Next Article in Journal
Causes for Adaptation: Access to Forests, Markets and Representation in Eastern Senegal
Next Article in Special Issue
Mortality Associated with High Ambient Temperatures, Heatwaves, and the Urban Heat Island in Athens, Greece
Previous Article in Journal
Analyzing Agricultural Agglomeration in China
Previous Article in Special Issue
Adaptation to Climate Change through Spatial Planning in Compact Urban Areas: A Case Study in the City of Thessaloniki
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessArticle
Sustainability 2017, 9(2), 312; doi:10.3390/su9020312

Mapping the Influence of Land Use/Land Cover Changes on the Urban Heat Island Effect—A Case Study of Changchun, China

1
Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
2
University of Chinese Academy of Sciences, Beijing 100049, China
*
Author to whom correspondence should be addressed.
Received: 30 December 2016 / Accepted: 13 February 2017 / Published: 20 February 2017
(This article belongs to the Special Issue Urban Heat Island)
View Full-Text   |   Download PDF [14973 KB, uploaded 22 February 2017]   |  

Abstract

The spatio-temporal patterns of land use/land cover changes (LUCC) can significantly affect the distribution and intensity of the urban heat island (UHI) effect. However, few studies have mapped a clear picture of the influence of LUCC on UHI. In this study, both qualitative and quantitative models are employed to explore the effect of LUCC on UHI. UHI and LUCC maps were retrieved from Landsat data acquired from 1984, 1992, 2000, 2007, and 2014 to show their spatiotemporal patterns. The results showed that: (1) both the patterns of LUCC and UHI have had dramatic changes in the past 30 years. The urban area of Changchun increased more than four times, from 143.15 km2 in 1984 to 577.45 km2 in 2014, and the proportion of UHI regions has increased from 15.27% in 1984 to 29.62% in 2014; (2) the spatiotemporal changes in thermal environment were consistent with the process of urbanization. The average LST of the study area has been continuously increasing as many other land use types have been transformed to urban regions. The mean temperatures were higher in urban regions than rural areas over all of the periods, but the UHI intensity varied based on different measurements; and (3) the thermal environment inside the city varied widely even within a small area. The LST possesses a very strong positive relationship with impervious surface area (ISA), and the relationship has become stronger in recent years. The UHI we employ, specifically in this study, is SUHI (surface urban heat island). View Full-Text
Keywords: LUCC; urban heat island (UHI); spatio-temporal patterns; remote sensing; Changchun LUCC; urban heat island (UHI); spatio-temporal patterns; remote sensing; Changchun
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Yang, C.; He, X.; Yan, F.; Yu, L.; Bu, K.; Yang, J.; Chang, L.; Zhang, S. Mapping the Influence of Land Use/Land Cover Changes on the Urban Heat Island Effect—A Case Study of Changchun, China. Sustainability 2017, 9, 312.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sustainability EISSN 2071-1050 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top