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Abstract: Reclamation is capable of creating abundant land to alleviate the pressure from land
shortages in China. Nevertheless, coastal reclamation can lead to severe environmental degradation
and landscape fragmentation. It is quite important to monitor land use and cover change (LUCC)
in coastal areas, assess coastal wetland change, and predict land use requirements. The siltation of
tidal flats will result in the dynamic growth and continuous expansion of coastal areas. Therefore,
the process of land change in coastal areas is different from that under the fixed terrestrial boundary
condition. Cellular Automata and Multi-Agent System (CA-MAS) models are commonly used to
simulate LUCC, and their advantages have been well proven under the fixed boundary condition.
In this paper, we propose CA-MAS combined with a shoreline evolution forecast (CA-MAS-SEF)
model to simulate the land change in coastal areas. Meanwhile, the newly increased area, because
of the dynamic growth of tidal flats, is considered in the simulation process. The simulation results
using the improved method are verified, and compared with observed patterns using spatial overlay.
In comparison with simulation results that do not consider the expansion of tidal flats, the Kappa
coefficient estimated while considering the dynamic growth of tidal flats is improved from 65.9% to
70.5%, which shows that the method presented here can be applied to simulate the LUCC in growing
coastal areas.

Keywords: land use and cover change (LUCC); Digital Shoreline Analysis System (DSAS); Cellular
Automata (CA); Multi-Agent System (MAS); dynamic growth; tidal flats; reclamation

1. Introduction

Coastal wetlands possess both terrestrial and aquatic characteristics because of their natural tidal
frame. They provide valuable ecosystem goods and services and richer species diversity than many
other natural environments [1]. Coastal marshes are crucial wetland ecosystems and agricultural
land resources. Numerous areas of coastal marshes have been reclaimed in Spain, Germany, Japan,
and the Netherlands [2,3]. Reclamation can alleviate the pressure of land loss, but it may cause
natural disturbances, such as soil and water pollution, nutrient over-enrichment, and reduction
in biodiversity [3],and may bring irreparable damage to ecosystems [4,5]. The spatial patterns of
coastal landscapes have become fragmented and heterogeneous under enormous pressure from rapid
economic development and population growth [6].
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China’s coastal wetlands are also threatened due to increasing coastal infrastructure, and the
area is expanding through large-scale land reclamations [7,8]. Hundreds of square kilometers
are added onto the Chinese mainland each year, as coastlines are extended to a length longer
than China’s historic “Great Wall” [9]. This “New Great Wall”, often built by a hard sea bank,
sand pumping, and the introduction of sedimentation-promoting plants (e.g., Spartina alterniflora,
Suaeda salsa), has severely reduced biodiversity and associated ecosystem services in China’s coastal
area [10]. Meanwhile, local farmers and entrepreneurs also change the coastal ecosystems by individual
preferences of land use changes in the coastal wetlands. Both the shoreline dynamics and land use
changes are decisive in the provision and protection of coastal wetlands.

It is important to identify viable local management policies for coastal wetlands by assessing
the human impacts, as these activities will influence the coastal landscapes, species composition,
and functions of the ecosystems [11]. Simulation and projection of the coastal land use changes can
help identify the main drivers of wetland conversion and assess the effectiveness of potential response
options. There are various land use change models, including Cellular Automata (CA) [12–16],
Multi-Agent System (MAS) [17–19], and Expert Models and Hybrid models [20,21]. Among these
models, CA and MAS have commonly been used in the field of land use planning and environmental
management. CA are grid dynamic models that are discrete in time, space, and state and derive the
transitional rules of land use and cover change (LUCC) from empirical data [22]. The powerful complex
computing function, high dynamic, and spatial features [23], especially Geographic Information System
(GIS) raster data that can be easily embedded in CA simulations [24], make it extremely effective
in simulating urban growth and land use evolution [24,25]. MAS models can complete a series of
tasks in a complex and dynamic environment, and can adapt to and perceive the change in the
environment, features which are widely utilized to simulate the interactions among different activities
of individuals with sufficient flexibility [26]. Many scholars have applied the models to land use
simulation, and the results indicate that agents can perfectly simulate human behaviors and interactions
in the environment [26–28]. Previous studies have used these two models to simulate deforestation,
urbanization, and agricultural expansion processes from the local to global scale. Vancheri et al.
systematically expatiated the theory of CA-MAS models [29] and applied CA-MAS models to simulate
the expansion of Capriasca and Val Colla in the northeastern part of the region of Lugano City [30],
proving that it can simulate the complex behavior of the system at the cell scale. Yang et al. presented
a case study of Zhangmutou Town, Guangzhou, China, which simulated the urban land expansion
during 1988–1993, and obtained the desired simulation results [31]. Increasingly, research studies
have proven that the integration of CA with MAS produces better simulation results [32]. CA-MAS
models offer the promise of providing both neighborhood influences and interactions between various
individuals to the modeling of complex geographic systems [33]. The crucial aspects of CA-MAS
models are in discovering the rules and defining behaviors and properties [32,34], which are the only
obstacles in their application.

