

 A New Optimization Model for the Sustainable Development: Quadratic Knapsack Problem with Conflict Graphs

A New Optimization Model for the Sustainable Development: Quadratic Knapsack Problem with Conflict Graphs

Sustainability 2017, 9(2), 236; doi:10.3390/su9020236

Article

A New Optimization Model for the Sustainable Development: Quadratic Knapsack Problem with Conflict Graphs

Xiaochuan Shi 1,†, Lei Wu 2,† and Xiaoliang Meng 1,†,*

1

International School of Software, Wuhan University, 37 Luoyu Road, Wuhan 430079, China

2

Wenlan School of Business, Zhongnan University of Economics and Law, 182 Nanhu Avenue, Wuhan 430073, China

*

Correspondence: Tel.: +86-27-6877-1236

†

These authors contributed equally to this work.

Academic Editors: Yichun Xie, Xinyue Ye and Clio Andris

Received: 12 December 2016 / Accepted: 4 February 2017 / Published: 9 February 2017

Abstract:

New information technology constantly improves the efficiency of social networks. Using optimization and decision models in the context of large data sets attracts extensive attention. This paper investigates a novel mathematical model for designing and optimizing environmental economic policies in a protection zone. The proposed model is referred to as the quadratic knapsack problem with conflict graphs, which is a new variant of the knapsack problem family. Due to the investigated problem processing a high complex structure, in order to solve efficiently the problem, we develop a metaheuristic which is based on the large neighborhood search. The proposed method embeds a construction procedure into a sophistical neighborhood search. For more details, the construction procedure takes charge of finding a starting solution while the investigated neighborhood search is used to generate and explore the solution space issuing from the provided starting solution. In order to highlight our theoretical model, we evaluate the model on a set of complex benchmark data sets. The obtained results demonstrate that the investigated algorithm is competitive and efficient compared to legacy algorithms.

Keywords:

Modelization; quadratic; conflict; sustainable development

1. Introduction

Nowadays, the evolution of information provides us the opportunity to design reasonable policies through the use of large data sets (see, e.g., Lee et al. [1]). Such technologies constantly improve the efficiency of the social network. Using optimization and decision models in social planning becomes a big challenge (see, e.g., Lee, Kim and Kim [2], Li and Lin [3] , Shim and Park [4]). A computational model is presented in this paper to design environmental economic policies for sustainable development. As the global ecological and environmental problems become increasingly severe, people’s lives and social development face serious constraints and impact. Governments have proposed the need of the policies for protection zones, such as China’s Ecological Red-line policies, to protect the regional economic and social development, and regional ecological safety. We propose the hypothesis of using a new model to optimize the policies through the use of large data sets from stakeholders’ services and public’s crowdsourcing. Such a model can be considered as a new generation from the knapsack problem family: the Quadratic Knapsack Problem with Conflict Graphs (QKPCG). An instance of QKPCG is composed of a knapsack of a capacity c, a set I of n items, and a set E of incompatible couples of items (i.e., [image: there is no content]). Each item [image: there is no content], it is associated with a positive weight [image: there is no content] and a positive profit [image: there is no content]. For each compatible couple of items [image: there is no content], where [image: there is no content] and [image: there is no content], it is associated with a positive profit [image: there is no content], which implies that an additional profit occurs when both of items i and j are selected to be placed into the knapsack. The objective of QKPCG consists of maximizing the total profit of items selected to be placed into the knapsack under the capacity constraint, where all selected items must be compatible. The quadratic program related to QKPCG can be defined as Equations (1)–(3):

(QPQKPCG) max∑i∈Ipixi+∑i∈I∑j∈I,j>ipijxixj

(1)

s.t.∑i∈Iwixi≤c

(2)

[image: there is no content]

(3)

[image: there is no content]

The decision variable [image: there is no content], [image: there is no content] equals to 1 if the i-th item is selected; 0 otherwise. Inequality (2) represents the capacity constraint and Inequalities (3) denote the disjunctive constraints, which ensure that compatibility of all items belonging to the knapsack.

