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Abstract: Exploring how human activity impacts land use/cover change (LUCC) is a hot research
topic in the field of geography and sustainability management. Researchers have primarily used
socioeconomic variables to measure human activity. However, the human activity indexes mainly
based on socioeconomic variables have a spatial resolution that is coarser than traditional LUCC
datasets, which hinders a deep and comprehensive analysis. In view of these problems, we selected
China’s Lijiang River Basin as our study area and proposed the use of GPS trajectory data for
analyzing the impact of human activity on LUCC from two perspectives: (1) Type of population: we
used the kernel density estimation method to extract the spatial distribution of activity intensity of
local residents and tourists, investigated their correlation with the LUCC result, and found these
two populations have different impacts on each land cover; (2) Flow of population: we used the
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm and a network
analysis method to build a flow network of population from raw trajectories, conducted regression
analysis with LUCC, and found that the flow of population is an important factor driving LUCC and
is sometimes a more important factor than the static distribution of the population. Experimental
results validated that the proposed method can be used to uncover the impact mechanism of human
activity on LUCC at fine-grained scales and provide more accurate planning and instructions for
sustainability management.

Keywords: human activity; land use/cover change; impact analysis; trajectory data analysis

1. Introduction

Since the Industrial Revolution in 1760s, human activity has brought significant changes to Earth’s
natural environment with the improvement of engineering tools. An apparent phenomenon among
these is the change of land cover [1]. According to some estimates [2,3], the majority of the terrestrial
biosphere was transformed to agricultural and settled anthromes by 2000. For example, during the
period from 1880 to 1980, logging resulted in a 47% decline of forest/woodland in tropical Asia [4].
Human-induced land use/cover changes (LUCC), in turn, also affect human survival and development,
which has raised widespread concerns in human society. By human activity, we mean all undertakings
by humans for survival and improvement of living standards including land reclamation, grazing,
water resource use and development, engineering construction, ecological system management, etc. [5].
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In recent decades, human activity and socioeconomic variables have become very important factors
driving LUCC [6]. Therefore, understanding the impact of human activity on LUCC is necessary for
providing scientific instructions for human activity regulation and effective land resource allocation.

Nowadays, remote sensing technology has been widely used as an effective tool to determine
LUCC over a large area, so collecting quantitative information of human activity at fine-grained scales
becomes essential for studying human-earth interaction. Scholars used to quantify human activity by
socioeconomic indexes such as population density, GDP, and then ascertain human activity and its
resulting impact on the landscape. For example, Lü et al. (2004) selected road density, ratio of human
settlement to nonsettlement, industrial land, and farmland to assess the intensity of human activity.
They found that the perimeter density of landscape can be well expressed as the linear combination
of the spatial elements of human activity, and this implied that the trend of landscape change could
be pre-estimated using the change of spatial elements of human activities [7]. Calo and Parise (2006)
developed a Karst Disturbance Index (KDI) based on a categorical framework encompassing physical,
biological, and social indicators to evaluate the degree of disturbance in two areas in the Apulian karst
of southern Italy. Their experimental results showed that KDI is a useful approach for a preliminary
evaluation of the degree of disturbance in karst [8]. Guo et al. (2006) calculated the degree of human
disturbance based on the proportion of construction, tourism, town, and country effects, and discovered
that the changes in landscape structure varied significantly based on the degree of human activity.
Their findings illustrated that anthropogenic disturbance is the primary cause leading to the division
of landscape patches [9]. In addition, Wang et al. (2010) calculated the length of roads, number
of road crossings, number of residents, number of permitted discharge facilities, number of toxic
release sites, etc., and used them to represent the levels of human disturbances [10]. Garbarino et al.
(2014) used Euclidean-distance-based factors including distances from buildings, roads, and tourism
lodges as assessment indexes of human activity, and their results suggested relationships among forest
structure, anthropogenic influences, and topography [11]. Similarly, Roth et al. (2016) analyzed the
spatial distribution of human activity based on the locations of road networks and population centers,
conducted a land use/cover transition analysis, and found a large proportion of transitions from
anthropogenic land use/covers to natural ones [12].

Although previous work has made progress in measuring human activity, the following problems
still exist: First, human activity indexes based on socioeconomic variables are usually at the scale of
the administrative unit, which makes it difficult to conduct in-depth analysis between human activity
and land cover. Second, they only reflect a coarse intensity distribution of human activity and cannot
show the flow of populations among regions. Third, they are unable to demonstrate the difference in
spatiotemporal distribution among different types of populations. Therefore, finding a direct approach
to monitor human activity at fine spatial scales is necessary.