Due to significant reclamation and coastal engineering, the coastline structure changed
dramatically in China over the past 70 years [35]. Coastline evolution monitoring and potential
change estimation are of great significance for sustainable coastal land resource management and
environmental protection [36,37]. Studies have been carried out on coastline change and urban
expansion using remote sensing images, which show that most of the coastline change is caused by
land reclamation in the Yellow River Delta [38–40], the Yangtze River Delta [41,42], and the Pearl
River Delta [37,43]. With development of coastal regions, there is an increasing interest in models that
forecast or predict shoreline evolution. Cheryl et al. forecasted the spatial distribution of the coast
in Southern California using a Bayesian probabilistic model [44]. Schwarzer et al. applied different
methods to predict coastline evolution at different time scales in the Pomeranian Bight, southern
Baltic Sea [45]. Lu et al. took the Jiangsu Province coastline as an example, and used the midpoint
subdivision interpolation method to explore coastline evolution [46]. However, few models have
delineated simulation of LUCC in reclaimed land area under the dynamics of shorelines.
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In this paper, we simulated the land use change under the dynamics of shorelines in a typical
mudflat depositional zone of Dongtai County, China. The terrestrial area exhibits an increase of the
deposition of tidal flats in the study area. With the additional new land, the land use change process is
different from other regions. Time series shorelines (1985, 1991, 1997, 2000, 2005, 2010, and 2014) were
used to obtain control points to allow calculation of the change rate of the shoreline using the Digital
Shoreline Analysis System (DSAS) model. In order to simulate the growth of tidal flats, 62 effective
control points were used to simulate the dynamic movement of the coastline. The increase of new tidal
flat area was taken into account in the process of land use change. The study included four phases:
simulation, validation, prediction, and analysis. The 2010 land use map was simulated using the 2000
land use map as the initial data, which was validated and compared with the land use map in 2010 to
evaluate the accuracy of the model. Projections of LUCC in 2020 and 2030 were simulated to predict
the land use requirements.

2. Materials and Methods

2.1. Study Area

Dongtai County is located on the east coast of Jiangsu Province, China, and is an important part
of the Yangtze River Delta. It includes 85.4 km of coastline, and 1040 km2 of tidal flats, as of 2013. Due
to the deposition of huge amounts of sand transported downstream by the Yangtze River, the coastline
is advancing seaward by 150 m every year. Meanwhile, this expansion of the territory toward the sea
is occurring at a rate of more than 6 km2 each year, which makes Dongtai an important source of new
land for the country, with large scale reclamation in the coastal area. Moreover, Dongtai is home to the
red-crowned crane, whose national nature reserves have been built here on the coastal wetlands.

The study area is located in the coastal reclamation area in the eastern part of Dongtai County
(Figure 1). It is an alluvial plain with a typical intertidal mudflat coast [6]. The main land use types are
ocean, tidal flat, saltmarsh, aquaculture pond, cropland, river, and built-up land. Reclamation occurred
around 1950 in the western part of the study area, and most of the marsh wetlands were reclaimed for
aquiculture pond and cropland. Notably, the Outline of Jiangsu Coastal Reclamation Development Plan
(2010–2020) was released by the State Council of China in 2009, which has greatly accelerated the pace
of reclamation in the study area [47].

