urban competitiveness as the only endogenous latent variable
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of the whole model, while integrating the comprehensive evaluation perspective into the exogenous
outer model part and the inter-city connection perspective into the endogenous outer model part.
For the exogenous outer model, we considered representative urban attribute indicators as observed
variables and urban characteristics clustered by those indicators as latent variables, and therefore,
formed an evaluating system composed of exogenous observed variables, exogenous latent variables,
and the endogenous variable. For the endogenous outer model, we considered urban flow indicators
reflecting inter-city connections as observed variables, which represented the correlation between
urban competitiveness and urban flow.

Exogenous Outer Model

We want to integrate the comprehensive evaluation approach into our model by the exogenous
outer model part. Therefore, we need a reasonable approach to decide observed and latent variables
through urban attribute indicators’ processing. The indicators selected should be targeted, systematic,
independent, representative, available, and suitable for the development status of the samples. They
should cover all aspects of urban change fully, as they act as the causes of the exogenous latent
variables, and thereby, as the causes of the endogenous latent variable (i.e., urban competitiveness).
Therefore, we collected all the available official statistical indicators, selected and grouped them in
the order of indicator traversal, primary selection, reselection, and cluster, and then confirmed the
final components and structure of the exogenous outer model. The following provides a detailed
description of the process.

Step 1 2011 Urban Statistical Yearbook of China offers urban attribute indicators for our research.
We collected 123 indicators for municipal districts of cities by traversing the yearbook. This is
the primary indicator database for our research.

Step 2 We considered the indicators collected one by one and made our primary selection. Indicators
that obviously have nothing to do with urban competitiveness, such as number of primary
schools and middle-school student enrollment, should be eliminated. Some indicators need to
be calculated further as per capita data or percentiles to reflect urban competitiveness better,
such as changing registered unemployed people to the unemployment rate. Moreover, when
more than one indicator reflects the same or similar meaning, such as population at year-end
and average population, they should be reduced to one. In total, 113 indicators were left in our
research after primary selection.

Step 3 We reselected indicators according to correlation test. This test was processed in SPSS after
data standardization. Significant correlation indicators should be eliminated. There were
20 indicators left after reselection, which were defined as observed variables in our exogenous
outer model.

Step 4 We clustered the reselected indicators through principal component analysis. This can
also be achieved in SPSS. The cluster results should be checked: indicators reflecting the
same aspects of urban characteristics or urban competitiveness should be clustered into one
dimension; the indicator number of each dimension should meet the basic requirement of
SEM. Necessary replacement or adjustment on reselected indicators can be helpful for cluster
outcome. Dimensions obtained from the analysis should present a certain perspective of urban
characteristics corresponding to several observed indicators, thereby defining latent variables
of the exogenous outer model. We identified five major dimensions of the 20 indicators, which
are expressions of economic strength, living standard, space support, social security, and
environmental governance.

The exogenous outer models of our SEM are of formative mode. Causal relationships from
observed variables to latent variables are sufficient but not necessary. The more positively these urban
attributes behave, the stronger are the latent variables, which might not be valid the other way round.
The following assessment and modification procedures are decided by the model mode.
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Endogenous Outer Model

The endogenous outer model part reveals the relationship between the connections a city has
with other cities in the network and urban competitiveness in our model design. Urban flow data
representing inter-city connections are difficult to collect completely, especially for small-scale city
networks. Therefore, urban flow data, which are not all-inclusive, are more appropriate to act as results
of urban competitiveness instead of causes. The stronger are urban competitiveness, the more intense
are urban flows, which might not be valid in the reverse. This causal relationship determines that
the endogenous outer model is of reflective mode. Indicators reflecting all kinds of urban flows are
considered observed variables of the endogenous outer model.

According to statistical data, we collected the domestic in-migratory population proportion and
the out-migratory population proportion for population migration; total freight traffic and business
volume of postal services for logistics flow; and number of Internet users and total business volume
of telecommunication services for information flow. The model does not specify indicators for fund
flow and technology flow because we could not find appropriate indicators for them. However, the
reflective mode allows insufficiency of observed variables, thereby avoiding the influence of the urban
flow data for the whole model.

Inner Model

According to the two outer models, the five urban characteristics clustered from urban attribute
indicators are exogenous latent variables (represented as ζ1–ζ5, respectively), whereas urban
competitiveness is the endogenous latent variable. In our design, exogenous latent variables act
as the causes of urban competitiveness, which determines that the arrow direction in the model should
be from exogenous latent variables (i.e., urban characteristics) to urban competitiveness.

