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Abstract: The reasonable utilization of limited resources is critical to realize the sustainable
developments. In the initial 72-h crucial rescue period after the disaster, emergency supplies
have always been insufficient and the demands in the affected area have always been uncertain.
In order to improve timeliness, utilization and sustainability of emergency service, the allocation
of the emergency supplies and the emergency vehicle routes should be determined simultaneously.
Assuming the uncertain demands follow normal distribution, an optimization model for the
emergency vehicle routing, by considering the insufficient supplies and the uncertain demands,
is developed. The objective function is applied to minimize the total costs, including the penalty
costs induced by more or less supplies than the actual demands at all demand points, as well as
the constraints of the time windows and vehicle load capacity taken into account. In more details,
a solution method for the model, based on the genetic algorithm, is proposed, which solves the
problem in two stages. A numerical example is presented to demonstrate the efficiency and validity
of the proposed model and algorithm.

Keywords: critical rescue period; vehicle routing; insufficient supplies; time windows;
genetic algorithm

1. Introduction

In recent years, around the world, natural disasters, such as earthquake, hurricane, volcanic
eruption and flood, are occurring increasingly frequently. More than 500 disasters are estimated
to strike our planet every year, killing around 75,000 people and impacting more than 200 million
others [1]. For example, the Wenchuan Earthquake in China left more than 110,000 casualties in
2008, including 69,197 confirmed dead and 374,176 injured, with 18,222 listed as missing. The Haiti
earthquake in 2010 caused 230,000 death and more than 300,000 injuries.

The enormous scale of these disasters has called attention to the need for effective and sustainable
management of the relief activities after disasters. To mitigate damage and loss in disasters, issues
in pre-disaster, during-disaster and post-disaster have been widely studied in the past few years.
For relief activities in post-disaster, to transport sufficient emergency supplies to affected areas in
order to support basic needs for those trapped in disaster-affected areas is a critical challenge [2].
Emergency supplies that are essential for human survivals include water, food and medicines. After
the disaster, the supplies must be delivered to the demand points immediately, especially in the initial
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rescue period, which is the optimal rescue period for the people in the affected areas. Unfortunately,
emergency resources are always restricted in this period. Therefore, it is necessary to enhance the
sustainability of the emergency service to make full use of the resources. Thus, the effectiveness and
timeliness of the delivery are significant to the humanitarian response and the sustainability of the
rescue operation, which provide the motivation for this work.

Disasters always result in massive demands that often outstrip available resources. The process
of planning, managing, and controlling the flow of those resources to provide relief to affected people
is called emergency logistics. Different from general business logistics, emergency logistics is unique
in some aspects that may increase the relative complexity in solving the induced problems. First, the
demand-related information, e.g., the density of demand in the affected points, is quite limited in
the initial rescue period, and is intuitively unpredictable using historical data. The lack of relevant
information will lead to difficulties to determine the actual demands of the areas. Second, relative
to general business logistics, the emergency resources may be insufficient to decision makers in the
initial rescue period, since the disaster is unpredictable. This fact adds more challenging issues to the
management of emergency logistics. Consequently, in order to improve the utilization-efficiency and
delivery-timeliness of the limited resources in the initial rescue period, the distribution of emergency
supplies and emergency vehicles routing has to be determined synchronously under the uncertainty
conditions. Emergency logistics has emerged as a worldwide noticeable theme as disasters, either
artificial or natural, may occur anytime around the world with enormous consequences [3].

The crucial rescue period refers to the initial 72 h following the onset of a disaster, which is
regarded as the most critical period to search and rescue the trapped survivals [4]. In the crucial rescue
period, the available emergency resources, including vehicles and supplies, are always limited. How to
establish an effective emergency logistics system after emergency events, and launch the emergency
plan to distribute the limited resources to the affect areas with a good planning and scheduling
transportation, has been a research hotspot in recent decades.

The operations of emergency logistics are based on the timely delivery services and supplies
allocation. In most cases, the vehicles are the most frequently used tools to implement the delivery
work. Therefore, how to assign the work to existed vehicles and how to select the vehicle routes, namely,
the emergency vehicle routing problem (VRP), are the key to the entire emergency logistics operations.
Thus far, there have been many relevant studies on the VRP. Lei et al. [5], Zhu et al. [6], Errico et al. [7]
and Zhang et al. [8] considered the VRP with time windows and stochastic service times. Yin and
Chuang [9] first addressed a previously studied problem, then proposed a new problem version for
planning the least cost routing, in which the deployed green vehicles transport the final products from
suppliers to customers through a cross-dock subject to a CO2 intensity constraint, and developed an
adaptive memory artificial bee colony algorithm to tackle both problems. In their recent study [10], they
proposed a bi-objective mathematical formulation for the cross-docking with interrelated operations
(vehicle routing and vehicle scheduling), and developed a cooperative coevolution approach consisting
of hyper-heuristics and hybrid-heuristics for achieving continuous improvement in alternating
objectives. Marinakis et al. [11] introduced a new hybrid algorithmic approach based on particle
swarm optimization for the vehicle routing problem with stochastic demands that are known only
when the vehicle arrives to the customers. This algorithm is a combination of the particle swarm
optimization algorithm with the 2-opt and 3-opt local search algorithms and with the path relinking
strategy. Euchi et al. [12] described hybrid iterated density estimation evolutionary algorithm with
2-opt local search to determine the specific assignment of each tour to a private vehicle (internal fleet)
or an outside carrier (external fleet).

Furthermore, Parragh et al. [13,14] wrote a survey about pickup and delivery problems, which
are distinguished by two problem classes: the first class deals with the transportation of goods from
the depot to line haul customers and from backhaul customers to the depot, and the second class refers
to all those problems where goods are transported between pickup and delivery locations. Berghida
and Boukra [15] dealt with the vehicle routing problem with simultaneous pickup and delivery
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by a new technique based on a cooperative approach reaping the benefits of three metaheuristics.
Maquera et al. [16] presented an application of scatter search to the problem of routing vehicles that
are required to deliver and pickup goods, which generates all pairs of solutions that contain at least
one new element.

However, as we mentioned above, the emergency VRP is different from general VRP in
demand-related information and supply of emergency resources, which bring more complexity to the
problem. Wohlgemuth et al. [17] considered the dynamic vehicle routing problem with anticipation
in disaster relief. Pillac et al. [18] classified routing problems from the perspective of information
quality and evolution, introduced the notion of degree of dynamism, and presented a comprehensive
review of applications and solution methods for dynamic vehicle routing problems. While Cao
et al. [19] proposed four robust strategies to cope with the uncertain demand of an open VRP,
Moghaddama et al. [20] investigated a variant of an uncertain VRP that the customer’s demands
are supposed to be uncertain with unknown distributions. In addition, an advanced particle swarm
optimization (PSO) algorithm was proposed to solve such VRP with a novel decoding scheme.

Despite the critical importance of emergency logistics distribution, only a limited amount of
related studies have been carried out. Sheu [21] presented relief-demand management model for
emergency logistics operations under imperfect information conditions. Lin et al. [2] proposed a
logistics model for delivery of prioritized items in disaster relief operations. Chang et al. [22] gave
a novel algorithm capability of regulating the distribution of available resources and automatically
generating a variety of feasible emergency logistics schedules for decision-makers. In addition,
Wang et al. [23] constructed a nonlinear integer open location-routing model for relief distribution
problem in emergency logistics, considering travel time, the total cost, and reliability with split delivery.