Figure 1. Reclamation area in the eastern part of Dongtai County.
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2.2. Data Resources and Processing

The data sets fall into three categories: satellite images, land use data for Jiangsu Province, and
river data. Remote sensing data was downloaded from the U.S. Geological Survey (USGS) Earth
Resources Observation and Science (EROS) Center [48]. These data were used to obtain time series
shorelines and land use maps of the study area, and some of the detailed information is shown in
Table 1. In order to reduce the influence of periodic tides on the measurement of the position of the
coastline, the imaging time of the remote sensing images was restricted to between 1:30 and 2:30 GMT
(Greenwich Mean Time), or 9:30 to 10:30 Beijing time [49]. Taking account of the growth cycle and
spectral characteristics of vegetation, the imaging time was restricted to between May and October
of each year, which better meets the requirements of the acquisition of shorelines and land use maps.
Both Jiangsu land use maps and river data were downloaded from the Yangtze River Delta Science
Data Center, the National Earth System Science Data Sharing Infrastructure, and the National Science
& Technology Infrastructure of China [50].

All of the satellite images were interpreted using a combination of maximum likelihood
classification and manual interpretation [51]. Seven land use types were identified, including ocean,
tidal flat, saltmarsh, aquaculture pond, cropland, river, and built-up land. Land use maps from Jiangsu
Province and Google Earth were used to check and correct the accuracy of the interpreted images. The
classification accuracy of the LUCC types by Kappa coefficients was greater than 0.80, with 0.803, 0.811,
0.821, and 0.805 in 1985, 2000, 2005, and 2010, respectively, which confirmed that the interpretation
results better meet the simulation requirements. The study area is rich in artificial rivers, whose widths
are about 30 m. The width of these rivers is thus just a single pixel in the remote sensing images; the
existing river data was used to help increase the accuracy of the classification of the river.

Table 1. Main parameters and application of remote sensing data.

ID Sensor Path/Row Date Spatial
Resolution (m)

Land Use
Classification

Extract the
Shoreline

1 TM 119/37 24 September 1985 30 Yes Yes
2 TM 119/37 23 July 1991 30 No Yes
3 TM 119/37 20 May 1997 30 No Yes
4 TM 119/37 13 June 2000 30 Yes Yes
5 TM 119/37 17 October 2005 30 Yes Yes
6 TM 119/37 24 May 2010 30 Yes Yes
7 OLI 119/37 16 March 2014 30 No Yes

TM is abbreviation of Thematic Mapper, OLI is abbreviation of Operational Land Imager.

2.3. Modeling Land Use Changes under Shoreline Dynamics Based on CA-MAS

2.3.1. Analysis of Shoreline Evolution

The shoreline is dynamic and exposed to never-ending change by the sea, climate, and coastal
rivers. The movement of the crust, sediments, and currents reshape beaches, which interact with each
other frequently in quite complex ways [43]. Moreover, the impact of reclamation and coastal industry
development on the coastal zone is increasing significantly [3]. DSAS is a freely available software
application that works conveniently within the Environmental Systems Research Institute’s (ESRI)
leading GIS software (ArcGIS, Esri, Redlands, CA, USA). DSAS computes the rate of change statistics
for a time series of shoreline vector data [52].

After the extraction of the shorelines from remote images (Figure 2), the DSAS was utilized to
calculate the rate of coastline change. Firstly, a reference line (1985) was selected; secondly, 157 transects
were cast perpendicularly to the baseline at equal intervals of 1 km. The transects crossed the shorelines
of each period to obtain the displacement of the coastline between adjacent periods, which were used
to calculate the rate of change statistics; finally, the change rate of each transect was calculated by a
linear regression method, which is easy to employ, and general computational method [53]. As shown
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in Figure 2, shorelines in the middle of study area change constantly without any apparent rule;
especially after 2000, the activities of reclamation are more active than ever [54], which resulted in the
regression coefficient being very small. In order to get better results, transects that did not meet the
requirements were manually deleted or modified, such as: (a) the coastline of the estuary zone is not
continuous, and thus we could not consistently get transects; (b) when the regression coefficient of
coastline change rate was less than 0.5, it was replaced by artificial end point rates [52,55,56]. After
the above-mentioned selections and corrections, 62 effective transects were retained, and the annual
growth rate of coastline corresponding to the control points was obtained.
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2.3.2. Inputs and Parameters in the CA-MAS-SEF Model