We modeled our urban competitiveness measurement SEM in SmartPLS as per the following
Figure 3.
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3.2.3. Model Fitting and Assessment

SmartPLS contains bootstrapping and PLS algorithm modules for fitting and assessing the built
model. Indexes obtained from the modules, which should be compared to the required statistical
extent one by one, offer criteria for the model. If all indexes confirm the requirements, the model is
satisfied statistically; otherwise, it should be modified.

PLS-SEM does not provide any global goodness-of-fit criterion. Scholars have proposed a two-step
process for model assessment. The outer model should be assessed first, and then the inner model. The
assessment context for each part is different, and, therefore, different indexes are employed. Meanwhile,
formative and reflective modes of the outer model also consider different indexes. As mentioned in
Section 3.2.2, we built an urban competitiveness measurement PLS-SEM consisting of five exogenous
outer models in formative mode, an endogenous outer model in reflective mode, and an inner model
between five urban characteristic aspects and urban competitiveness. Table 1 shows the criteria
requirement and indexes obtained from our original model. According to the assessed indexes, our
original model essentially meets the statistical requirement of PLS-SEM, except that indicator reliability
of domestic in-migratory population proportion and out-migratory population proportion in the
reflective endogenous outer model were lower than the required standard. Thus, their latent variable,
urban competitiveness, could not explain more than 50% of the two indicators’ variance in the original
model, meaning the model needs to be modified.
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Table 1. Assessment criteria and corresponding results for PLS-SEM.

Assessed Part Context Criterion Description Suggest Extent Model Fitting Result

Reflective
outer model

Internal
consistency reliability

Cronbach’s α [30]
Assume that all indicators are equally reliable, and
then estimate reliability based on the indicator
inter-correlations.

>0.7 [31] Cronbach’s α = 0.74, fits well.

Composite
reliability ρc [32]

As above, but taking differences between indicator
loadings into account. >0 [31] Composite reliability ρc = 0.84, fits well.

Indicator reliability Absolute standard
outer loadings

A latent variable should explain a substantial part
of each indicator’s variance (usually at least 50%). >0.7 (≈

√
50%)

Variables Y1 Y2 Y3
Loading 0.582 −0.194 0.732
Fitness Below Below Fit

Variables Y4 Y5 Y6
Loading 0.917 0.906 0.816
Fitness Fit Fit Fit

Convergent validity Average variance
extracted (AVE)

Measuring how much a latent variable is able to
explain the variance of its indicators on average. >0.5 [33] AVE = 0.54, fits well.

Discriminant validity
Fornell–Larcker
criterion or
cross-loadings

Two conceptually different concepts should exhibit
sufficient difference. — Not necessary for this part because there is only one

latent variable in our model.

Formative
outer model

Nomological validity Hypotheses check

Assessing whether the formative index behaves
within a net of hypotheses as expected, and
whether those relationships between the formative
index and other constructs in the path model that
are sufficiently referred to in prior research are
strong and significant.

Compare
gradually

Relationship Loading Fitness
ζ1→η 0.74 Fit
ζ2→η 0.17 Fit
ζ3→η 0.11 Fit
ζ4→η 0.07 Fit
ζ5→η −0.03 Fit

External validity 1-Var (v)

Measuring how much of the construct is not
captured by any indicator by means of regressing
the formative index on a reflective measure of the
same construct.

>0.8 [22] Fits well.

Multicollinearity Variance inflation
factor (VIF)

Assessing the degree of multicollinearity among
manifest variables in a formative block. <10 [22] Each fits well.

Inner model Determination
coefficient R2 Evaluating the fitting degree of the endogenous

latent variables. >0.67 [34] R2 = 0.89, fits well.

Bootstrapping Weights and path
coefficients Students’ T-test

Revealing the significance of path model
relationships by creating a large, prespecified
number of bootstrap samples.

Student’s
t-distribution table Each fits well.
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3.2.4. Model Modification

Model modification is the adjustment of the statistically unsatisfied model and includes the
modification for both outer and inner models. Modification for the outer model is usually on observed
variables by adding to, discarding, or replacing them. For the inner model, model modification
includes altering latent variables or connecting paths between them [35]. Because the model is causally
connected and acts as a whole, any changes would affect the algorithm environment and assessment
result. Therefore, whatever modification method is performed, particular caution should be applied.
Only one change should be made at a time, and the next change should be considered after the fitting
and assessment result of the previous action. Finally, the confirmed model should be both theoretically
reasonable and statistically satisfied, and can provide a strong explanation for reality.