On the background of sustainable development, the program of QKPCG (QPQKPCG) can be used to establish a reasonable economic development strategy in the environmental protection zone. In QPQKPCG, the objective is to optimize the gain related to the development planning with limited natural resources without undermining the stability of natural biotic systems. More preciously, assume that a development planning is composed of n different components, where each item of QKPCG can be considered as a component. The related decision variable [image: there is no content] if the ith component is applied; otherwise [image: there is no content]. A component of the planning can be defined as follows: a natural resource is used in an investment. Therefore, the objective function (cf., Formula (1)) measures the total reward related to all performed investments while the capacity constraint (cf., Inequality (2)) ensures that the effect by the exploitation of natural resources cannot exceed the fixed ecological boundary. Furthermore, the quadratic term in the objective function (i.e., ([image: there is no content])) represents the additional profit by combining the investment i and j. In order to make our model more realistic, we introduce the disjunctive constraints (cf., Inequalities (3)). A disjunctive constraint simulates the fact that two different investments cannot share the same natural resource.

QKPCG is an NP-hard problem (see, e.g., Garey and Johnson [5]). It reduces to the Quadratic Knapsack Problem (QKP) (see, e.g., [6,7]) when the constraints (3) are dropped and to the Knapsack Problem with Conflict Graphs (KPCG) (see, e.g., Pferschy and Schauer [8]) when [image: there is no content], for all [image: there is no content]. Note that, in literature, the KPCG is also named by Yamada, Kataoka and Watanabe [9] as the Knapsack Problem with Conflict Graphs (KPCG). Due to the complexity of the QKP and the KPCG, few studies on exact methods for these two problems have been realized in the literature. Recently, most results on these topics are based on meteheuristics, which focus on providing high quality solution for large complex cases (see, e.g., [10,11,12]).

For the rest of the paper, Section 2 discusses the starting solution procedure, which provides an initial solution for QPQKPCG. Section 3 introduces an efficient metaheuristic for improving the solution at hand. Section 4 evaluates the performance of the proposed approach on a group of benchmark data sets. Finally, the contents of the paper are summarized in Section 5.

2. A Starting Solution Procedure for QKPCG

This section describes a starting solution procedure, noted by 2PH, which is based on solving successively QPQKPCG. The used procedure is composed of two phases, where the first phase aims at determining a feasible solution and the second phase tries to improve the provided solution by exploring its neighborhood. Such a procedure has also been used in [11,12] for approximately solving the KPCG. Unless noted otherwise, we assume that all items are sorted descending by their ratio of profit per weight (i.e., [image: there is no content], [image: there is no content]).

2.1. An Integer Linear Programming of the QKPCG

To reduce the computational effort caused by the quadratic term, we apply a classic linearization of the QKPCG proposed in Glover and Woolsey [13]. The considered integer linear program associated with the QKPCG, notated by ILPQKPCG can be defined as follows.

(ILPQKPCG) max∑i∈Ipixi+∑i∈I,j∈I,j>ipijyij

[image: there is no content]

(4)

[image: there is no content]

(5)

[image: there is no content]

(6)

[image: there is no content]

(7)

[image: there is no content]

In view of complexity of ILPQKPCG, in order to produce efficient solutions, 2PH consists of determining a feasible solution of the QKPCG by considering successively the quadratic term and the constraints (4)–(7).

2.2. The First Phase

At the first phase, an instance of QKPCG is reduced to an instance of KPCG, where the quadratic term is not taken account at the current step. The corresponding integer linear program of KPCG can be formally written as follows:

[image: there is no content]

s.t. ∑i∈Iwixi≤c

(8)

[image: there is no content]

(9)

[image: there is no content]

From QPQKPCG, we can observe that a feasible solution of KPCG is also feasible for QKPCG. This is due to the fact that, in ILPKPCG, we ignore only the additional profit when choosing two items but respect the capacity constraint (8) and the disjunctive constraints (9). Therefore, a feasible solution of QKPCG can be computed by solving successively two optimization problems: a weighted independent set problem (see ILPWIS), extracted from ILPKPCG with the elimination of the capacity constraint (8); a binary knapsack problem (see ILPK) related to the independent set by solving ILPWIS. ILPWIS is first solved by providing an independent set. Secondly, ILPK is solved by computing a feasible solution of ILPKPCG, which is also feasible for QPQKPCG, with the consideration of the independent set yielded at the first phase. Let [image: there is no content] ([image: there is no content]) be a feasible solution of ILPWIS, then the linear programs referring to ILPWIS and ILPK can be defined by following expressions:

(ILPWIS)max∑i∈Ipixis.t.xi+xj≤1, ∀(i,j)∈Exi∈{0,1}, ∀ i∈I, (ILPK)max∑i∈ISpixis.t.∑i∈ISwixi≤c,xi∈{0,1}, ∀ i∈IS.