As location and wireless communication technologies gradually become ubiquitous, more and
more sensors are used in various fields, and a large amount of data are produced. This type of
data collection process is called participatory sensing by Goldman et al. (2009) [13]. Participatory
sensing data are collected by GPS receivers, mobile phones, etc. [14–18], and are increasingly being
applied in monitoring human activity [19]. We can obtain a high-resolution distribution of activity
intensity, flow of population, and also acquire information for different types of populations if
the attribute information is available. The integration of participatory sensing and remote sensing
can provide technical basis for studying how human activity impacts LUCC in a deeper and more
comprehensive way.

This paper is an extension of a previous paper [20] which applied GPS trajectory data to study the
relationship of human activity and landscape. Compared to that paper, which explores the interaction
from the perspective of activity intensity, this paper investigates the interactions from a different
perspective: flow and type of population. We hypothesize that (1) Flow of population has different
impacts on LUCC compared with the static distribution of population, and the direction of flow also
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plays an important role in driving LUCC; (2) Different types of populations have different impacts
on LUCC.

2. Materials and Methods

2.1. Study Area

The study area is Guilin City in China’s Guangxi Zhuang Autonomous Region, consisting of
13 counties as shown in Figure 1: Guilin Urban Area (GUA), Lingchuan County (LC), Xing’an County
(XA), Yangshuo County (YS), Longsheng County (LS), Ziyuan County (ZY), Quanzhou County (QZ),
Guanyang County (GY), Gongcheng County (GC), Pingle County (PL), Lipu County (LP), Yongfu
County (YF), and Lingui County (LG). The Lijiang River Basin, which is present in four counties of the
study area, is a hotspot region for studying LUCC. On account of the scenic rivers and mountains of
the Lijiang River karst landscape, this region has become a well-known tourist destination [21]. Over
40 million tourists visited this region in 2015. While the rapid development of the tourism industry
has helped grow the local economy, it has also caused severe environmental degradation during the
past two decades, including significant changes in land cover and landscape patterns [22,23].

Sustainability 2017, 9, 383 3 of 16 

2. Materials and Methods 

2.1. Study Area 

The study area is Guilin City in China’s Guangxi Zhuang Autonomous Region, consisting of 13 

counties as shown in Figure 1: Guilin Urban Area (GUA), Lingchuan County (LC), Xing’an County (XA), 

Yangshuo County (YS), Longsheng County (LS), Ziyuan County (ZY), Quanzhou County (QZ), 

Guanyang County (GY), Gongcheng County (GC), Pingle County (PL), Lipu County (LP), Yongfu 

County (YF), and Lingui County (LG). The Lijiang River Basin, which is present in four counties of 

the study area, is a hotspot region for studying LUCC. On account of the scenic rivers and mountains 

of the Lijiang River karst landscape, this region has become a well-known tourist destination [21]. 

Over 40 million tourists visited this region in 2015. While the rapid development of the tourism 

industry has helped grow the local economy, it has also caused severe environmental degradation 

during the past two decades, including significant changes in land cover and landscape patterns [22,23]. 

 

Figure 1. Location of the study area. 

2.2. Data Acquisition 

The datasets in the previous study [20] are also used in this study including: Landsat images, 

the Global Digital Elevation Model of the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER GDEM) , land use and cover products, high-spatial-resolution remote sensing 

images, and GPS trajectory data. (1) Landsat images of the study area were downloaded from the 

United States Geological Survey (USGS) data archive with a spatial resolution of 30 m. Four scenes of 

Landsat images (Path: 124 to 125, Row: 42 to 43) cover the study area. The images for 2009 were collected 

on 31 October and 23 November, while those for 2013 were collected on 26 October and 4 December; 

(2) ASTER GDEM product is generated based on the observation data of the Terra Satellite. Its spatial 

resolution is 30 m; (3) The land use/cover products before 2009 were collected from the local tourism 

bureau and statistics bureau. Although these products were not collected at the same time as the 

Landsat images, they can be used as supplementary reference data. Several on-the-spot investigations 

were also made using GPS receivers and digital cameras. They are useful for model training and 

validation for classification; (4) High-spatial-resolution remote sensing images from Google Earth are 

also used as supplementary reference data for model training and validation; (5) GPS trajectory data 

Figure 1. Location of the study area.