The VRP is a problem with NP-difficulty, and this nature makes the exact algorithms only for
small problems. For larger instances, heuristics is a natural choice. Therefore, much attention has
been focused on designing heuristics algorithms with good performance. Following the first heuristics
algorithm presented by Hochbaum and Shmoys [24], there has been a long list of work on designing
heuristics algorithms for this problem over the years. Several meta-heuristic approaches were reported,
including Genetic Algorithm (GA) [25–27], Tabu Search (TS) [28–30], Particle Swarm Optimization
(PSO) [11,20,31], hybrid algorithm [32–35], etc., which were used to solve VRP and its variant problems.
With reference to Genetic Algorithm, Ombuki et al. [25] proposed an application of genetic algorithms
approach for multi-depot vehicle routing problem(MDVRP) using the Pareto ranking technique. An
advantage of this approach is that it is unnecessary to derive weights for a weighted sum scoring
formula. Furthermore, Ursani et al. [26] introduced the Localized Optimization Framework (LOF)
which is an iterative procedure between two phases, Optimization and De-optimization. They have
also chosen a genetic algorithm as an optimization methodology. It was demonstrated that the LGA is,
on average, able to produce better solutions than most of the other heuristics on small scale problems
of VRPTW. Moreover, the LGA has attained several new best solutions on popular datasets.

In the existing research results, the goal is all about minimizing the number of vehicles, vehicle
travel distance and some other economic factors. However, this approach does not work with a full
consideration of the distinguishing features in the crucial rescue period of relief operation, which may
be in short supply and with uncertain demands. The main research of this paper is to fully consider
the supply/demand features in crucial rescue period, and the optimization model for the emergency
vehicle routing problem is developed. As for the solution methods, the particularity and practicality of
the emergency vehicle routing problem are taken into consideration. This fact divides the problem
into two stages, in which the first stage is to determine the serviced demand point set of each center,
and the second stage is to optimize the used vehicle number, the actual supplies and vehicle routes at
each center.

This paper is organized as follows. The mathematical model for the problem and the solution
methods for the model are proposed in Section 2. In Section 3, numerical examples are presented to
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demonstrate the benefit of our new logistics model. Finally, the conclusions and suggestions for future
work are given in Section 4.

2. Mathematical model and Methods

2.1. Model Foundation and Notations

A well-known challenge to efficiently execute disaster relief operations is to obtain sufficient and
accurate demand information from the disaster-affected area. Due to the chaotic situation in the critical
period, the information is always incomplete and inaccurate. Therefore, it becomes very difficult
to correctly estimate useful information to deliver the emergency supplies. As a result, the precise
emergency demands are uncertain due to the unpredictability of the actual demands at the demand
points. In this paper, we assume that the demand at each point is uncertain with a known probability
distribution. For example, we could define the actual demand at demand point k as dk, which is a
random variable with probability density function given by fk(x). The probability distribution of
demand is assumed to be available, which could derive from population data and/or information
gathered during the disaster prevention phase [36].

Similar to the general vehicle routing problem, we also assume that all the emergency vehicles
are the same type. In the initial period of rescue, a variety of rescue facilities and resources are very
limited, so it is necessary to take as many emergency demand points as possible into account in this
period, provide some necessities for them to ensure that they could wait for the subsequent rescue.
In this case, we assume that the delivery for each demand point can be only served by one vehicle
one time, which should return back to the starting point (service central) after finishing the current
rescue mission.

For the sake of simplicity, the service time of vehicles on the demand point is included in travel
time. The affected points considered in this paper are connected by existing roads, which can be
serviced by vehicles. Other isolated points could be serviced by other methods, such as helicopters.

In formulating the mathematical model, the following notations in Table 1 are used in this paper.

Table 1. Symbols and Notations.

Symbol Description

DN Set of emergency demand point (affected point).
SN Set of emergency supply point (service central).
N N = DN ∪ SN.
V Set of vehicle, v ∈ V.
dk Actual (uncertain) demand for emergency supplies at demand point k ∈ DN, which is a random variable.
zk Assigned amount of emergency supplies at demand point k.
fk(x) Probability density function of demand at demand point k.
tv

k The time that the vehicle v arrives at the demand point k.
Tk The latest time that the affected point k can receive the emergency supplies, k ∈ DN.
tij Travel time from point i to point j.
lij Distance between point i and point j.
cij Transportation cost per kilometer from point i to point j.
ωv Fixed costs of vehicle v for delivery one time.
τ−k Penalty cost per unit supplies for shortage in any demand point k.
τ+

k Penalty cost per unit supplies for surplus in any demand point k.
θi Maximum number of available vehicles at service center i, i ∈ SN.
Q Maximum load capacity of a vehicle.
M A large enough positive number.

The decision variable is defined as follows:

Xv
ij =

{
1 if node j is the next node to node i on the route of vehicle v ;

0 otherwise;
i, j ∈ N, v ∈ V
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2.2. Mathematical Model

In this section, the mathematical model for the emergency vehicle routing problem and insufficient
supplies is constructed, based on the above assumptions and notations.

As mentioned previously, emergency supplies are often insufficient in the 72-h crucial rescue
period after disasters. Due to the significance of the availability of emergency resource at the demand
points, a relatively large penalty τ−k is associated with the shortage of a unit of supply at demand point
k, and this penalty corresponds to the social cost of a death or a severe injury of a patient because of
a supply shortage. On the contrary, since the total amount of emergency supplies are limited, some
demand points may suffer from a shortage, while others are assigned even more supplies. Henceforth,
the penalty τ+

k is also assigned to a possible supply surplus, in terms of units. In other words, the
amount of emergency supplies distributed to each demand point should be consistent with that of
actual demands as soon as possible, and both the excessive and insufficient distribution could effect on
rescue. Similar examples of penalty costs, due to excessive supplies, as well as shortages, can be found
in the literature [37,38]. These penalties should be considered in the objective function of the model to
measure the utilization efficiency of the limited supplies.

Specifically, for any point k ∈ DN, when the delivered emergency supply is not equal with
its actual demand, the amount of shortage ∆d−k and surplus ∆d+k can be calculated, respectively,
as follows:

∆d−k = max{0, dk − zk} (1)

∆d+k = max{0, zk − dk} (2)

According to the definition of notations, the probability of the supply shortage (P−k (zk)) and
supply surplus (P+

k (zk)) at demand point k can be expressed, respectively, as:

P−k (zk) = Pk(dk ≤ zk) =
∫ zk

0
fk(x)dx, ∀k ∈ DN (3)

P+
k (zk) = Pk(dk ≥ zk) =

∫ +∞

zk

fk(x)dx, ∀k ∈ DN (4)

Hence, the expected amount of the shortage (E
(
∆d−k

)
) or surplus (E

(
∆d+k

)
) at demand point k

can be calculated by:

E
(
∆d+k

)
=
∫ zk

0
(zk − x) fk(x)dx (5)

E
(
∆d−k

)
=
∫ +∞

zk

(x− zk) fk(x)dx (6)

Based on the above quantities, the expected penalties incurred by the distribution decision due to
the shortage and surplus of the relief supplies at each demand point can be easily calculated.