Algorithm 1 displays the general idea to compute an available solution of ILPKPCG. At Step 1, [image: there is no content] is initialized as a null set, which is an evident solution of ILPWIS. The loop from Step 2 to Step 6 serves to produce [image: there is no content] iteratively with the un-selected items included in I. For each iteration, the item with the highest ratio of profit per weight is selected to be added into [image: there is no content], while the selected item and its incompatible partners are immediately dropped from I. The loop stops if there are no more available items that can be included into [image: there is no content]. Steps 7–12 are used to compute a feasible solution for ILPKPCG. One first checks whether the current solution [image: there is no content] respects all constraints of ILPKPCG. If [image: there is no content] respects the capacity constraint (8) of ILPKPCG, [image: there is no content] is also feasible for KPCG and further for QKPCG. Otherwise, ILPK related to [image: there is no content] is solved to produce a solution ensuring the capacity constraint (8). To achieve the best performance of the investigated approach, ILPK is solved by applying the exact algorithm elaborated by Martello, Pisinger and Toth [14].

	Algorithm 1 Determine a feasible solution for ILPKPCG

	Input: An instance I of ILPKPCG.

	Output: A feasible solution [image: there is no content] for ILPKPCG.

	
	 1:

	
Initialization: Set [image: there is no content] as empty set and [image: there is no content];

	 2:

	
while I is not empty do

	 3:

	
  Set [image: there is no content];

	 4:

	
  Add i into [image: there is no content]: [image: there is no content];

	 5:

	
  Eliminate i with all its incompatible items j such that [image: there is no content] from I;

	 6:

	
end while

	 7:

	
Generate ILPK defined on the items of [image: there is no content];

	 8:

	
if [image: there is no content] respect the capacity constraint (8) of ILPKPCGthen

	 9:

	
  Set [image: there is no content] as [image: there is no content];

	10:

	
else

	11:

	
  Set [image: there is no content] as the optimal solution of ILPK;

	12:

	
end if

	13:

	
return [image: there is no content].

2.3. The Second Phase

Note that, at the first phase, an instance of QKPCG is reduced to an instance of KPCG, where the quadratic term is instantly ignored. Therefore, the provided solution might be poor for QKPCG. This is due to the fact that one does not take into consideration optimization of the objective function of ILPQKPCG. Therefore, the aim of the second phase is to improve the quality of the solution obtained at the first phase (i.e., the solution [image: there is no content] yielded by Algorithm 1) with help from an iterative local search. The applied local search serves to ameliorate a given solution by alternatively performing a building procedure and an exploring procedure. The building procedure generates a k-neighborhood of [image: there is no content] by cleaning the values of k fixed variables of the solution vector related to [image: there is no content]. The exploring procedure explores the generated neighborhood, which can be viewed as reduction of the original solution space, for determining a local optimum solution. The second phase stops when no valid improvement occurs.

Algorithm 2 shows how the proposed local search operates. Let [image: there is no content] be the solution by applying Algorithm 1 and set α as a constant number. The loop from Step 2 to Step 6 of the local search alternatively generates and explores a series of neighborhoods in order to ameliorate the starting solution. At Step 3, the current best solution, namely [image: there is no content], is replaced by [image: there is no content] if it has a better value. Step 4 cleans the values of α variables in [image: there is no content], where the items with the highest degree are favored. For an item, the value of its degree is the number of incompatible items related to this item. Let i be the item of the highest degree, where [image: there is no content] in [image: there is no content]. For each iteration, set [image: there is no content] and its incompatible partners as free. The incompatible items related to [image: there is no content] can be noted by [image: there is no content], such that [image: there is no content] and [image: there is no content], where k ([image: there is no content]) denotes the index of variables fixed to 1 in [image: there is no content]. At Step 5, [image: there is no content] is updated with the local optimum solution by exploring the current neighborhood, where the neighborhood corresponds to a subproblem of the [image: there is no content]. In other words, ILPQKPCG is solved on a reduced instance of QKPCG. Finally, Algorithm 2 stops when no better solution can be achieved and returns the best solution [image: there is no content] deduced from the starting solution.