2.2. Data Acquisition

The datasets in the previous study [20] are also used in this study including: Landsat images,
the Global Digital Elevation Model of the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER GDEM) , land use and cover products, high-spatial-resolution remote sensing
images, and GPS trajectory data. (1) Landsat images of the study area were downloaded from the
United States Geological Survey (USGS) data archive with a spatial resolution of 30 m. Four scenes
of Landsat images (Path: 124 to 125, Row: 42 to 43) cover the study area. The images for 2009 were
collected on 31 October and 23 November, while those for 2013 were collected on 26 October and
4 December; (2) ASTER GDEM product is generated based on the observation data of the Terra Satellite.
Its spatial resolution is 30 m; (3) The land use/cover products before 2009 were collected from the
local tourism bureau and statistics bureau. Although these products were not collected at the same
time as the Landsat images, they can be used as supplementary reference data. Several on-the-spot
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investigations were also made using GPS receivers and digital cameras. They are useful for model
training and validation for classification; (4) High-spatial-resolution remote sensing images from
Google Earth are also used as supplementary reference data for model training and validation; (5) GPS
trajectory data were collected by the National Commercial Vehicle Monitoring Platform operated by
the Ministry of Transportation of China in the year of 2012. There are 2655 coaches and 1571 tourist
shuttles monitored in the dataset. These two types of vehicles are mainly minibuses with a capacity
of around 20. Additionally, this paper also uses socioeconomic statistics and basic geographic data;
(6) Socioeconomic statistics in 2008 and 2012 were collected from the Guilin Statistical Yearbook
including GDP, population, number of tourists, etc.; (7) Basic geographic data includes vector road
and administrative divisions at a scale of 1:10,000.

2.3. Methods

The general workflow is composed of three major steps as shown by Figure 2:

(1) Land use/cover classification based on remote sensing images. Google Earth images and available
land use/cover products are split into two parts: one part for classification model training and
another for validation. Landsat images and the ASTER GDEM product are used as inputs,
and an object-oriented classification method is applied to obtain the land use/cover results in
2009 and 2013.

(2) Human activity analysis based on GPS trajectory. Map matching is conducted between raw
GPS trajectories and road networks to filter out noise GPS points. The kernel density estimation
method is used to compute activity intensity maps of local people and tourists from coaches
and tourist shuttles, respectively; on the other hand, the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm is used to extract Stay Regions of vehicles, and then
the flow network of humans among the counties is generated according to network theory.

(3) Human impact analysis on LUCC. By overlaying the human activity of two populations on
LUCC, the correlation between them and the difference between the two types of populations are
analyzed, while regression analysis is used to investigate the impact of the flow of the population
on LUCC, including the differences among land types.
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2.3.1. Land Use/Cover Classification

Land use/cover is classified based on remote sensing images through the approach presented
in Li et al. (2016). Because the classification result is also used to develop landscape metrics that
are sensitive to fragmentation, the supervised object-oriented classification method [24] is chosen
for this research. Before that, the software eCognition is applied to implement multi-resolution
segmentation [25] for segmenting images into homogeneous regions. Five types of land; woodland,
water, built-up land, farmland, and others (mainly shrub and bare land), are subjects of interest in this
study. For more information on the land use/cover classification, see Li et al. (2016) [20].

2.3.2. Human Activity Analysis

2.3.2.1. Flow Analysis of the Population

In order to uncover the flow information, the start and end points of each population flow
need to be first identified, namely the Stay Regions of vehicles [26]. Stay Regions are the locations
where a vehicle stays for a certain amount of time, and usually these are the places where boarding
and deboarding occur. In this paper, Stay Regions are identified from raw trajectories by a spatial
clustering method according to the characteristics of trajectories within Stay Regions, and then, the flow
network of populations among regions are generated based on the pass order of Stay Regions and
their association to administrative divisions.

(1) Typical characteristics of Stay Regions

As shown in Figure 3, as a vehicle moves, its trajectory points distribute along smooth lines or
curves. However, within Stay Regions, a vehicle would have short-time stops or irregular movements
due to boarding and deboarding of passengers. Therefore, the number of trajectory points is relatively
large, and they are clustered. It can be concluded that the trajectory points within Stay Regions
show typical characteristics different from those in other regions: (a) the distribution density is large,
and apparent point clusters exist; (b) the stay duration of vehicles is relatively long; (c) and the moving
speed is relatively low.
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(2) Stay Region extraction method