The model was designed and implemented in the NetLogo software (Center for Connected
Learning and Computer-Based Modeling, Northwestern University, Evanston, IL, USA). NetLogo
is a programmable modeling environment for simulating natural and social phenomena [57].
It is particularly well suited for modeling complex systems developing over time and explores the
connection between the behavior of individuals and the environment [58,59]. NetLogo provides
the ability to load GIS data into a model and saves data as the native NetLogo file format, which
greatly improves the convenience for computing in the CA component. The MAS component provides
a flexible tool to address the interactions among individuals that can be expressed by “turtles” in
NetLogo. The following parts describe the detailed inputs and parameters in implementing this model:
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(1) The distance to the ocean map

The initial distance to the ocean map was calculated by land use map in 2000 (Figure 3a), and the
value of distance was dynamically updated with expansion of tidal flats every year.

(2) The land “age” map

The land “age” map was calculated by the distance to the ocean map and annual growth rate of
coastline (Figure 3b). The equation can be simply described as follows:

Ti = Di/Rtwo, (1)

In the equation, Ti is the length of time for location (i) to transform from ocean to land , Di is
the distance of location (i) to the ocean, Rtwo is the mean value of growth rate of two adjacent control
points, the y coordinate of location (i) is between the y coordinate of the two adjacent control points.
The value of land “age” increases by one every year.
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Figure 3. Physical factors: (a) The distance to the ocean in 2000; (b) The length of time to transform
from ocean to land in 2000.

(3) The pond “age” map

The initial pond “age” map was calculated by the land “age” map and minimum pond reclamation
“age”. The initial value of pond “age” was equal to the value of land “age” minus the minimum pond
reclamation “age”. The value of pond “age” increases by one every year.

(4) Other important inputs and parameters (shown in Table 2)
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Table 2. Other important inputs and parameters.

Name Type Explanation

land use map input base map, validation map

control points file input forecasting shoreline evolution

agent-count parameter count of agents, the value was set according to our surveys

agent-accessible-distance parameter accessible distance of agent, different agent types have
different accessible distances

agent-capacity parameter reclaim scope of agent, different agent types have different
reclaim scopes

land-distance-ocean parameter
because of the influence of salinity and other factors, land
conversion is limited by distance to the ocean, different land
types have different limited distances to the ocean

convert-threshold parameter
land conversion threshold, different land types have
different conversion thresholds, the conversion should
strictly adhere to the laws of land use evolution

2.3.3. Simulation of CA-MAS-SEF Model

The CA-MAS-SEF model was implemented to simulate the process of land use change in the
coastal area, and the details of the technique are shown in Figure 4. The model consists of three parts:
(1) the acquisition of land use data and control points; (2) a definition of the simulation process; and (3)
the prediction of future land use by considering the growth of tidal flats.
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evolution forecast model.

To better delineate the process of land use change, Figure 5 demonstrates a sequence in the process
of land use change. Figure 5a shows the land use pattern at t(a). Deposition results in the accumulation
of sediment along or near a coastline. Figure 5b shows new tidal flat area produced at t(b), along with
land use change occurring in this process. Tidal flat land transforms to saltmarsh, while aquaculture
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pond and cropland appear on saltmarsh land. The change of built-up land can almost be ignored in
comparison with cropland and aquaculture pond land, while the river is unchangeable land in our
simulation. Figure 5c demonstrates further land change at t(c).
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The extracted control points are mapped onto the land use map and then connected by line
to simulate the coastline (Figure 6a). In order to simulate the diverse changes of the coastline,
new points are created by stochastic and fractal methods between existing points (Figure 6b,c) [60].
The y coordinate of a new point is equal to the mean y coordinate value of the two nearest points,
and the x coordinate is a random number between the x coordinate of the neighbor points. Considering
computational efficiency, the number of iterations that can be controlled at the interface should not
be too large. The value of iterations is set at seven, which means that 27 − 1 new points are created
between any two adjacent control points. The points move seaward along with the coastline every
year. Land on the left of the coastline converts to tidal flats, while the right of it is eroded by ocean.
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After land use simulation at t(a), the control points move seaward along with the shoreline
at t(b), while newly created points at t(a) disappear after movement of the shoreline (Figure 7a,b).
The distance that the control points have moved is equal to the annual growth rate obtained from
historical shoreline. The direction of transects obtained from DSAS is not always horizontal, which
means that the evolution of the shoreline is complex. To better simulate the evolution, the direction of
control points is a random degree between −α/2 and α/2, where α is set at ten degrees in this study.
After the movement of the shoreline, new points are created by stochastic and fractal methods.