	Algorithm 2 A local search for improving a given solution

	Input: [image: there is no content], a feasible solution of the QKPCG.

	Output: [image: there is no content], a local optimum solution of the QKPCG.

	
	1:

	
Initialize [image: there is no content] as an evident solution, where all variables equal to 0;

	2:

	
while SQKPCG is better than SQKPCG⋆do

	3:

	
  Set [image: there is no content] as [image: there is no content];

	4:

	
  Generate a neighborhood of [image: there is no content] by cleaning α fixed variables;

	5:

	
  Explore the current neighborhood to compute a local optimum solution: [image: there is no content];

	6:

	
end while

	7:

	
return [image: there is no content].

3. A Neighborhood Search-Based Metaheuristic

In the domain of operations research, the neighborhood search is a common technique used to improve a given feasible solution or to correct a given infeasible solution. A special case of the neighborhood search, named the Large Neighborhood Search (LNS), was first introduced by Shaw [15] for solving large-scale instances of the vehicle routing problem. Similar to the local search, LNS is based on the concept of building and exploring neighborhoods. The difference between the two approaches is that, using the descent method may lead the solution procedure to stagnate in certain local optima; however, using LNS increase the probability for providing better solutions with exploration of a series of more promising solution spaces. This is because, for the local search stated in Section 2.3 (cf., Algorithm 2), either building or exploring adopts a mono-criterion for removing or inserting items. In order to enlarge the opportunity of escaping from the current local optimum, a random building strategy, which is based on removing items by considering their values of profit per weight, is applied. Algorithm 3 for determining a random neighborhood from a given solution, and Algorithm 4 summarizes the global solution procedure for computing a high quality solution of ILPQKPCG.

	Algorithm 3 Remove [image: there is no content] variables of [image: there is no content]

	Input: [image: there is no content], a starting solution of ILPQKPCG.

	Output: An independent set [image: there is no content] and a reduced instance [image: there is no content] of ILPQKPCG.

	
	 1:

	
Set [image: there is no content], [image: there is no content] and [image: there is no content] to the independent set related to [image: there is no content];

	 2:

	
Sort the items of [image: there is no content] in increasing order of their values of profit per weight;

	 3:

	
while [image: there is no content]do

	 4:

	
  Let r be a random real number varied in [image: there is no content] and [image: there is no content];

	 5:

	
  Remove [image: there is no content] item from [image: there is no content], i in [image: there is no content] and set [image: there is no content];

	 6:

	
  for all j such that [image: there is no content]do

	 7:

	
   if item j is compatible with all items of [image: there is no content]then

	 8:

	
    Add j in [image: there is no content] and set [image: there is no content];

	 9:

	
   end if

	10:

	
  end for

	11:

	
end while

	12:

	
return [image: there is no content] and [image: there is no content].

The building procedure described in Algorithm 3 consists of randomly removing at least [image: there is no content] fixed variables from the current solution set. Consequently, Algorithm 3 aims at building a reduced problem of an instance of ILPQKPCG, which is defined on the set of removed variables. In contrast to the deterministic building procedure applied in the local search (see Algorithm 2), the random building procedure (cf. Algorithm 3) works by randomly exploring the solution space of ILPQKPCG. The triple parameters ([image: there is no content]) control the variety of sub solution spaces generated by Algorithm 3. For example, if the values of β and [image: there is no content] are both small (resp. large), one has little (resp. great) chance of visiting a diversified solution space.

	Algorithm 4 A neighborhood search-based metaheuristic

	Input: An instance I of ILPQKPCG.

	Output: [image: there is no content], a local optimum of ILPQKPCG.

	
	1:

	
Apply successively Algorithms 1 and 2 to compute a feasible solution of QKPCG, noted by [image: there is no content];

	2:

	
Set [image: there is no content] as an evident solution, where all variables equal to 0;

	3:

	
while the limit of runtime NSBMtime is not attained do

	4:

	
  Apply Algorithm 3 to determine [image: there is no content] and [image: there is no content] associated to [image: there is no content];

	5:

	
  Apply Algorithm 1 with [image: there is no content] to compute a new solution [image: there is no content];

	6:

	
  Apply Algorithm 2 to determine [image: there is no content];

	7:

	
  Update [image: there is no content] if [image: there is no content] is better;

	8:

	
end while

	9:

	
return [image: there is no content].