The key to detecting Stay Regions is to find highly dense point clusters existing in raw GPS
positioning points. A commonly used method is the spatial clustering technique [27,28]. Popular
spatial clustering methods are partitioning methods, hierarchy methods, density-based methods,
and grid-based methods [29]. The density-based DBSCAN algorithm is selected to implement
clustering since it can detect clusters with arbitrary shapes and is robust against noise points [30].
Two parameters Eps and MinPts are used to adjust the density of the cluster. Eps is a distance
parameter used to define the neighborhood of points, while MinPts is the minimum number of points
required to form a cluster. A small Eps and large MinPts tend to detect more dense clusters. According
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to the characteristics of our trajectory dataset and research needs, the two parameters are set to 30 m
and 30, respectively. The change of these two values would bring fluctuations to the number of Stay
Regions, but it would not lead to a large change in the flow network result since the generation of the
flow network is a global rather than local result. Each detected point cluster represents a Stay Region.

(3) Generation of the flow network of the population among counties

For convenience, the coordinates of the mass point Pi(XPi , YPi) of a cluster Ci is calculated using
Equation (1).

XPi =
1
|Ci|

|Ci|

∑
Oj∈Ci

XOj , YPi =
1
|Ci|

|Ci|

∑
Oj∈Ci

YOj (1)

A vehicle trajectory can be split into several segments based on Stay Regions, and each trajectory
segment is either a moving segment outside Stay Regions or a stay segment within a Stay Region.
The stay segments whose stay duration exceeds a certain value are replaced with the mass points of its
corresponding Stay Region. Connecting these mass points chronologically would transform the raw
trajectories into high-level moving paths. The pass order of the counties is analyzed to compute the
flow of population among regions.

The flow of population is calculated at the scale of the administrative division to correspond to
the spatial resolution of other socioeconomic statistics. The thirteen nodes, representing the thirteen
counties of Guilin City, were based on locations of county government facilities. Based on these nodes,
a directional spatially embedded network (adjacency matrix) is established according to network
theory. The links between nodes are directional, and their weights are flow of vehicles from the start
node to end node. For each node, the sum of the weights of all links associated to this node is called
degree. The sum of the weights of a node is called outdegree if only the links starting from this node
are considered, while it is called indegree if only the links ending at this node are taken into account.
The established network can reflect the overall flow of populations among counties. A node’s degree,
indegree, and outdegree represent the total flow, inflow (flow from outside), and outflow (flow to
outside) of population in the node’s representative county. The weight of a link represents the flow of
population between the two counties that are represented by the two nodes of this link.

2.3.2.2. Activity Intensity Analysis of Different Types of Populations

Human activity intensity means the amount of human activity per unit area per unit time.
To archive the spatial distribution of human activity intensity from the GPS trajectory data, the measure
proposed by Li et al. (2016) is used. The metric is defined as the number of trajectory points per unit
area per unit time [20]:

f (x) =
1√

2πnh

n

∑
i=1

e−
(x−xi)

2

2h2 (2)

where h is the bandwidth, n is the number of points within the bandwidth, xi is the location of
point objects, and x is the location to calculate density. The choice of bandwidth is very important.
According to Koutsias et al. [31], if the goal is to suggest models about the data, it would be sufficient
to choose its value subjectively by visual inspection. Kong et al. (2002) studied the spatial distribution
characteristics of human impacted landscape and found the distance of significant impact on the
landscape is between 1000 and 1200 m [32], so the bandwidth is set to 1000 m in this research. The grid
cell size for calculation is set to 30 m to make the calculation result consistent with the land cover result.

The vehicle trajectory data are then separated according to the type of vehicle: the trajectories of
coaches are used to derive local residents’ activities while the trajectories of tourist shuttles are used to
derive tourists’ activities. Through this method, the activity intensity maps of two types of populations
are obtained. In this paper, local residents represent the people who reside and live in Guilin regardless
of whether they are registered or unregistered, while tourists represent the people who visit Guilin for
sightseeing and temporary stays. The categorization of population is different from that in sociology,
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but separating these two types of populations and investigating their respective impact on LUCC is
very useful especially for the cities such as Guilin with a large number of tourists every year.