In addition, the available rescue vehicles are always limited in the 72-h crucial rescue period, so it
is better to finish the rescue work with fewer vehicles. For this purpose, the operating costs of vehicles
should be measured in the objective function of the model, which could be described as:

∑
v∈V

∑
i∈SN

∑
j∈DN

ωvXv
ij (7)

According to the above analysis, the optimization model of the emergency vehicle route
considering insufficient supplies can be established as follows:

minϕ = ∑
k∈DN

(
τ−k
∫ +∞

zk
(x− zk) fk(x)dx + τ+

k

∫ zk
0 (zk − x) fk(x)dx

)
+∑v∈V ∑i∈N ∑j∈N cijlijXv

ij + ∑v∈V ∑i∈SN ∑j∈DN ωvXv
ij

(8)
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s.t. ∑
i∈N

∑
k∈DN

Xv
ikzk ≤ Q, ∀v ∈ V (9)

∑
j∈DN

Xv
ij ≤ ϑi, ∀i ∈ SN (10)

tv
i + tij − tv

j ≤ (1− Xv
ij)M, ∀i, j ∈ DN, ∀v ∈ V (11)

tv
i + tij − tv

j ≤ (1− Xv
ij)M, ∀i, j ∈ DN, ∀v ∈ V (12)

∑
j∈SN

Xv
ji = ∑

j∈SN
Xv

ij = 0, ∀ i ∈ SN, ∀v ∈ V (13)

∑
j∈DN

Xv
ij = ∑

j∈DN
Xv

ji ≤ 1, ∀i ∈ SN, ∀v ∈ V (14)

∑
v∈V

∑
j∈DN

Xv
ij = 1, ∀i ∈ N (15)

Xv
ji ∈ {0, 1}, ∀i, j ∈ N, ∀v ∈ V (16)

In this model, the objective function (Equation (8)) is to minimize the total expected cost, in which

∑k∈DN

(
τ−k
∫ +∞

zk
(t− zk) fk(t)dt

)
is the total expected shortage penalty incurred by the insufficient

supply at demand points, ∑k∈DN
(
τ+

k

∫ zk
0 (zk − t) fk(t)dt

)
is the total expected surplus penalty incurred

by the excessive supply at demand points, ∑i∈N ∑j∈N ∑v∈V cijlijXv
ij is the total transportation costs,

and ∑v∈V ∑i∈SN ∑j∈DN ωvXv
ij is the total operating costs of vehicles.

In addition to the objective, Constraint (9) represents the load capacity constraint of a vehicle.
Constraint (10) ensures that the vehicles which depart from a service central are no more than the
maximum available vehicles in the center. Constraint (11) determines the time that the vehicle arrives
at the demand points. Constraint (12) gives the time that the vehicle arrives at the demand point, in
which the service time window must be satisfied. Constraint (13) ensures the emergency vehicles
cannot travel between the service centers. Constraint (14) indicates that all the vehicles should start
the delivery work from a service center and return to the same center after these missions are finished.
Constraint (15) ensures that one demand point can be serviced only by one vehicle. Constraint (16)
represents the domain of the decision variable.

2.3. Solution Method

When implementing emergency rescue after the disaster, all kinds of emergency resources are
required to arrive within a specified period of time to the emergency demand points. Considering
the particular situation of the traffic organization after the disaster, it is reasonable to transform the
time constraint into the distance constraint. In other words, in order to ensure a timely rescue, distance
between emergency supply center and demand point should be inside a reasonable radius. In turn, we
could determine the served demand point set of each supply center on the basis of time constraint of
the problem, and multi-depot vehicle routing problem of emergency resources can be transformed
into single depot vehicle routing problem of emergency resources.

2.3.1. A Combination with Nearest Assignment and Average Distance

According to the particularity and practicality of emergency rescue after disaster, the problem can
be divided into two stages, in which the first stage is to determine the served demand point set of each
center, and the second stage is to optimize the used vehicle number and vehicle routes at each center.

With the assumption that the speed of emergency vehicles is a constant, the delivery time could
be calculated by the delivery distance. In addition, the constraint of service time windows can be
transformed to the constraint of distance. Base on this assumption, the methods, including Nearest
Assignment and Average Distance, are used to transform the above multi-depot (center) vehicle
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routing problem to multiple single-depot (center) vehicle routing problem, so that the service sets of
each center are determined.

For the Nearest Assignment method, the ratios and differences between the distance from the
demand point to the nearest center (depot) and that from the one to the second-nearest center (depot)
are calculated in the first step. The half of the distance between the two nearest centers is selected
as metric (or determined by many experimental results) for the above differences, which is used to
allocate the demand points to the centers. The other demand points (not including the boundary
points) are serviced by the nearest center, respectively. Based on the initial assignment results of the
Nearest Assignment, the Average Distance method is used to assign the boundary points into the
service set of service center.

2.3.2. The Improved Genetic Algorithm of the Proposed Problem

To determine the used vehicle numbers and vehicle routes at each center, the heuristics algorithm
is used. In general, all the heuristics algorithms are based on the local search method, while with
different characteristics. TS method traverses the solution space and finds the optimal solution by
neighborhood search, which leads to a relatively faster computation, while the quality of solution
depends heavily on the starting point or the given initial solution. SA is similar to TS; it traverses
the search space by testing random mutations on an individual solution, which has the advantage
of robustness on the initial solution, while the searching efficiency is low. GA is a related global
optimization technique based on the stochastic search, which is easy to handle arbitrary kinds of
constraints and objectives. Because of these strengths, GA always ensures both solution quality and
computational efficiency. As a result, the solution method is developed based on the GA in this work.

GA, a highly parallel, random and adaptive optimization algorithm, was proposed initially
by Holland in 1975. The idea was derived from the nature of biological genetics “survival of the
fittest”, opened and enlightened by biological evolutionism. The detailed GA steps can be found in
References [25–27]. Here, we focus on the designing of the key parameters.

(1) Coding and decoding of the solution

The encoding method of chromosome is a very significant work, which directly determines
the degree of difficulty and the algorithm performance. The emergency vehicle routing problem,
which was proposed in Section 2, is no longer a simple vehicle routing problem, for its uncertain
demands/supplies. Therefore, the chromosome contains two parts of information, the driving path of
the vehicle and the actual supplies. The more difficult part is how to represent the actual supplies.

The chromosome encoding of vehicle path is a random arrangement of natural number from 1 to
L, its length. Each gene corresponds to a natural number, the gene value represents demand point,
and the chromosome sequence represents the order of demand points which it is served. The actual
number of emergency supplies uses binary 0–1 coding, and the decoding method of this encoding is
described as follows: according to the capacity constraints of the vehicle, following the emergency
service order, combined with the distribution of the number and the actual arrival time windows,
put the demand point into the distribution path successively. For example, if the supplies exceed the
capacity requirement of the vehicle or the time window at the demand point l is not satisfied, then
we end the vehicle path, and a new vehicle routing from the demand point l is established. Repeat
the above operation, until the distribution of all demand points is achieved; finally, we get a complete
distribution plan.

A. Chromosome coding method

This paper encodes vehicle routes with natural numbers (the number of the demand points), while
adopting binary 0–1 code for the actual supplies in each demand point. The coding of vehicle routes is
similar to the present study [25], and the following will focus on the coding of the actual supplies.
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For the point i, we assume that its uncertain demand is distributed in the interval (ai, bi), then
the coding for the quantity of actual supplies (setting accuracy to be 0.1) could be obtained by the
following steps.

In turn, we determine the number of binary digits through the following formula,

A =
(bi − ai)

0.1
+ 1 (17)

If 2n−1 < A < 2n, then the actual supplies adopts n-bit binary encoding.

B. Chromosome decoding method

Denoting B as the decimal numeral of the above n-bit binary code, the decoding formula
therefore becomes:

B× 1
2n − 1

(bi − ai) + ai (18)

For example, we assume there are 5 demand points in the problem, and it is determined to adopt 5,
4, 4, 5, 5 bit binary code to indicate the actual supplies, respectively. In turn, using the above decoding
formula, the chromosome could be 43251|01011011001111010111010, which implies that the vehicle
route is 4→3→2→5→1, and the actual supplies equal 6.7, 5.4, 4.5, 6.4 and 5.7, respectively.