As mentioned in Section 3.2.3, indicator reliabilities of domestic in-migratory population
proportion and out-migratory population proportion in our original model were statistically
unsatisfactory and needed to be modified. Considering the necessity and importance of population
migration for urban flow, we attempted to find a substitution representing the population part instead
of discarding these indicators. Therefore, we calculated overall population migratory proportion, which
equals the in-migratory population minus the out-migratory population as a proportion of the total
population, and then substituted it for the two while keeping the other parts of the model unchanged.
Fitting and assessment of the modified model proved that the replacement worked well. All the
indexes were statistically satisfied, which demonstrated the reasonableness of our proposal to integrate
the two main perspectives for urban competitiveness measurement into one by PLS-SEM for a new
approach. Thus, the modified model is able to provide proof for urban competitiveness measurement.

4. Results and Discussion

SmartPLS provided latent variable scores directly, as well as latent variable correlations, and
loadings and weights of observed variables for corresponding latent variables. We analyzed urban
competitiveness conditions in China in 2010 according to the results.

4.1. Urban Competitiveness Distribution Characteristics in 2010 China

4.1.1. Quantitative Characteristic

According to the results, the score range of urban competitiveness in China in 2010 is 13.35–601.22.
Shanghai ranks first, while Beijing, Shenzhen, Chongqing, and Tianjin rank in the top five. We analyzed
the quantitative characteristic of urban competitiveness scores with clustering methodology. Cities
were clustered into five classes, as shown in Table 2, and represented an uneven distribution. Shanghai
is the only city in the first class, and is far ahead. The second class contains only six cities, while the
score span is relatively large (Table 3). There are only about 50 cities altogether in the first three classes,
accounting for just 17% of all samples. Thus, the results show that powerful cities occupy only a small
part of the whole, and there are quite great gaps between most cities and the preponderant ones.

Table 2. Urban competitiveness cluster of 2010 China.

Class City Number Accumulated Number Score Extent

1 1 1 601.22
2 6 7 178.34–354.12
3 45 52 72.56–140.50
4 152 204 40.71–71.54
5 82 286 13.35–39.88
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Table 3. City lists of the first two clustered classes in 2010 China.

Class Rank City Score Rank City Score

1 1 Shanghai 601.22

2
2 Beijing 354.12 5 Tianjin 224.45
3 Shenzhen 316.78 6 Guangzhou 209.74
4 Chongqing 231.57 7 Chengdu 178.34

4.1.2. Spatial Distribution Characteristic

China is usually divided into eastern, central, western, and northeastern parts, which is influential
in developing status and policymaking. The spatial distribution of the urban competitiveness shows
an obvious regional difference. Thus, we mapped the spatial distribution of urban competitiveness
(Figure 4) and analyzed and compared in these four regions. According to the five classes clustered in
Section 4.1, we obtained the following results shown in Figure 5.
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According to statistics, eastern China is still the most prosperous region with most top three-class
cities and a relatively balanced quantitative constitution compared to the national condition. The
western part has always been the weakest region of China, limited by geographical and historical
reasons, and remains the region with most class-five cities. However, several superior cities have been
developed under the policy bias of the Grand Western Development Program, and they even occupy a
notable proportion, to promote development and drive the whole region. Central and northeastern
China seem to have mediocre performance, but the large proportion of common cities and the lack of
superior leading ones may be a forewarning of underpowered and negative development perspectives
in the two regions.

4.1.3. Spatial Correlation Characteristic

Moran’s I index was applied in our spatial agglomeration characteristic analysis of urban
competitiveness at both global and local scales. Global Moran’s I of urban competitiveness in China in
2010 was 0.11 measured by Euclidean distance, which means weak but positive spatial autocorrelation
globally. Local Moran’s I is helpful for recognizing urban agglomeration regions based on urban
competitiveness local spatial autocorrelation (Figure 6). Three highlighted HH areas exist, which refer
to a high–high urban competitiveness agglomeration: Beijing–Tianjin, Shanghai–Suzhou–Hangzhou–
Wuxi–Ningbo–Jiaxing, and Guangzhou–Shenzhen–Zhongshan–Dongguan. In addition, three cities
form HL correlation with surrounding cities, which refer to a high–low urban competitiveness
agglomeration with the high score located in the center: Chongqing, Chengdu, and Xi’an. The
recognized results of HH are coincident with the three most powerful urban agglomerations in China:
Beijing–Tianjin–Hebei, Yangtze River Delta, and Pearl River Delta. In addition, the number of the most
competitive cities fits the developing reality very well. Meanwhile, the results of HL conform quite
well to the situation in western China.
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4.2. Influencing Factors of Urban Competitiveness in China in 2010