2.3.3. Impact Analysis of the Flow and Type of Population on LUCC

Based on the above results, the impact of the flow of population on LUCC and the difference in
influence of the two types of populations’ activities are explored. As for the former one, a regression
analysis method is used to evaluate how the flow of population impacts LUCC compared with other
socioeconomic variables. Stepwise regression analysis [33] is a semi-automated method of establishing
a model by successively adding or removing variables based solely on the t-statistics of their estimated
coefficients. It is good at fine-tuning a model and can find a good model fit without redundant variables,
compared with other traditional regression methods. Stepwise regression analysis method is often used
in LUCC research [34,35], so it is chosen here to pick out the variables that have significant impact on
each type of land cover. Similar to previous research [36,37] in which the GDP and population-related
variables were selected as major representative socioeconomic variables, the following independent
variables are taken into account: GDP (X1), GDP of the primary industry (X2), GDP of the secondary
industry (X3), GDP of the tertiary industry (X4), population (X5), flow of population (X6), outflow
of population (X7), and inflow of population (X8). Because participatory sensing is an emerging
technology, the time span of analysis is relatively short. The land cover area instead of the change
value is used in the regression analysis, so the dependent variables are: the area of woodland, water,
built-up land, crop land, and others. After regression analysis, those independent variables found to
be significant are included in the final step. In order to evaluate the relative importance of each impact
factor, the standardized regression coefficient is calculated using the following equation:

βXi = BXi

sdXi

sdY
(3)

where Xi is the impact factor to evaluate, Y is the dependent variable, BXi is the unstandardized
regression coefficient, and sdXi and sdY are the standard deviations of the impact factor and the
dependent variable, respectively. The higher the standardized coefficient value is, the larger the impact is.

As for the latter one, the human activity of two populations is overlaid on LUCC to investigate
their correlation from three aspects: (1) how human activity correlates to LUCC as the activity intensity
changes; (2) how the correlation between human activity and LUCC differs from land type to land
type; (3) the impact differences of two types of populations on LUCC.

3. Results and Discussion

3.1. Land Cover Change

The land use/cover results of the Lijiang River Basin in 2009 and 2013 were obtained by remote
sensing image classification, as shown by Figure 4. By comparing classification results and validation
datasets, the classification accuracies for the years 2009 and 2013 are 79.81% and 82.69%, respectively.
This is usually acceptable in land cover change research. The areas of each type of land cover in four
counties and the percentage of change are shown by Table 1. Overall, both woodland and built-up
land experience a certain degree of increase in all four counties, but the area of crop land significantly
decreases in all counties except for GUA. Figure 4 and Table 1 also show that in suburban areas,
the area of cropland decreases while the area of woodland increases. It can be inferred that China’s
Grain for Green policy (a program for converting the sloped cropland to forest or grassland) has an
effect in the Lijiang River Basin. Another phenomenon it may disclose is that urban sprawl and green
engineering cause the reduction of shrub and bare land. This is more obvious in the Guilin Urban
Area, the most developed region in Guilin City.
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Table 1. Land cover change in four counties in the study area.

County Year Woodland
(ha)

Water
(ha)

Built-Up Land
(ha)

Cropland
(ha)

Other
(ha)

Guilin Urban Area
2009 15,289.38 920.79 10,708.11 19,514.88 7839.72
2013 17,338.59 1010.52 13,596.57 19,357.38 2969.82

change +13.4% +9.7% +27.0% −0.8% −62.1%

Xing’an County
2009 172,858 2440.98 6728.04 38,780.10 2298.24
2013 180,612.6 2236.68 10,070.01 29,173.32 1012.68

change +4.5% −8.4% +49.7% −24.8% −55.9%

Lingchuan County
2009 163,340.1 4218.57 7333.83 33,990.48 6757.92
2013 168,318.7 3466.98 11,561.85 29,795.76 2497.59

change +3.0% −17.8% +57.7% −12.3% −63.0%

Yangshuo County
2009 88,191.09 1422.54 4676.49 37,541.25 734.31
2013 88,726.95 1705.86 9169.47 29,284.92 3678.48

change +0.6% +19.9% +96.1% −22.0% +400.9%

Standard Deviation 69,324.3 1173.2 2878.2 7304.6 2564.6

3.2. Flow of Population

Based on the flow analysis method introduced in Section 2.3.2.1, the flow of population in every
county of Guilin City is obtained. Table 2 shows the order of the flow value from large to small.
The three counties with dense scenic spots rank in the first three places: GUA, YS, and LC. The county
with the least flow of population is ZY. This matches well with the facts of Ziyuan County: 93.44%
of Ziyuan County is mountainous, and the transportation infrastructure lags behind compared with
other counties, which limits the flow of population with the outside.
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Table 2. Population flow of every county of Guilin City.