According to our surveys and consultations with experts, obvious laws governing land use
evolution exist in the study area, and these are tidal flat→ saltmarsh→ aquaculture pond→ cropland
→ built-up land [49,61,62]. The cell state is the land type in CA and the neighborhoods are 3× 3 Moore
neighborhoods, which means that eight cells have a significant effect on the central cell. Transform
rules should strictly adhere to the laws of land use evolution in Table 3. Based on the land use map in
2000, land use patterns in 2010 were predicted.

Many scholars have emphasized the importance of human beings in land use modeling [18].
According to our survey, farmers and entrepreneurs are two types of individuals that have great
influence on land use change. Farmers reclaim saltmarshes and convert them to aquaculture ponds.
Moreover, saltmarshes and aquaculture ponds are also converted to croplands. Entrepreneurs and
farmers have similar behaviors, but the accessible scope and area of reclamation are completely
different. In the model, entrepreneur and farmer agents have an initial “home” address, and
both of them can only reclaim a certain distance from “home”, and convert ecological land to
production-orientated land with different capacities. Considering the economic benefits of reclamation,
aquaculture ponds should be retained for a certain number of years before being converted
to croplands.
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Figure 7. The points move seaward along with the coastline: (a) Shoreline at t(a), where points include
control points and newly created points at t(a); (b) Shoreline at t(b) before new points are created, where
control points at t(a) move seaward, and newly created points at t(a) disappear after the movement of
the shoreline.
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Table 3. Land use evolution laws in the study area.

Original Land Type Potential Target Land Type

ocean tidal flat
tidal flat saltmarsh, aquaculture pond

saltmarsh aquaculture pond, cropland, built-up land
aquaculture pond cropland, built-up land

cropland built-up land

Salinity and moisture in the land determine whether the land can satisfy the conditions of
reclamation. However, the change in these is a complicated process with no general rule [63,64],
although the proportion of salinity and moisture has a strong relationship with the length of time
needed to transform an area from ocean to land. The law of land use types, including the length of time
needed to transform an area from ocean to land is summarized in Table 4. Thus, the “age” attribution
is set for each cell in the simulation process, and land use change should meet the “age” requirements.
The distance to the ocean also has a great influence on salinity and moisture, which affect the land use
types as well. Table 4 also shows the law of land use types with the minimum distance to the ocean.

Table 4. The law of land use types including the length of time needed to transform from ocean to land
and the distance to the ocean.

Land Use Types Age (Year) Minimum Distance to the Coastline (km)

ocean/river 0 0
tidal flat 1–5 0

saltmarsh 5–10 0
aquaculture pond 10–15 6

cropland more than 15 12
built-up land more than 15 12

The final decision is made according to a joint change probability, which reflects the combined
neighborhood factors and influences of individuals. The model can be simply described as follows [32]:

Pi
t = K × Agentt (h,s,c) × Cont(i) × Ωt(i) × Rand() (2)

In the equation, Pi
t is the change probability of location (i), K is an adjusted coefficient. Agentt

(h,s,c) denotes the agent mentioned above, where h, s, c represent the agent’s home, accessible scope,
and capacity, respectively. The function of Cont(i) is a combined physical constraint, which includes
land evolution laws, land “age”, distance to ocean, and pond “age”, while Ωt(i) is the percentage of
change cells in the neighborhood, and Rand() is a random float value between 0 and 1 created by
the Monte Carlo method [65]. The final land use conversion is determined by comparison with the
conversion threshold.