The specific steps of this decoding method are outlined as follows:
Step 1. Regard the first emergency demand point on the chromosome as the first service object

to be added to the distribution path, with the two constraints, namely capacity constraint and time
window constraint, to determine whether the hybrid algorithm actual supplies of the demand point
do not exceed the vehicle capacity and meets the request of time windows. If both of them meet the
requirements, then enter Step 2; otherwise, at least one does not meet the requirements, then enter
Step 3.

Step 2. Add its next demand point into the path, continue to implement the above operation,
namely to determine whether the sum of the actual supplies of the new demand point and the
previous demand point exceeds the vehicle capacity, as well as whether the time window is satisfied.
If both of them meet the requirements, then repeat this step; otherwise, at least one does not meet the
requirements, then enter Step 3.

Step 3. From this demand point, reopen a new path, and regard the demand point as the first
demand point on the new path, repeat Step 1.

Step 4. Repeat Step 1 to Step 3, until the last demand point is added to the path. A feasible
solution to vehicle routing problem is obtained.

(2) Initial population

In order to maintain the diversity of individuals in the initial population and prevent the GA into
the local optimum, this paper generates the initial population by random methods.

(3) Selection, crossover and mutation strategy

The function for individual fitness measurement is called the fitness function, which is the
standard quantity to measure the quality of individual in population, and is the only basis to determine
the further search direction and search range. Similar to the previous work, the reciprocal of the
objective function value is used as the fitness function in this paper, as follow:

fi =
1
ξi

(19)

where fi is the fitness value of chromosome i, and ξi is its objective function value.
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In the genetic operation, the selection probability determines the probability of individual
inheritance to the next generation. The calculation formula proposed by Michalewicz [39] is used here:

pi = c× (1− c)i−1 (20)

where c is the selection probability of the individual which sort first in the population, c = 0.1
1−0.9s ,

s denotes the population size, and pi is the selection probability of chromosome i.
We use the method based on the combination of the roulette wheel selection mechanism and the

best individual preservation strategy to implement the selection operation.
The type of crossover we choose relies heavily on the type of genotype representation at hand;

according to the actual situation of the problem itself, we use partially matched crossover for crossover
operation. Specific operations are similar to the one as follows:
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the characteristics of practical problems, to operate chromosomes.

The crossover probability pc and the mutation probability pm have a direct effect on the
performance of GA. The parametric adaptation mechanism is introduced in this paper. In other
words, pc and pm are shifted with the variation of individual fitness and the operation procedure,
which are listed as follows:

pc =

{
k1( f0 − f ′) /

(
f0 − f

)
f ′ ≥ f

k3 f ′ < f
(21)

pm =

{
k2( f0 − f ′′ ) /

(
f0 − f

)
f ′′ ≥ f

k4 f ′′ < f
(22)

where k1, k2, k3, k4 are the initial parameters (in this paper, k1 = 0.5, k2 = 0.05, k3 = 1, and k4 = 0.1);
f0 is the fitness value of best individual in current population; f is the averaged fitness value of the
population; f ′ is the larger fitness value of the two individuals participating in intersection; and f ′′

is the fitness value of varied individuals. It is observed that higher individual fitness values lead to
lower pc and pm values, and, when the fitness value comes close to f0, the value of pc and pm are close
to zero.

3. Results

3.1. Numerical Example 1

A numerical example is presented in this section. The demand points and service centers are
shown in Figure 1, in which there are three service centers (A, B, and C) and 35 demand points.
The positions (represented as two-dimensional coordinate) of centers and the number of available
vehicles in each center are given in Table 2.
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Table 2. Information of service centers.

Service Center Coordinate (x, y) Number of Available Vehicles

A (15, 35) 5
B (55, 15) 5
C (35, 80) 5
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Figure 1. The network of affected areas.

In this example, we set the size of the population and maximum generation to be 50 and 1000,
respectively. In addition, we assume that the emergency demand at each demand point follows normal
distribution N

(
µ, σ2) within the given value interval, in which µ is the mean or expectation of the

distribution, and σ is its standard deviation with its variance as σ2. Then, we know that:

fk(x) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
(23)

These parameters, including µ, σ2 and value interval, are shown in Table 3. The positions and the
time windows that must be serviced for 35 demand points are also given in Table 3.

The number of available vehicles in centers is given by ϑ1 = ϑ2 = ϑ3 = 5, with the maximum load
Q = 27 ton and the average speed as 30 km/h. The fixed cost of vehicle per delivery is ωv = 200 Yuan,
∀v. The transportation cost per kilometer is cij = 5 Yuan/km, ∀i, j. When the delivered supplies do
not meet the demand at the demand points, the penalty cost per supply unit for shortage at demand
point is set as ϕ−k = 500 Yuan, ∀k, and the penalty cost per supply unit for surplus at demand point is
given by ϕ+

k = 300 Yuan, ∀k.
To transform the multi-depot problem into single-depot problem, the metrics of ratios and

differences are valued as 0.65 and 22, respectively, in the Nearest Assignment method. The demand
points with ratios less than 0.65 and differences more than 22 are chosen as boundary points. The results
of the allocation according to the Nearest Allocation method are reported in Table 4.

Based on the initial demand allocation results in Table 4, the Average Distance method is used
to reallocate the boundary points, including demand points 9, 11, 15, 21, 24 and 31. The average
distance between the each boundary point and the demand points in each set is calculated. The point
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should be inserted into the set in which the average distance is shortest. As a result, the final allocation
is captured.

Table 3. Information of demand points.

Demand Point Coordinate (x, y) Parameters (µ, σ2) Demand Interval (ton) Time-Window (min)

1 (20, 85) (5, 1.72) [4, 6] [0, 40]
2 (5, 45) (5, 1.52) [5, 7] [0, 40]
3 (42, 15) (8, 22) [7, 10] [0, 50]
4 (70, 5) (7, 22) [7, 9] [0, 140]
5 (50, 84) (6, 22) [6, 8] [0, 100]
6 (85, 25) (9, 2.52) [8, 11] [0, 90]
7 (62, 80) (6, 22) [5, 7] [0, 170]
8 (65, 70) (4, 12) [4, 5] [0, 140]
9 (50, 50) (11,3.52) [10, 12] [0, 85]

10 (18, 80) (7, 22) [7, 8] [0, 50]
11 (25, 60) (5, 1.52) [4, 6] [0, 90]
12 (5, 10) (7, 22) [7, 10] [0, 105]
13 (45, 23) (7, 22) [5, 8] [0, 50]
14 (65, 24) (9, 32) [8, 10] [0, 130]
15 (31, 25) (3, 12) [3, 5] [0, 90]
16 (15, 50) (10, 32) [10, 11] [0, 85]
17 (5, 27) (4, 12) [4, 6] [0, 70]
18 (57, 28) (1, 0.32) [1, 3] [0, 40]
19 (35, 60) (4, 12) [4, 5] [0, 45]
20 (30, 35) (8, 22) [8, 10] [0, 100]
21 (36, 40) (7, 22) [7, 9] [0, 90]
22 (15, 20) (5, 1.62) [5, 6] [0, 165]
23 (25, 45) (4, 1.32) [4, 5] [0, 110]
24 (20, 10) (3, 12) [3, 5] [0, 135]
25 (55, 65) (3, 12) [3, 5] [0, 115]
26 (45, 95) (5, 1.52) [5, 6] [0, 45]
27 (30, 70) (6, 22) [6, 7] [0, 115]
28 (50, 0) (3, 0.92) [2, 4] [0, 85]
29 (95, 10) (3, 0.92) [2, 5] [0, 90]
30 (75, 30) (4, 1.32) [4, 5] [0, 80]
31 (10, 60) (6, 1.92) [6, 7] [0, 90]
32 (60, 90) (4, 1.32) [4, 5] [0, 80]
33 (80, 15) (8, 2.52) [8, 10] [0, 60]
34 (85, 5) (5, 1.62) [5, 7] [0, 115]
35 (60, 5) (6, 22) [6, 8] [0, 120]

Table 4. Initial allocation of the demand points to service centers.