County Total Flow Flow to Outside Flow from Outside

GUA 4769 2452 2317
YS 1690 638 1052
LC 818 422 396
YF 654 346 308
XA 653 358 295
LG 557 268 289
LP 452 220 232
QZ 416 217 199
LS 395 213 182
GC 393 248 145
GY 334 164 170
PL 332 196 136
ZY 189 108 81

We also found that the flow of population shows a large difference in magnitude over space,
and the population flow is gradually becoming weak from GUA to the border counties. Figure 5a
shows a high level moving path of vehicles based on the Stay Regions, and Figure 5b demonstrates
the generated flow network of the population between any two counties. For convenience, the flow
network of population is classified to five levels represented by different colors based on the magnitude
of the flow. The first level is interchanges between GUA and its neighboring counties. Among all the
counties, the link between GUA-YS is the strongest one, and the flow of populations and vehicles
between these two counties accounts for a significant proportion of the whole flow network. The second
level is mainly the links between GUA and relatively far counties, while the flows at the other levels
mainly occur between GUA and border counties or among suburban counties. It can be inferred that
the flow of population in the study area centered around GUA, which is determined by its geographic
superiority and high economic level.
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3.3. Activity Difference between Two Types of Population

The spatial distribution of the activity intensity of local people and tourists is shown by Figures 6a
and 6b, respectively. It can be seen that local people’s activities concentrate in GUA, along major
roads and in some towns, while tourists’ activities concentrate in GUA, YS, LC, XA, and major scenic
sites. By overlaying the activity intensity of the two types of populations, the intensity difference is
calculated as shown in Figure 6c. A positive value indicates that the activity intensity of the local
people is stronger than that of the tourists, and the red color represents a much stronger value while
yellow represents a slightly stronger value. A negative value indicates that the activity intensity of
the local people is weaker than that of the tourists, and the dark blue color represents a much weaker
value, and the sky blue color represents a slightly weaker value, while the fruit green color represents
a nearly equal value. The sky blue and dark blue areas basically reflect the distribution of the scenic
spots. It can be concluded that the number of scenic spots in LC is dominant, and there are also a
certain number of scenic spots in GUA, YS, and XA.
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(c) intensity difference.

3.4. Impact of the Flow of Population on LUCC Based on Regression Analysis

In addition to the population flow variables listed in Table 2, other commonly used socioeconomic
variables as shown in Table 3 are also used in the regression analysis. Since a lag time is expected
between socio-economic variables and LUCC change [38], the socioeconomic data taken a year before
the remote sensing datasets are used.

Table 3. Socioeconomic variables of four counties in the Lijiang River Basin.

County Year GDP
(Billion Yuan)

GDP 1st
(Billion Yuan)

GDP 2nd
(Billion Yuan)

GDP 3rd
(Billion Yuan)

Population
(Thousand)

GUA
2008 28.04498 0.63562 11.24986 16.1595 759.275
2012 42.71358 0.90363 17.21815 24.5918 731.2

XA
2008 6.2084 1.61461 2.9342 1.65959 371.373
2012 12.39799 2.56504 7.14563 2.68732 381.8

LC
2008 5.70418 1.63284 2.51892 1.55242 365.923
2012 10.57084 2.72893 5.11033 2.73158 381.1

YS
2008 3.96708 1.06224 1.18517 1.71967 312.364
2012 7.62279 1.80504 2.65376 3.16399 317.6

Standard deviation 13.646 0.751 5.489 8.706 182.754
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The stepwise regression analysis is conducted between the socioeconomic variables and LUCC.
Table 4 shows the regression functions of five types of land cover with determination coefficient, root
mean squared error (RMSE), F-statistic, and p-values. The p-values of all five functions are smaller
than 0.05, which proves that the correlation is significant.

Table 4. Regression function between land cover and socioecnomic statistics.

Land Type Regression Function R2 Modified R2 RMSE F-Statistic p-Values

woodland Y = 0.0101X3 + 1100.19X5
− 104.266X8 + 161554 0.99982 0.999687 1225.78 7461.84 5.98e-8

water Y = −1.05748X8 + 3251.21 0.60308 0.536927 798.374 9.1164 0.0234

Built-up land Y = 0.00232X1 + 0.0242X2 + 1907.51 0.93050 0.902696 897.813 33.4699 0.0013

cropland Y = −0.0766X2 − 5.963X6 + 3.559 0.95269 0.933766 1879.92 50.3426 0.0005

other Y = −0.0108719X3 + 39950.5 0.81162 0.780222 3105.35 25.8503 0.0023

The regression functions disclose two interesting phenomena: (1) human activity within a region
and the flow of population among regions have different impacts on LUCC. The impact varies from
land class to land class; (2) the flow of population has directional properties, and the flows in different
directions produce different impacts on LUCC.