3. Results

3.1. Model Validation and Comparison

Land use change is a set of complex and non-linear processes faced with numerous uncertainties.
Hence, there are no standards for the calibration and validation of land use change models.
The validation of a land use change model is not a process of examining whether a model is perfect,
but an assessment of how well it performs for the specific purpose [66]. Validation is a crucial part
of evaluating the simulation accuracy of models. A common method for validation is to make a
comparison between the simulated patterns and the actual observations [67].
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The land use map from 2000 was used as the base data to simulate the land use results in 2010
(Figure 8b). As a comparison, the land use change, without considering expansion of the tidal flats,
was also acquired (Figure 8a). It can be clearly seen that the tidal flats and saltmarsh lands decrease
drastically when the dynamic growth of tidal flats is not considered. Furthermore, the ecological
land area does not reach a dynamic balance by comparison with the increasing area of aquaculture
ponds and croplands, which may give decision-makers a biased perspective. The Kappa coefficient
inspection method is another common method used to compare the consistency of two images [68].
The Kappa coefficient of the results for a simulation that considers the dynamic growth of tidal flats is
70.5%, which is higher than the 65.9% estimated using a simulation with fixed terrestrial boundaries
that does not consider the dynamic growth of tidal flats.

In order to better visually compare the simulation results with the land use map, the simulated
patterns were spatially overlain on the observed map for the year of the simulation (i.e., 2010) (Figure 9).
Most areas have been correctly simulated in the simulation result. At the junction of the land and
the sea, many ocean areas are incorrectly simulated into other classes, which also occurs in the tidal
flat land. In regard to these incorrectly simulated areas, the model parameters, input data, and
uncertainties are likely to have had an adverse influence on the simulation results [69,70]. Furthermore,
the process of coastline movement cannot be completely simulated with high accuracy using coastline
control points. Change in the built-up land area is not apparent, with only a minor increase. The spatial
overlay also visually confirms the good consistency between the simulated and observed patterns in
other classes.
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3.2. Potential Future Trends Analysis

The pace of reclamation was relatively slow in the Jiangsu coastal area from 1985 to 2000,
but increased significantly after 2000 [54]. Land use change is presented in Figures 10 and 11a.
The aquaculture pond and cropland area increased greatly from 1985 to 2010, and intensifying
anthropogenic activities accelerated the transformation from ecological to profitable agriculture land.
In terms of the statistics of the area (Figure 12), the ocean area continuously decreased from 1985 to 2010,
especially after 2000, and an area of 70.9 km2 was transformed to other land uses from 1985 to 2010.
Cropland or agricultural fields increased from 95.7 km2 in 1985 to 198.5 km2 in 2010, replacing both
saltmarsh and aquaculture pond areas. Aquaculture ponds represented another rapidly increasing
land use type, and increased by 67.5 km2 over 25 years, which was mainly distributed in the north and
central parts. Ocean and tidal flats were appropriated for agriculture, aquaculture, and other land uses
associated with human demands. The area composed of saltmarshes also decreased, but the decrease
was not as significant as the above two types. Due to the addition of new land and the complex
conditions of reclamation, the tidal flats area was relatively stable. The increase in built-up land was
not obvious.

The predicted spatial patterns in 2020 and 2030 are shown in Figure 11. With the formation of
transition areas between terrestrial and marine environments, the aquaculture pond and cropland areas
in the north and central parts of the study area are projected to increase rapidly, especially compared
with the southern part of the study area. According to the simulation results, the aquaculture area will
increase from 70.5 km2 in 2010 to 83.3 km2 in 2020, and this value is expected to reach 87.23 km2 by
2030 (Figure 12). The area of cropland will increase from 198.5 km2 in 2010 to 214.4 km2 in 2020, and
will further increase to 266.7 km2 by 2030. Although most of the saltmarsh area and tidal flat area are
projected to be converted into profitable land, their combined areas will remain at a relatively stable
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value, which are projected to be about 75 km2 and 80 km2, respectively. According to the simulations,
both land use types maintain a balanced value, which is consistent with the real situation, and proves
the reliability of the model. The change in the built-up land area is not obvious. The built-up area only
accounts for a small proportion of the total area, and thus shows a minor increase from 2010 to 2030.
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4. Discussion

Modeling LUCC is a very challenging task which can be affected by different processes and
variables [22]. The same model can generate different outcomes, resulting from the many inherent
uncertain factors and the complexity in LUCC simulation [71]. An approach combining CA with GIS
promises to deliver a powerful modeling tool, as well as an efficient data handling system. However,
CA has a strong sensitivity to cell size [16]. Moreover, the resolution of remote sensing imagery has a
great influence on the quality of classification results, and classification error will be passed on to the
simulation results, which leads to unavoidable inaccuracy in the simulation results. The real world
is a complicated environment, and MAS can simulate interactions among individuals in complex
systems. However, the role of human beings is complex. It is difficult to systemically account for
all the behaviors of all the individuals as applied to land use. MAS can only simulate the abstract
behavior to a certain degree, which will inevitably reduce the accuracy of results. In comparison with
cities, the coastal reclamation areas have less social factors that can be considered as spatial variables,
but have many more physical constraints to deal with in CA-MAS, which increases the difficulty in
applying the existing methods in these areas.