Set 1
Demand point 1 2 3 4 5 6 7 8 10 12
Service Center C A B B C B C C C A

Set 2
Demand points 13 14 16 17 18 19 20 22 23 25
Service Center B B A A B C A A A C

Set 3
Demand points 26 27 28 29 30 32 33 34 35
Service Center C C B B B C B B B

The initial solution is captured from random generation of initial population within each allocation
set. Since the solution quality depends on the initial population in heuristic algorithm, ten computation
tests are performed with different initial solutions. The proposed algorithm has been implemented in
MATLAB and all the experimental tests were carried out on an Intel Pentium 3.20 GHz processor with
8GB of RAM (the same below). The maximum running time was limited to 12 s. The objective function
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values (OFV) of the corresponding ten optimal solutions are shown in Figure 2, where ϕ represents
the OFV.

As demonstrated in Figure 2, the OFVs of the ten optimal solutions with different initial solutions
are very close. In particular, the deviation between the maximum value (9789) and minimum value
(9393) is only 4.21% different. Consequently, the solution method can be viewed to be convergent.
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Figure 2. Objective Function Values (OFVs) with different origin solutions.

The convergence rate of the method is further described in Figure 3. We select the computation
test with minimal OFV (9393) for the analysis. It can be found that the OFV decreases quickly with
respect to the iteration of genetic algorithm. The optimal solution (ϕ = 9393) can be obtained at the
197th iteration, in which there are nine vehicles in three centers for the emergency supply delivery.
The optimal allocation scheme and vehicle routes are reported/described in Table 5 and Figure 4.
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Table 5. Vehicle routings and the actual service quantity.

Parking Lot Route|Actual Amount Route|Actual Amount Route|Actual Amount

A 17-12-24-22|4.3-7.6-3.3-5.5 2-31-16|5.5-6.6-11.0 23-21-20-15|4.4-7.6-8.6-3.3
B 13-3-28-35|7.6-8.6-3.3-6.6 18-30-6-14|2.0-4.4-9.8-8.0 33-29-34-4|8.8-3.3-5.5-7.6
C 19-9-25-8|4.3-11.1-3.3-4.3 1-10-11-27|5.5-7.4-5.5-6.6 26-32-7-5|5.5-4.4-6.6-6.6

It is observed in the optimal solution that the number of used vehicles at each center and the
serviced demand points of each center are almost equal respectively. For each center, there are 11 or
12 demand points which should be served and three vehicles are used to deliver supplies. For each
vehicle, there are three or four demand points which should be delivered. In addition, the demand
points with bigger time window, which have more flexibility, are always in the back of the vehicle
routes. These features demonstrate that the results are rational.

3.2. Numerical Example 2

Taking the waterlogging disaster in Changsha City of Hunan Province as an example, in Figure 5,
the red dots and the blue dots represent the demand points and the supply points, respectively.
The demand points and supply points in urban area are marked into coordinate axes. The specific
data can be found in the Appendix A Tables A1 and A2. The maximum load of vehicles is Q = 30
ton and the average speed as 40 km/h. The fixed cost of vehicle per delivery is ωv = 200 Yuan, ∀v.
The transportation cost per kilometer is cij = 3 Yuan/km, ∀i, j. When the delivered supplies do not
meet the demand at the demand points, the penalty cost per supply unit for shortage at demand point
is set as ϕ−k = 100 Yuan, ∀k, and the penalty cost per supply unit for surplus at demand point is given
by ϕ+

k = 60 Yuan, ∀k.

Sustainability 2017, 9, 288  13 of 24 

Table 5. Vehicle routings and the actual service quantity. 

Parking Lot Route|Actual Amount Route|Actual Amount Route|Actual Amount
A 17-12-24-22|4.3-7.6-3.3-5.5 2-31-16|5.5-6.6-11.0 23-21-20-15|4.4-7.6-8.6-3.3 
B 13-3-28-35|7.6-8.6-3.3-6.6 18-30-6-14|2.0-4.4-9.8-8.0 33-29-34-4|8.8-3.3-5.5-7.6 
C 19-9-25-8|4.3-11.1-3.3-4.3 1-10-11-27|5.5-7.4-5.5-6.6 26-32-7-5|5.5-4.4-6.6-6.6 

It is observed in the optimal solution that the number of used vehicles at each center and the 
serviced demand points of each center are almost equal respectively. For each center, there are 11 or 
12 demand points which should be served and three vehicles are used to deliver supplies. For each 
vehicle, there are three or four demand points which should be delivered. In addition, the demand 
points with bigger time window, which have more flexibility, are always in the back of the vehicle 
routes. These features demonstrate that the results are rational. 

3.1.2. Example 2 

Taking the waterlogging disaster in Changsha City of Hunan Province as an example, in 
Figure 5, the red dots and the blue dots represent the demand points and the supply points, 
respectively. The demand points and supply points in urban area are marked into coordinate axes. 
The specific data can be found in the Appendix A Tables A1 and A2. The maximum load of vehicles 
is = 30 ton and the average speed as 40 km/h. The fixed cost of vehicle per delivery is = 200 
Yuan, ∀ . The transportation cost per kilometer is = 3 Yuan/km, ∀ , . When the delivered 
supplies do not meet the demand at the demand points, the penalty cost per supply unit for 
shortage at demand point is set as = 100	Yuan, ∀ , and the penalty cost per supply unit for 
surplus at demand point is given by = 60	Yuan, ∀ . 

 

Figure 5. Coverage provided by supply points. 

According to the method described in Section 2.3, we obtain the radius of the emergency 
service of each supply point. Then we determine the served demand point set of each supply center, 
as shown in Figure 6, which depicts the covered demand point within the scope of the emergency 
service by each demand point. The results of the allocation according to the Nearest Allocation 
method are reported as Appendix A Table A3. 

Figure 5. Coverage provided by supply points.

According to the method described in Section 2.3, we obtain the radius of the emergency service
of each supply point. Then we determine the served demand point set of each supply center, as shown
in Figure 6, which depicts the covered demand point within the scope of the emergency service by each
demand point. The results of the allocation according to the Nearest Allocation method are reported
as Appendix A Table A3.
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In this example, ten computation tests are performed with different initial solutions.
The computation of the proposed algorithm is implemented in MATLAB. The maximum running time
was less than 18 s. The optimal allocation scheme and vehicle routes are described in Figure 7. It is
observed that the total traveled distance is 3713.9, and the total cost equals 18,217.7.
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From the data in Table 6, we can see, in the premise of different initial solutions, the total costs
of 10 calculation optimal solutions is very close through MRGA algorithm, the relative deviation is
only 4.7% to the maximum value (19,128.4) and the minimum value (18,217.7); in comparison with the
initial solution, the use of MRGA algorithm to solve the problem has saved 16.01%–19.52%, and the
computation time, mostly being within 24 s, also proved the efficiency of the proposed optimization
model and MRGA algorithm.