After stepwise regression, three variables remained for woodlands: GDP of the secondary industry,
population, and inflow of population. According to Equation (3), their standardized regression
coefficients are 0.078, 0.29, and −1.296, respectively. It indicates that the area of woodland is negatively
correlated to the inflow of population, while it is positively correlated to population and GDP of the
primary industry. It can be seen by comparing the coefficient values that the inflow of population
has a larger impact on woodland than the population. The population of LC, XA, and YS are 365,923,
371,373, and 312,364, respectively, which are similar, but among these three counties, the smallest
area of woodland is 88,191 hectares, and the largest area is 172,858 hectares, which are much different.
Therefore, the population is apparently not a major impact factor of the woodland. Among all seven
variables, the inflow of population forms a better linear relation to the woodland area. It can be inferred
that the large flow of population from outside would be accompanied by the decrement of woodland.

After the regression analysis, the inflow of population was the only remaining variable for water.
The standardized regression coefficient is −0.7766. This shows that similar to woodland, the inflow
of population has a larger impact compared with other socioeconomic variables, and the inflow of
population and water area are negatively related to each other. It can be inferred that the more
population that flows in, the more severe issues the water body faces.

Two variables remained for built-up land: GDP and GDP of the primary industry. Their regression
coefficients are 1.1042 and 0.6316, respectively. The first phenomenon that the regression function
discloses is consistent with our common knowledge: GDP is a dominant factor for determining the
area of built-up land. Another interesting result is that the built-up land area is also related to the
agricultural production. This indicates that the urban sprawl of Guilin City is accompanied by the
development of the agricultural industry.

Two variables also remained for crop land: GDP of the primary industry and total flow of the
population. Their regression coefficients are −0.7878 and −1.4455, respectively. It can be seen that the
area of crop land is negatively correlated to both remaining variables. This indicates that the total flow
of population can reflect the change of crop land more than the other variables, including the GDP of
the primary industry. This indicates that the more connections a county has with the outside, the less
it relies on the agricultural industry.

3.5. Correlation between Two Types of Populations and LUCC

By overlaying the spatial distribution of human activity intensity on land use/cover, Figure 7 was
generated. It shows the correlation between the area percentage of each land cover and the activity
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intensity of the local people and tourists in 2009 and 2013. Figure 7a–d corresponds to woodland,
water, built-up land, and crop land, respectively.Sustainability 2017, 9, 383 12 of 16 
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The correlation between the activities of the two populations and the same type of land were
generally consistent. However, there were differences in details. The experimental results demonstrate
the following phenomena: (1) woodland limits human activity in the study area, and the limiting effect
on local residents is more severe than that on tourists; (2) humans prefer to live or visit the regions
with more water, and tourists have more of this need than the local people; (3) tourists prefer to visit
crowded places, but local people are less sensitive to the development degree of a place; (4) most
human activity is distant from crop land, and the decrement of crop land is more correlated to tourists’
activity than local people’s.

Specifically, Figure 7a shows that human activity and woodland percentage are overall negatively
correlated. As the percentage of woodland decreases, the intensity of human activity increases. It can
be inferred that woodland restrains human activity. By comparing the slope and the declining range of
the red and green curves, it can be found that the restraining effect of woodland on local residents is
more severe than that on tourists. This could be attributed to several woody scenic spots and nature
reserves, such as the Maoershan National Nature Reserve, that attract a certain number of tourists.

Unlike woodland, the percentage of water is generally positively correlated to the activities of
the two populations, as shown by Figure 7b. It indicates that both types of populations prefer to
live in or visit the regions with more water. The peak value of water percentage for tourists is larger
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than that for local people, showing that tourists have more of this need than the local people. This is
probably because water is an essential component of the scenic spots in this area. For both populations,
the percentage of water drops as time goes on, and this is relatively obvious in the areas with high
activity intensity (above 8000). For the same intensity level of activities, the decrement of the water
percentage corresponding to tourists is smaller than that corresponding to the local people. Therefore,
it can be inferred that the impact of local people’s activity on the water decrement is stronger than that
of tourists’ activity.

The above results about the relationship between woodland, water, and human activity reinforce
two previous research findings [39,40] in a quantitative way: water has a high aesthetic preference,
while dense forests are less preferred.