Due to the fluctuating morphological forcing of the waves, tides, and surges, estimation of
long-term shoreline movement and its variability remains a difficult open problem [72]. The spatial
distribution of land expansion is decided by the shoreline. Accurate prediction of the shoreline
influences land use simulation. The annual change rate of the control points was calculated by a
regression method. However, the coastline is affected by many factors, especially with the development
of reclaimed areas, anthropic activities (e.g., construction of seawalls) change the shoreline, which
results in more difficulty in simulating the shoreline with high accuracy. Furthermore, because of the
shortage of historical shoreline data, only seven shoreline reference images were obtained, resulting in
the need for regression analysis to be conducted more rigorously. In consideration of the computational
efficiency, the interval between control points was set about 1 km, but there are many unpredictable
variations between adjacent control points. The directions of future shoreline change were controlled
by control points, while the direction of transects obtained from DSAS was not horizontal. A random
degree was added to the direction of control points, which increases the uncertainty of shoreline
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forecast. Consequently, all factors mentioned above contribute to the uncertainty. Coastline has
complex shape and self-similarity; when stochastic modeling is used to forecast shoreline evolution,
the outcome is not deterministic anymore, but instead has a certain probability of occurrence. In this
study, the issue of error in the long-term shoreline forecasts has been neglected, because the uncertainty
of random fluctuations in the fractal simulation method is much larger than the error.

The main objective of the present study was to explore the viability of a new model that combines
CA-MAS with a shoreline evolution forecast model, which can be used to predict land use change
in coastal areas. The method is coarse and still requires further improvements in order to allow
analysis of results with greater detail. Although some research indicates that the macrozoobenthos
communities can benefit from lower-intensity changes [2], the coastal reclamation area will take more
than 30 years to recover to its equilibrium [47,73]. The dynamic interactions between the land and
ocean make ecosystems of the coastal wetlands more vulnerable than other regions. It is essential
for researchers to pay more attention to the research on LUCC in dynamic growth regions. Further
work will focus on delivering a full working model, since the present method was only used to test
the operational viability of modeling LUCC in a coastal area. Future research should also cover a
more advanced method that would enable the model to simulate more intelligently, in order to help
develop a better understanding of environmental protection criteria that should be considered for
future coastal planning.

5. Conclusions

The coastal reclamation area is an ecologically fragile area. It is incumbent upon governments
to pay attention to the coastal wetland environment by studying land change and predicting future
development. This study has demonstrated the utilization of CA-MAS combined with a shoreline
evolution forecast model to simulate LUCC changes in a vulnerable, dynamic growth reclamation
region. Unlike traditional approaches, the terrestrial area of this study exhibits areal growth through
the deposition of tidal flats, which results in an unfixed boundary. The study shows the Kappa
coefficient of results for a simulation results that does not consider the dynamic growth of tidal flats
is 65.9%, while the Kappa coefficient is improved to 70.5% when estimated using a simulation with
unfixed terrestrial boundaries that considers the expansion of tidal flats.

Based on the model, the predictions for 2020 and 2030 reveal several future trends in LUCC in
this region. The simulation results show that the area of aquaculture pond and cropland will increase
enormously in the next 20 years, with the areas increasing to 87.23 km2 and 266.66 km2, respectively,
by 2030. Sediment deposition can supply the new tidal flat land, and its area will be maintained at
a relatively stable level, which is about 75 km2. The change in saltmarsh area is also small, the area
of which is projected to remain about 80 km2. However, the spatial location of the saltmarsh moves
significantly seaward. The increase in built-up land area is barely apparent. The results emphasize
a drastic increase in production-oriented land in the crucial wetlands, and being an ecologically
fragile zone, the region should receive appropriate attention. The study findings could provide useful
guidance for future exploration of the model and for further research into LUCC in a dynamic growth
region. The results should be helpful to the planning and management of the coastal region, as greater
efforts are made to develop the area more sustainably.
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