Similar to example 1, the number of used vehicles at each center and the serviced demand points
of each center are almost equal respectively. In most cases, there are 8–14 demand points which should
be delivered by three vehicles. For each vehicle, there are almost three or four demand points which
should be delivered except for a few vehicles services for two demand points and only one vehicle
service for six demand points. In demand intensive areas, one vehicle could serve for more demand
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points, while a vehicle could provide emergency resources for two demand points at most in the
remote area, where the demand is not concentrated. In general, the demand points with bigger time
window are always behind the vehicle routes. The instance indicates that the proposed algorithm for
the emergency vehicle routing problem is reasonable and efficient.

Table 6. The initial solutions vs. the optimal solutions.

Number OFV of Initial
Solution

OFV of Optimal
Solution

Relative Cost
Savings/% Operation Time/s

1 23,077.8 18,736.2 18.78 22.73
2 22,978.3 19,010.8 17.27 21.64
3 22,621.5 18,708.2 17.30 21.77
4 23,103.7 19,087.6 17.38 21.34
5 21,785.5 18,217.7 16.38 22.19
6 21,952.6 18,438.0 16.01 21.69
7 22,372.4 18,217.7 18.57 23.73
8 23,189.2 19,128.4 17.12 21.80
9 22,478.3 18,394.1 18.17 21.87

10 23,296.7 18,747.5 19.52 23.05

In Table 7, we change the penalty costs ϕ−k and ϕ+
k , and keep other parameters unchanged;

five experiments are carried out for each degree and we take the average as a result. With the increase
of penalty cost, the total cost of the system increases, on the contrary; the total cost of the system
decreases with the decrease of penalty cost. In the range of more than 20% increase, the number
of used vehicles on several demands points increase as well; on the other hand, the results remain
unchanged in the case of reducing the penalty costs in the range of 30%; with the increase rate up to
40%, the number of used vehicles on several demands points decrease. As depicted in the Figure 8,
the evolution trend between total cost and distance is very closely. In the range [−30%, 20%], the
distance remain unchanged, as the total cost close to linear change and change slowly; while the change
degree reaches −40% and 30%, the distance present a variation with a jump, as does the total cost.
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Table 7. Total cost and Distance vs. The penalty costs.

Variation Range Number of Used Vehicles on Each Demands
Points (in Order of Service Center) Total Cost Distance

−50% [3,3,2,2,3,3,3,2,3,2] 17,314.6 3627.5
−40% [3,3,2,2,3,3,4,2,3,2] 17,482.7 3627.5
−30% [3,4,3,3,3,3,4,2,3,2] 17,859.2 3713.9
−20% [3,4,3,3,3,3,4,2,3,2] 17,985.5 3713.9
−10% [3,4,3,3,3,3,4,2,3,2] 18,102.4 3713.9

0 [3,4,3,3,3,3,4,2,3,2] 18,217.7 3713.9
10% [3,4,3,3,3,3,4,2,3,2] 18,391.5 3713.9
20% [3,4,3,3,3,3,4,2,3,2] 18,533.9 3713.9
30% [4,4,3,3,3,3,4,2,3,3] 19,074.2 3795.4
40% [4,4,3,3,3,3,4,2,3,3] 19,208.6 3795.4
50% [4,4,3,3,3,3,4,2,3,3] 19,352.3 3795.4

Next, we change the time windows while keeping other parameters unchanged (it is assumed
that all time windows in the system are changed at the same rate). With the increase of time windows,
the results remain unchanged; on the contrary, the total cost and distance of the system increase with
the decrease of time windows. In the range of more than 10% decrease, the number of used vehicles
on several demands points increase; on the other hand, the results remain unchanged in the case of
raising the time windows; when the change rate runs up to 50%, there are no feasible solutions in
several demands points. The specific data are in Table 8. In addition, we can see from Figure 9 that the
trend of change in cost and distance are consistent.
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Table 8. Total cost and Distance vs. The time windows.

Variation Range Number of Used Vehicles on Each Demands
Points(in Order of Service Center) Total Cost Distance

−50% [-,6,5,5,5,5,-,4,-,4]
−40% [5,5,4,4,4,5,6,3,5,4] 23,509.7 4296.5
−30% [4,5,3,4,3,4,5,3,4,3] 21,430.2 4101.9
−20% [4,4,3,4,3,4,4,2,4,3] 20,193.6 3962.9
−10% [3,4,3,3,3,3,4,2,3,2] 18,241.4 3713.9

0 [3,4,3,3,3,3,4,2,3,2] 18,217.7 3713.9
10% [3,4,3,3,3,3,4,2,3,2] 18,330.5 3713.9
20% [3,4,3,3,3,3,4,2,3,2] 18,293.1 3713.9
30% [3,4,3,3,3,3,4,2,3,2] 18,351.2 3713.9
40% [3,4,3,3,3,3,4,2,3,2] 18,308.6 3713.9
50% [3,4,3,3,3,3,4,2,3,2] 18,276.3 3713.9

3.3. Comparison with Other Metaheuristics

A computational experiment has been conducted to compare the performance of the proposed
algorithm with some of the best techniques designed recently for VRPTW. The improved Genetic
Algorithm of the proposed problem has been tested with 56 VRPTW benchmark problems of Solomon.
Each problem is involved with 100 customers, randomly distributed over a geographical area except for
different the demands, while the emergency demand at each demand point follows normal distribution
N
(
µ, σ2) (see Formula (23)), within the given data as the center to set up the demand interval. In this

article, the value of µ is set to be the demand amount at each demand point in the VRPTW benchmark
problems, with the value of σ2 as 22; by setting µ as the center, we pick two nearest integers, one to the
left, one to the right of µ, and establish a demand interval by taking these two integers as the boundary
points. For example, if the demand amount value is 10 at one demand point, we take µ as 10, and the
corresponding demand interval turns out to be (9,11).

The parameter values for the problems are described below: In fitness and objective functions,
the maximum load Q = 200; the average speed is 30 and the fixed cost of vehicle per delivery is
ωv = 300, ∀v. The transportation cost per unit is cij = 5, ∀i, j. When the delivered supplies do not
meet the demand at the demand points, the penalty cost per supply unit for shortage at demand point
is ϕ−k = 100, and the penalty cost per supply unit for surplus at demand point is ϕ+

k = 50, ∀k.
The probabilities and parameter values for the proposed genetic operators are defined as

follows: The population size and maximum generation size are equal to 20 and 1000, respectively.
The parameter values of selection, crossover and mutation operators can be calculated through the
above Equations (20)–(22), respectively.

The proposed algorithm has been implemented in MATLAB and the experimental tests were
carried out on an Intel Pentium 3.20 GHz processor with 8 GB of RAM. The maximum running time
was limited to 100 s and the experiment consisted of performing five simulation runs for each problem
instance in a given data set.

This is justified by the fact that the sensitivity of the results with respect to changes in the
parameter values, such as recombination and mutation rates, was found to be generally quite small.
When we change the population size from 20 to 30 and 50, the corresponding difference of results
is quite small but the running time becomes a little shorter; when the parameter values of selection,
crossover and mutation operators are modified in a reasonable range, the results do not indicate
obvious differences.

The results for the six problem data sets are summarized in Table 9, and the detailed data
can be found in Appendix A Tables A4 and A5. The results are expressed according to objective
function, where the cost is considered as the primary factor and, for the particularity and practicality
of emergency rescue after disaster, the total traveled distance or total duration of routes is also
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considered. In addition, the number of vehicles is demonstrated in the results, so that the sustainability
of emergency service is satisfied.

Table 9. The performance of the proposed method.