4.2.1. Correlation between Urban Attributes and Urban Competitiveness in China in 2010

According to the path coefficients, loadings, and weights calculated in PLS-SEM, we could analyze
the influence of each variable in the model on urban competitiveness. The reliability and reasonableness
of the analysis can be ensured by the aforementioned statistical assessment. We undertook our
brief analysis on urban characteristically clustered latent variables (Table 4). Based on the path
coefficients between exogenous latent variables and urban competitiveness in our modified model,
economic strength, living standard, space support, and social security are positively correlated with
urban competitiveness, whereas environmental governance have a negative impact, which reveals
an unhealthy development situation that environmental treatment had a negative influence on urban
competitiveness for a local government in 2010 China, especially compared with economy development.
Economic strength is the most positively influencing factor, followed by living standard; the effects
of the three other influencing factors are relatively weak. Further analysis can be undertaken on the
contribution of the urban attribute indicators on their corresponding latent variables based on loadings
or weights. We do not report this detailed analysis for space reasons, but the results are available upon
request to the authors.

Table 4. Path coefficients of latent variables (modified model).

Variables Correlation Path Coefficient

ζ1→η Economic strength→ Urban competitiveness Positive 0.71
ζ2→η Living standard→ Urban competitiveness Positive 0.21
ζ3→η Space support→ Urban competitiveness Positive 0.06
ζ4→η Social security→ Urban competitiveness Positive 0.06
ζ5→η Environmental governance→ Urban competitiveness Negative −0.02

4.2.2. Correlation between Urban Competitiveness and Urban Flows in China in 2010

Similar to Section 4.2.1, loadings or weights between urban competitiveness and observed urban
flow variables reveal the correlation between them (Table 5). Urban competitiveness shows a direct
and obvious influence, according to the modified model, especially for logistics flow and information
flow. Population migration, however, is influenced to a limited extent. Possible reasons might be
that migration decisions would relay not only on objective factors, such as urban competitiveness,
but also on some more complicated ones, such as genetic relationship, family members, and personal
development opportunities. The mechanism might need a new complex model for exploration.

Table 5. Outer loadings of urban flow variables (modified model).

Urban Flow Variables Loading

Population migration Y1 Overall population migratory proportion 0.65

Logistic flow Y2 Total freight traffic 0.74
Y3 Total business volume of postal services 0.93

Information flow
Y4 Total business volume of telecommunication services 0.91
Y5 Number of Internet users 0.82
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5. Discussion on PLS-SEM Approach

5.1. Reliability of Results

5.1.1. Result Testing Based on Rank-Size Rule

The rank-size rule is a classical theory on measuring relationships between city size and rank in an
urban system, in which city size can be understood as urban competitiveness. It was first proposed by
Auerbach in 1913, and developed by scholars into more patterns later [36,37]. The rule has been proven
applicable for cities in China [38–40], and, thus, we take it as a reference for testing the reliability of
our result on quantitative distribution.

We fitted urban competitiveness scores and their ranks with the basic rank-size formula. The
result is basically satisfied (as shown in Figure 7). Multiplicative relationship between the score and
rank could be found obviously, and the R2 obtained in double-log model regression is 0.73, which
demonstrates the reliability of our result on quantitative distribution.
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5.1.2. Result Comparison with Other Approaches

We test the reliability of the PLS-SEM result by comparing it with traditional approaches.
Chinese scholars usually take population, GDP, or area of built urban district to substitute for urban
competitiveness, giving us comparable results. In addition, the Blue Book of Urban Competitiveness,
which is annually released by the Chinese Academy of Social Sciences and measures all cities in China
based on a comprehensive evaluation of substantial amount of urban attribute data, is supposed to be
an authoritative version of urban competitiveness measurement.

We compared PLS-SEM urban competitiveness scores with scores from the 2010 Blue Book of
Urban Competitiveness and single index measurements on population, GDP, and area of built urban
district by correlation test, and compared the top 50 and bottom 50 cities of our results with the Blue
Book to observe how much they match. As shown in the correlation matrix (Table 6), our urban
competitiveness scores are obviously correlated with the others. Moreover, considering the overall
correlation, the result of PLS-SEM has slight advantages. On the other hand, according to the match
test, the numbers of coincident cities in the top 50 and bottom 50 are 38 and 30, respectively, which are
relatively high. Overall, we proved the reliability of the results measured by our PLS-SEM approach.
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Table 6. Comparison of correlations between different results.

Correlation Coefficient PLS-SEM
Measurement

Competitiv-Eness
in Blue Book

Average
Population GDP Area of Built

Urban District

PLS-SEM measurement 1
Competitiveness in Blue Book 0.645 ** 1

Average population 0.779 ** 0.572 ** 1
GDP 0.913 ** 0.687 ** 0.853 ** 1

Area of built urban district 0.825 ** 0.699 ** 0.882 ** 0.913 ** 1

Note: ** Correlation is significant at the 0.01 level (2-tailed).