The complete version of the investigated neighborhood search-based metaheuristic is described in Algorithm 4. It first applies successively Algorithms 1 and 2 to determine an initial solution for ILPQKPCG. Then it applies iteratively Algorithms 3, 1 and 2 to explore randomly the solution space of ILPQKPCG. Finally, when the runtime limit is met, Algorithm 4 returns the best solution at hand.

4. Simulation Results

For the sustainable development in an environmental protection zone, the designing and optimization of economic policies and key restraining factors were always analyzed with the method of multi-index comprehensive evaluation. The index system was composed of several aspects, i.e., ecological economy, eco-environment, eco-living, ecological culture, ecological institution and so on. From index systems built by different researchers, government planning and reports, and crowdsourcing focuses, more factors would be listed to indicate the level of the aspects. The problem of computing the index systems can be modeled as the investigated Neighborhood Search-Based Metaheuristic (NSBM). In order to conduct the simulation of computing the large data of index systems, this section examines the performance of the investigated NSBM on a group of benchmark data sets, notated as [image: there is no content]–[image: there is no content]. These instances are generated by taking account of the structure used by Billionnet and Soutif [16] for the quadratic terms and the structure used by Yamada, Kataoka and Watanabe [9] for the disjunctive constraints. The program of NSBM is coded in C++ and all tests are performed on an Intel Core i5 with 3.1 Ghz.

The proposed dataset contains 45 instances with different numbers of items and densities. The number of items varies in [image: there is no content] while the density of the graph varies in [image: there is no content]. The structure of the new generated benchmark problems is described in Table 1.

Table 1. Description of the benchmark instances.

	
Class

	
n

	
Density

	
Class

	
n

	
Density

	
Class

	
n

	
Density

	
1qkpcg

	
100

	
2%

	
4qkpcg

	
150

	
2%

	
7qkpcg

	
200

	
2%

	
2qkpcg

	
100

	
4%

	
5qkpcg

	
150

	
4%

	
8qkpcg

	
200

	
4%

	
3qkpcg

	
100

	
8%

	
6qkpcg

	
150

	
8%

	
9qkpcg

	
200

	
8%

Table 2 displays the set of values chosen for parameters in our experiment, which guarantees the best performance for NSBM on the adopted benchmark problems.

Table 2. Parameters setting used to perform NSBM.

	
Parameters

	
α

	
β

	
γ

	
NSBMtime in Seconds

	
values

	
20

	
15

	
20

	
[image: there is no content]

Table 3 shows the objective values achieved by NSBM and GLPK (version 4.60). Column 1 of Table 3 displays the names of the data sets. In Column 2, we report the objective values of the best solutions provided by GLPK in 3600 s, noted by [image: there is no content]. Column 3–11 reports respectively the solution information when using different runtime limits (i.e., 50, 100 and 200 s), where Column [image: there is no content] (resp. [image: there is no content]) denotes the mean (resp. maximum) objective value achieved by NSBM over five trials within the corresponding time limit and Column [image: there is no content] displays the runtime used to reach the best objective value. Table 4 displays percentage improvement in quality of the objective value.

Table 3. Performance of NSBM vs GLPK on the benchmark instances.

	
Instance

	
[image: there is no content]