Problem Average Performance Best Performance

R1
Cost 15,697.13 14,746.00

Distance 1239.53 1234.39
Vehicles 13.08 13.08

R2
Cost 11,475.46 11,293.00

Distance 911.99 907.51
Vehicles 4.45 4.45

C1
Cost 12,904.28 12,859.00

Distance 829.29 828.50
Vehicles 10.00 10.00

C2
Cost 9558.90 9426.00

Distance 593.87 589.86
Vehicles 3.25 3.25

RC1
Cost 16,257.74 15,948.00

Distance 1384.44 1381.56
Vehicles 12.75 12.75

RC2
Cost 12,632.35 12,315.00

Distance 1041.74 1038.95
Vehicles 5.25 5.25

The genetic algorithm described above is compared in Table 10 with some of the other classical
metaheuristics [40,41] by Berger, Barkaoui, and Braysy (BBB,2003); Mester (M,2002); Rochat and
Taillard (RT,1995); Jung and Moon (JM,2002); Homberger and Gehring (HG,2005); Bouthillier and
Crainic (BC,2005); and Braysy and Dullaert (BD,2003). The rightmost column describes the results of
our proposed method, including total traveled distance and the number of vehicles, the computer and
the CPU time are also described as reported by the authors.

Table 10. Average performance comparison among other metaheuristics.

Problem BBB M RT JM HG BC BD QYC

R1
Distance 1251.40 1208 1208.50 1179.95 1212.73 1209.19 1220.14 1239.53
Vehicles 12.17 12.00 12.25 13.25 11.92 12.08 12.00 13.08

R2
Distance 1056.59 954 961.72 878.41 955.03 963.62 977.57 911.99
Vehicles 2.73 2.73 2.91 5.36 2.73 2.73 2.73 4.45

C1
Distance 828.50 829 828.38 828.38 828.38 828.38 828.38 829.29
Vehicles 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

C2
Distance 590.06 590 589.86 589.86 589.86 589.86 589.86 593.87
Vehicles 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.25

RC1
Distance 1414.86 1387 1377.39 1343.64 1386.44 1389.22 1397.44 1384.44
Vehicles 11.88 11.50 11.88 13.00 11.50 11.50 11.50 12.75

RC2
Distance 1258.15 1119 1119.59 1004.21 1123.17 1143.70 1140.06 1041.74
Vehicles 3.25 3.25 3.38 6.25 3.25 3.25 3.25 5.25

Time(min)
Pentium
400 MHz,

30 min

Pentium III
450 MHz,
150.2 min

Silicon
Graphics
100 MHz

Pentium
III 1 GHz,
0.8 min

Pentium
400 MHz,

–

5 × Pentium
850 MHz,

12 min

AMD
700 Mz,
9.1 min

Pentium
3.20 GHz,
1.7 min

According to Table 10, the results of those experiments do not indicate any conclusive evidence to
support a dominating heuristic over the others. Due to the difference and uncertainty of the emergency
demand interval, the problem relative to the previous examples has increased its complexity, but,
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in general, the results by the proposed method prove to be competitive and effective, since it is the
closest to the performance of best-known heuristic routing procedures. Moreover, it is demonstrated
that the emergency vehicle routing problem can be tested through the VRPTW benchmark problems
of Solomon in an acceptable way.

4. Conclusions

To improve sustainability of rescue operation after disaster, utilizing limited emergency resource
reasonably was required. In this paper, the emergency VRP with insufficient supplies and uncertain
demands during the crucial rescue period (the initial 72-h) after the disaster were investigated, hoping
to enhance timeliness, utilization and sustainability of the emergency service. Combined with the
characteristics of the crucial rescue period, such as the emergency resources are always limited, the
uncertain emergence demands following the probability distribution is assumed at first. Based on this
assumption, the expected penalty costs are incurred by the decision of resource distribution, due to
the shortage and surplus of the relief supplies at each demand point. Then, the optimization model
for emergency vehicles routing problem with insufficient supplies is proposed, in which the objective
function was to minimize the transportation costs, vehicle operation costs and the penalty costs at all
demand points.

The problem was divided into two steps. In first step, the Nearest Assignment method and
Average Distance method were used to transform the multi-depot vehicle routing problem into
multiple single-depot vehicle routing problem; meanwhile, the service point set of each service center
was determined. Then, the heuristics algorithm, based on Genetic Algorithm (GA), was developed to
solve the single-depot vehicle routing problems. In order to improve solution quality and efficiency,
the hybrid encoding mode was used to construct genetic operator in the algorithm.

The numerical example demonstrated that the presented method would address the problem
quickly and efficiently. The results illuminated that the model performed well in the disaster rescue
operation, where appropriate amount delivery was momentous because only correct deliveries of
supplies could make sure to keep the people in the affected area alive as long as possible and to wait
for the subsequent rescue. In addition, our model was sensitive to the penalty cost settings, and this
fact suggests that rational determinations of the penalty cost would make our model more efficient.

Many variants of the proposed model could be considered in the future research; for instance,
a penalty for missing the time window could be introduced, different types of resources could be
appropriately defined, etc. Further research could be carried out related to the proposed parameters
and their performance. Moreover, applications of the proposed concept of penalty to other related
problems are also possible in the sustainability environments.
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Table A1. Information of service centers.

Service Center Coordinate (x, y) Number of Available Vehicles

1 (180, 35) 5
2 (275, 63) 6
3 (80, 60) 5
4 (85, 147) 6
5 (460, 60) 5
6 (430, 160) 5
7 (260, 120) 6
8 (345, 40) 4
9 (150, 120) 6

10 (340, 150) 4

Table A2. Information of demand points.

Demand Point Coordinate (x, y) Parameters (µ, σ2) Demand Interval (ton) Time-Window (min)

1 (237, 132) (7, 1.52) [7, 9] [0, 40]
2 (103, 199) (6, 1.32) [5, 7] [0, 180]
3 (421, 85) (11, 22) [10, 12] [0, 100]
4 (303, 62) (7, 22) [7, 9] [0, 50]
5 (166, 36) (9, 22) [8, 12] [0, 125]
6 (351, 139) (6, 1.52) [6, 8] [0, 170]
7 (314, 60) (8, 22) [7, 9] [0, 65]
8 (121, 89) (7, 12) [6, 9] [0, 70]
9 (299, 79) (11,2.52) [10, 12] [0, 55]
10 (450, 178) (10, 22) [9, 12] [0, 40]
11 (366, 73) (5, 1.52) [4, 6] [0, 50]
12 (317, 37) (10, 22) [9, 11] [0, 110]
13 (102, 184) (7, 22) [5, 8] [0, 160]
14 (48, 1) (9, 32) [8, 10] [0, 200]
15 (287, 101) (8, 12) [7, 9] [0, 60]
16 (157, 172) (4, 12) [4, 5] [0, 125]
17 (442, 53) (9, 12) [8, 11] [0, 160]
18 (241, 98) (11, 1.32) [10, 13] [0, 65]
19 (169, 110) (11, 22) [10, 13] [0, 45]
20 (197, 26) (5, 1.42) [5, 6] [0, 200]
21 (327, 52) (9, 22) [8, 10] [0, 140]
22 (131, 68) (8, 1.22) [7, 9] [0, 120]
23 (481, 123) (7, 1.32) [6, 8] [0, 180]
24 (395, 163) (6, 12) [5, 7] [0, 65]
25 (50, 87) (7, 1.42) [6, 9] [0, 70]
26 (278, 4) (9, 1.52) [8, 10] [0, 85]
27 (208, 37) (5, 1.22) [5, 7] [0, 125]
28 (133, 135) (6, 0.92) [5, 7] [0, 40]
29 (230, 138) (5, 0.92) [4, 6] [0, 60]
30 (101, 30) (8, 1.32) [6, 9] [0, 85]
31 (349, 109) (8, 1.92) [7, 9] [0, 60]
32 (12, 18) (9, 1.32) [8, 11] [0, 120]
33 (87, 99) (8, 2.52) [8, 10] [0, 130]
34 (318, 76) (11, 1.62) [10, 13] [0, 90]
35 (326, 140) (6, 22) [5, 7] [0, 40]
36 (369, 147) (7, 1.32) [7, 10] [0, 130]
37 (336, 72) (6, 1.22) [5, 8] [0, 100]
38 (21, 195) (13, 2.52) [12, 15] [0, 130]
39 (497, 40) (12, 1.62) [11, 14] [0, 120]
40 (149, 45) (6, 22) [5, 8] [0, 100]
41 (403, 160) (5, 1.22) [5, 7] [0, 45]
42 (91, 73) (10, 22) [9, 11] [0, 40]
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Table A2. Cont.