As for built-up land, it is also positively correlated to the activity of the two populations, as shown
by Figure 7c. For local people, the land percentage evolves to being stable after a small increment of
activity intensity, while for tourists, the land percentage continuously goes up. This indicates that
tourists prefer to visit crowded places. By contrast, local people are less sensitive to the development
degree of a place. Looking at the change of the land percentage with time, it can be found that human
activity generally promotes the increment of the built-up land regardless of the type of populations.

Figure 7d shows the correlation between the area percentage of crop land and activities of the
two populations. Similar to woodland, at an overall level, human activity and crop land percentage
are also negatively correlated. Since crop land is only for farming and cannot provide other functions,
most human activity is distant from crop land. The slope of the curves show that local people’s activity
is more sensitive than tourists’ activity. It can also be seen by comparing the curves in two colors that
the percentage of crop land decreases during the four year period. An interesting phenomenon is that
the decrement amount for tourists is larger than that for local people. A possible reason could be that
some villages transform crop land into tourism-related facilities or land to serve tourists.

3.6. Discussion

The Lijiang River Basin is a scenic spot with intensive human activity of both local people and
tourists. Much research has been conducted in this area exploring the human impacts on LUCC [23,41–43].
For instance, Chen and Bao (2010) and Lu et al. (2015) analyzed the impact of human activity on
land use/cover change processes based on their knowledge of local policies and socioeconomic
activities [41,42]. Our method differs from their approaches in that we used GPS trajectory data to
directly monitor human activities which does not rely on subjective knowledge. Xiang and Meng
(2014) and Mao et al. (2014) calculated the landscape structure variation coefficients of the regions
surrounding residences and scenic spots, respectively, to evaluate the disturbance range of residents’
and tourists’ activities [23,43]. Compared with their approaches, our method can quantify human
activity and obtain its distribution difference over space which facilitates fine-grained analysis.

This paper makes an attempt to correlate human activity with LUCC. However, it must be stressed
that the proposed method is based on some basic assumptions that may not always hold true: first,
the number of passengers is linearly correlated to the trips taken by the bus. According to [44,45],
the number of private cars per capita in the study area is extremely small (around 0.034), so the tourist
shuttles and coaches are the two dominant transportation tools. This assumption is acceptable in our
study area, but it should be performed with great care in regions with a large number of private cars
per capita; second, the spatial distribution of the travel activity intensity can reflect that of the entire
human activity. Guilin City is a city with a high proportion of tertiary industries, so people’s travel
activity is highly related to the entire human activity. In addition, this study was based solely on the
GPS trajectory data of vehicles and, therefore, excluded other human activity that may be relevant.
This would bring a certain amount of bias to the results drawn from analyzing the correlation between
human activity and LUCC or from the regression analysis. For example, the regression coefficient
could be larger or smaller than the true value, but it would not influence the general pattern too
much. The results would be more comprehensive and accurate if more sources of participatory sensing
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data (e.g., mobile phone positioning data) were used. Notwithstanding the above simplifications,
the proposed method still has good extensibility and can be applied to various kinds of regions by
selecting appropriate data sources and adjusting parameters.

4. Conclusions

The human influence on LUCC is increasingly becoming a hot research issue in the field of
geography. However, the study thereof is difficult due to the lack of direct monitoring tools to gauge
human activity. In order to fill this gap, we selected the Lijiang River Basin as a study area, introduced
the emerging participatory sensing technology, and analyzed the impact of human activity on LUCC
from the perspectives of flow and type of population: (1) we used the kernel density estimation to
extract the spatial distribution of activity intensity of local people and tourists from GPS trajectory
data, and overlaid human activity on LUCC to explore the correlation characteristics between the two
types of populations and each land cover; (2) we used the DBSCAN algorithm and a network analysis
method to build a flow network of population from raw trajectories, and conducted regression analysis
to explore the influence of the flow of population on the change of each land cover.

The above experimental results demonstrate that the proposed method can be used to reveal
the impact mechanism of human activity on LUCC at fine-grained levels, and provide more accurate
planning and instructions for ecological management. Our method also brings to light that the activities
of different types of populations have different correlations with land cover change even when the
activity intensity is the same, and the correlation varies from land cover to land cover. We also revealed
that the flow of population is an important factor driving LUCC, and in some cases, is a greater factor
in explaining LUCC rather than the static distribution of population.

Further work is needed to make this work more comprehensive. First, the flow of population is
currently only analyzed at the county-level. Using different scales of population flow may produce
different results, and finding an optimum analysis scale would be an important aspect in our future
work. Furthermore, when a long time period of GPS trajectory data is accumulated, it is also important
to investigate how the change of human activity intensity over time influences LUCC.
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