	
NSBM

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
1qkpcg1

	
15,482

	
15,942.8

	
16,274

	
0.82

	
16,091.2

	
16,338

	
82.71

	
16,280.2

	
16,642

	
117.78

	
1qkpcg2

	
11,774

	
11,631.4

	
11,925

	
42.14

	
11,862.6

	
12,218

	
86.28

	
12,006.2

	
12,272

	
125.34

	
1qkpcg3

	
15,129

	
15,299.2

	
15,678

	
9.64

	
15,312

	
15,678

	
9.58

	
15,612.6

	
15,843

	
148.14

	
1qkpcg4

	
17,151

	
19,558.2

	
19,622

	
13.30

	
19,578.4

	
19,622

	
47.16

	
19,594.2

	
19,659

	
102.30

	
1qkpcg5

	
15,147

	
15,217.4

	
15,499

	
37.25

	
15,326.8

	
15,499

	
37.44

	
15,378.8

	
15,499

	
37.18

	
2qkpcg1

	
9018

	
10,601

	
10,881

	
28.13

	
10,801.6

	
11,205

	
78.50

	
10,895

	
11,205

	
82.78

	
2qkpcg2

	
9150

	
10,227.8

	
10,437

	
1.89

	
10,313

	
10,565

	
88.88

	
10,438.2

	
10,565

	
88.83

	
2qkpcg3

	
10,002

	
10,941.8

	
11,163

	
47.09

	
11,046.6

	
11,163

	
45.12

	
11,084.8

	
11,163

	
47.02

	
2qkpcg4

	
12,589

	
15,427.8

	
15,599

	
11.53

	
15,427.8

	
15,599

	
11.54

	
15,599

	
15,599

	
156.07

	
2qkpcg5

	
10,810

	
12,528.4

	
12,580

	
20.60

	
12,541.6

	
12,580

	
19.17

	
12,541.6

	
12,580

	
19.28

	
3qkpcg1

	
5843

	
7173.4

	
7455

	
17.75

	
7173.4

	
7455

	
18.19

	
7337

	
7455

	
17.00

	
3qkpcg2

	
6068

	
7150

	
7343

	
44.46

	
7248

	
7343

	
62.35

	
7343

	
7343

	
57.44

	
3qkpcg3

	
6091

	
7184

	
7258

	
7.69

	
7200.6

	
7258

	
82.97

	
7200.6

	
7258

	
88.58

	
3qkpcg4

	
7978

	
7987

	
7987

	
18.98

	
7988.6

	
7991

	
64.64

	
7988.6

	
7991

	
59.85

	
3qkpcg5

	
6290

	
7156.4

	
7350

	
4.37

	
7156.4

	
7350

	
4.30

	
7156.4

	
7350

	
4.38

	
4qkpcg1

	
18,025

	
18,625.2

	
19,457

	
31.32

	
18,661

	
19,457

	
31.32

	
18,931.4

	
19,457

	
29.84

	
4qkpcg2

	
17,049

	
18,075.2

	
18,702

	
45.37

	
18,480

	
19,240

	
98.30

	
18,749

	
19,240

	
97.11

	
4qkpcg3

	
15,835

	
20,017.2

	
20,555

	
5.91

	
20,426

	
20,864

	
73.57

	
20,538.2

	
20,864

	
73.48

	
4qkpcg4

	
26,428

	
30,259.8

	
31,082

	
3.19

	
30,259.8

	
31,082

	
3.18

	
30,737.8

	
31,082

	
3.01

	
4qkpcg5

	
15,768

	
17,455.2

	
18,435

	
22.74

	
17,614.8

	
18,435

	
21.57

	
18,083.4

	
18,727

	
124.47

	
5qkpcg1

	
10,663

	
14,618

	
14,850

	
0.83

	
14,625.8

	
14,850

	
0.90

	
14,745

	
14,871

	
110.44

	
5qkpcg2

	
10,720

	
14,739.8

	
15,068

	
1.80

	
14,887.2

	
15,068

	
1.77

	
14,956.2

	
15,068

	
1.62

	
5qkpcg3

	
10,846

	
14,706.6

	
14,825

	
37.73

	
14,892.4

	
14,939

	
65.50

	
14,946.2

	
15,132

	
161.43

	
5qkpcg4

	
13,639

	
18,028.4

	
18,380

	
38.23

	
18,143.6

	
18,380

	
37.98

	
18,272.2

	
18,380

	
161.64

	
5qkpcg5

	
10,883

	
15,265.2

	
15,607

	
44.82

	
15,292.4

	
15,607

	
42.02

	
15,313.2

	
15,607

	
44.84

	
6qkpcg1

	
6032

	
8699

	
8700

	
1.46

	
8769

	
8969

	
71.01

	
8840

	
8969

	
136.26

	
6qkpcg2

	
6041

	
9053.6

	
9193

	