Demand Point Coordinate (x, y) Parameters (µ, σ2) Demand Interval (ton) Time-Window (min)

43 (236, 33) (14, 2.52) [13, 15] [0, 80]
44 (256, 96) (9, 1.92) [8, 11] [0, 45]
45 (464, 95) (10, 1.32) [9, 12] [0, 50]
46 (277, 31) (8, 22) [8, 10] [0, 45]
47 (260, 64) (11, 22) [10, 13] [0, 35]
48 (194, 10) (5, 1.22) [4, 6] [0, 230]
49 (96, 53) (8, 22) [7, 10] [0, 70]
50 (218, 131) (8, 1.52) [8, 10] [0, 90]
51 (124, 83) (8, 1.92) [8, 10] [0, 85]
52 (225, 54) (4, 1.12) [3, 5] [0, 80]
53 (463, 102) (5, 22) [5, 7] [0, 140]
54 (176, 54) (5, 0.92) [4, 6] [0, 30]
55 (497, 157) (8, 1.72) [7, 9] [0, 120]
56 (389, 30) (15, 2.32) [14, 17] [0, 70]
57 (440, 88) (7, 1.92) [6, 8] [0, 50]
58 (300, 123) (10, 1.32) [9, 12] [0, 115]
59 (51, 152) (12, 22) [10,15] [0, 60]
60 (463, 91) (6, 1.62) [5, 7] [0, 40]
61 (143, 99) (6, 22) [5, 7] [0, 170]
62 (152, 88) (10, 1.32) [9, 12] [0, 130]
63 (219, 96) (6, 1.22) [6, 8] [0, 110]
64 (446, 85) (5, 1.62) [5, 7] [0, 85]
65 (289, 55) (9, 22) [9, 11] [0, 160]
66 (152, 73) (6, 22) [5, 7] [0, 100]
67 (13, 115) (15, 32) [14, 17] [0, 160]
68 (430, 137) (6, 1.62) [6, 7] [0, 40]
69 (467, 172) (9, 22) [8, 10] [0, 70]
70 (289, 67) (6, 1.22) [6, 8] [0, 35]
71 (172, 17) (7, 1.22) [6, 8] [0, 70]
72 (121, 156) (7, 1.22) [6, 8] [0, 90]
73 (82, 108) (9, 1.52) [8, 10] [0, 60]
74 (326, 114) (12, 1.92) [10, 14] [0, 120]
75 (107, 127) (7, 1.32) [6, 8] [0, 45]
76 (189, 48) (3, 0.82) [3, 4] [0, 30]
77 (355, 115) (7, 1.62) [6, 8] [0, 80]
78 (286, 152) (10, 22) [9, 12] [0, 140]
79 (306, 106) (7, 1.32) [7, 8] [0, 90]
80 (185, 9) (8, 1.42) [7, 10] [0, 45]
81 (45, 53) (10, 22) [10, 12] [0, 60]
82 (468, 66) (6, 1.52) [6, 8] [0, 30]
83 (419, 121) (7, 1.92) [6, 8] [0, 70]
84 (461, 22) (14, 2.32) [12, 16] [0, 60]
85 (172, 68) (7, 22) [6, 9] [0, 60]
86 (173, 128) (7, 1.62) [8, 10] [0, 185]
87 (150, 31) (9, 22) [9, 11] [0, 145]
88 (347, 47) (7, 1.62) [6, 8] [0, 30]
89 (379, 174) (7, 1.42) [7, 10] [0, 100]
90 (56, 75) (7, 1.32) [5, 8] [0, 50]
91 (394, 46) (12, 22) [11, 14] [0, 100]
92 (136, 165) (8, 1.52) [7, 9] [0, 85]
93 (259, 172) (7, 1.92) [6, 9] [0, 80]
94 (143, 11) (3, 0.82) [3, 4] [0, 115]
95 (68, 99) (6, 1.92) [5, 8] [0, 100]
96 (311, 142) (8, 1.32) [8, 10] [0, 70]
97 (234, 114) (7, 2.52) [7, 8] [0, 130]
98 (266, 170) (8, 1.62) [8, 11] [0, 100]
99 (222, 24) (3, 12) [3, 4] [0, 120]

100 (404, 160) (8, 22) [7, 10] [0, 50]
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Table A3. Allocation of the demand points to service centers.

Service Center Demand Points

1 5,20,27,40,48,52,54,71,76,80,85,87,94,99
2 4,7,9,12,26,34,43,46,47,65,70
3 14,25,30,32,33,42,49,81,90,95
4 2,13,38,59,67,72,73,75
5 3,17,39,45,57,60,64,82,84
6 10,23,24,41,53,55,68,69,83,89,100
7 1,15,18,29,44,50,58,63,78,79,93,97,98
8 11,21,37,56,88,91
9 8,16,19,22,28,51,61,62,66,86,92

10 6,31,35,36,74,77,96

Table A4. The performance of the proposed method to the problem (Solomon Benchmarks with narrow
time windows).

Instance
Data Distance Vehicles Instance

Data Distance Vehicles Instance
Data Distance Vehicles

R101 1683.8 20 C101 828.94 10 RC101 1675.86 15
R102 1526.75 18 C102 828.94 10 RC102 1488.36 14
R103 1319.12 14 C103 828.06 10 RC103 1306.42 12
R104 1097.63 11 C104 825.65 10 RC104 1145.79 10
R105 1415.24 15 C105 828.94 10 RC105 1608.45 15
R106 1275.58 13 C106 828.94 10 RC106 1408.70 13
R107 1104.76 11 C107 830.56 10 RC107 1254.26 12
R108 1008.9 10 C108 834.62 10 RC108 1187.53 11
R109 1187.3 13 C109 828.94 10
R110 1142.4 11
R111 1129.72 11
R112 982.14 10

Table A5. The performance of the proposed method to the problem (Solomon Benchmarks with wide
time windows).

Instance
Data Distance Vehicles Instance

Data Distance Vehicles Instance
Data Distance Vehicles

R201 1206.27 6 C201 591.56 3 RC201 1357.35 7
R202 1046.16 5 C202 608.39 4 RC202 1167.1 6
R203 890.50 5 C203 591.17 3 RC203 951.08 5
R204 767.92 3 C204 596.55 3 RC204 796.14 4
R205 975.83 5 C205 588.88 3 RC205 1209.83 6
R206 900.42 4 C206 588.49 3 RC206 1080.50 5
R207 847.57 3 C207 597.61 4 RC207 985.56 5
R208 738.41 5 C208 588.32 3 RC208 785.93 4
R209 885.64 5
R210 931.78 5
R211 841.39 3
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