The similarities prove the reliability of our approach in reflecting the urban competitiveness
situation. However, our result would be more comprehensive and considerable than reliance on just
a single indicator. At the same time, as we have taken inter-city connections in the urban system as
verification of urban attribute indicators, and determined the weights according to data and the SEM
matrix, our result might be more concise and valid than that of the Blue Book.

5.2. Theoretical Reliability

PLS-SEM itself fits the topic and our theoretical basis well, therefore, helps to make the approach
theoretically reliable for urban competitiveness measurement. The theoretical basis of our approach
is causal relationship hypothesis between urban attributes and urban competitiveness, as well as
urban competitiveness and inter-city connections. The statistical principle of SEM supports a causal
relationship, and thus, matches well our intention and offers a good framework and foundation for
testing our theoretical hypothesis. Moreover, the requirement for urban flow data was reduced by
their positions in the causal relationship, thereby avoiding the limitations of smaller-scale research
caused by data collection.

Meanwhile, statistical indexes used in this approach testify and ensure the theoretical reliability
to a large degree. They test our expectations and hypotheses proposed in the model by verifying all
sorts of indexes, path coefficients, loadings, and weights required statistically. When the theoretical
hypotheses are not satisfied, the modification process helps in reconsidering the model. Thus, the
indexes contained in our approach offer strong support for theoretical reliability.

5.3. Statistical Reliability

Embedded statistical skills in PLS-SEM are one of the advantages of our approach. The final model,
including all of the data and relationships, can be tested statistically in the model assessment and
modification. The large amount of research on PLS-SEM by statisticians provides sufficient foundations
on assessment criteria and extent, which guarantee the statistical reliability of the approach. The model
can be tested statistically in different aspects according to their structure and position, as shown in
Table 1.

At the same time, the influence of subjectivity has been avoided to the greatest possible extent.
We have filtered each item of statistical data based on statistical analysis, such as correlation test
and cluster, rather than artificial sift. Moreover, the assessment, modification, and result analysis of
the approach have been performed based on objective data information instead of human opinion.
Although there is still human participation in the primary selection of indicators and judgment of
cluster results, the statistical data have been used and mined as much as possible.

6. Conclusions

The main purpose of this paper has been to propose a new perspective and approach to urban
competitiveness measurement that is theoretically feasible and statistically reliable. Our approach
could cross-corroborate the perspectives of measuring urban competitiveness by comprehensive
evaluation of urban attributes and network analysis of inter-city connections, and covers their
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shortcomings. It avoids subjective intervention by relying on data largely in indicator selection,
determining weights through SEM matrix, and adding urban flow data into traditional comprehensive
evaluation verification. Meanwhile, it decreases the requirement for urban flow data by taking
them as reflective rather than causes of urban competitiveness, and therefore, makes it possible to
measure small-scale objectives in urban flow perspectives under the limitation of data collection.
The reliability of the result has been demonstrated through comparison, and the advantages of this
approach have been proven, both theoretically and statistically. We consider our approach reliable for
urban competitiveness measurement.

As for the 286 municipal districts of cities which were included in the state-generated statistics in
China in 2010, their urban competitiveness showed an uneven distribution. Quantitatively, cities could
be clustered into five classes: Shanghai is the only city in the first class and is far ahead, while, altogether,
there are only about 50 cities in the first three classes with relatively large score span. Spatially, the
urban competitiveness shows an obvious regional difference: eastern China is the most prosperous
region with most top three-class cities and a relatively balanced quantitative constitution, while the
western part has most class-five cities. It is worth noting that, although central and north-eastern China
seem to have mediocre performance, the large proportion of common cities and the lack of superior
leading ones may be a forewarning of underpowered and negative development perspectives. From
the spatial correlation perspective, the HH regions are coincident with the three most powerful urban
agglomerations in China, while the HL regions conform quite well to the situation of Western China.
Thus, the government should pay more attention to the urban competitive constitution structures of
each region besides the overall development status.

We built our model and measured all 286 cities with the same set of urban attributes. Considering
the differences in functions and inter-city connections between different urban hierarchies, we think
much more work needs to be done through building more specific models in each hierarchy with more
suitable and representative urban attributes and network linkages after having a good understanding
of the hierarchy. In addition, our model could be developed further if more data were collected and
added. As urban attribute statistics are usually limited for small-scale cities in China, we aim to enrich
our model through big data collection in future work.
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