18.41

	
9053.6

	
9193

	
18.46

	
9098.8

	
9193

	
18.43

	
6qkpcg3

	
6429

	
8390.8

	
8499

	
49.92

	
8448.8

	
8508

	
82.44

	
8504.4

	
8508

	
79.86

	
6qkpcg4

	
7366

	
8540.6

	
8839

	
43.04

	
8540.6

	
8839

	
47.29

	
9156.4

	
9630

	
147.43

	
6qkpcg5

	
5866

	
9226.6

	
9335

	
2.48

	
9260.2

	
9335

	
60.41

	
9335

	
9335

	
141.68

	
7qkpcg1

	
18,900

	
22,867

	
24,138

	
21.45

	
23,816.2

	
24,196

	
79.60

	
24,187.8

	
24,602

	
127.89

	
7qkpcg2

	
22,545

	
27,484.8

	
28,236

	
24.87

	
27,968

	
28,521

	
78.41

	
28,354.6

	
28,686

	
152.25

	
7qkpcg3

	
15,637

	
21,855

	
23,420

	
43.47

	
22,252.2

	
23,420

	
43.05

	
22,444.6

	
23,420

	
43.48

	
7qkpcg4

	
27,146

	
31,940.2

	
32,641

	
23.85

	
32,291.6

	
32,641

	
22.86

	
32,350.2

	
32,641

	
22.36

	
7qkpcg5

	
18,714

	
21,327.2

	
22,132

	
44.82

	
21,605.2

	
22,735

	
91.67

	
21,762.4

	
22,735

	
90.17

	
8qkpcg1

	
12,388

	
18,583

	
18,583

	
10.49

	
18,583

	
18,583

	
10.12

	
18,583

	
18,583

	
10.45

	
8qkpcg2

	
13,221

	
19,336.6

	
19,553

	
30.06

	
19,336.6

	
19,553

	
33.08

	
19,406.2

	
19,620

	
126.94

	
8qkpcg3

	
11,054

	
16,704.8

	
16,974

	
13.59

	
16,879

	
17,469

	
62.74

	
16,998.6

	
17,469

	
59.92

	
8qkpcg4

	
13,060

	
20,235

	
20,513

	
7.33

	
20,291.4

	
20,513

	
7.31

	
20,524

	
20,715

	
100.65

	
8qkpcg5

	
12,960

	
17,829.2

	
18,480

	
40.61

	
17,829.2

	
18,480

	
39.29

	
18,000.4

	
18,480

	
38.88

	
9qkpcg1

	
6823

	
11,157.6

	
11,180

	
30.00

	
11,157.6

	
11,180

	
32.71

	
11,180

	
11,180

	
110.27

	
9qkpcg2

	
7673

	
10,386.2

	
10,470

	
21.75

	
10,519

	
10,577

	
65.74

	
10,534.2

	
10,577

	
63.77

	
9qkpcg3

	
5291

	
10,609.2

	
10,869

	
12.30

	
10,728.8

	
10,869

	
12.30

	
10,852.6

	
10,869

	
12.30

	
9qkpcg4

	
8241

	
10,967

	
11,238

	
50.00

	
10,992.2

	
11,238

	
47.31

	
11,308

	
11,751

	
150.00

	
9qkpcg5

	
6792

	
10,597.8

	
10,713

	
48.24

	
10,602.4

	
10,713

	
45.96

	
10,602.4

	
10,713

	
47.27

	
Av.

	
12,012.38

	
14,924.63

	
15,282.62

	
23.92

	
15,050.58

	
15,362.62

	
45.93

	
15,194.50

	
15,433.96

	
80.89

Table 4. Percentage improvement of NSBM vs GLPK on the benchmark instances.

	
Instance

	
[image: there is no content]

	
NSBM

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
1qkpcg1

	
15,482

	
2.98%

	
5.12%

	
3.93%

	
5.53%

	
5.16%

	
7.49%

	
1qkpcg2

	
11,774

	
−1.21%

	
1.28%

	
0.75%

	
3.77%

	
1.97%

	
4.23%

	
1qkpcg3

	
15,129

	
1.12%

	
3.63%

	
1.21%

	
3.63%

	
3.20%

	
4.72%

	
1qkpcg4

	
17,151

	
14.04%

	
14.41%

	
14.15%

	
14.41%

	
14.25%

	
14.62%

	
1qkpcg5

	
15,147

	
0.46%

	
2.32%

	
1.19%

	
2.32%

	
1.53%

	
2.32%

	
2qkpcg1

	
9018

	
17.55%

	
20.66%

	
19.78%

	
24.25%

	
20.81%

	
24.25%

	
2qkpcg2

	
9150

	
11.78%

	
14.07%

	
12.71%

	
15.46%

	
14.08%

	
15.46%

	
2qkpcg3

	
10,002

	
9.40%

	
11.61%

	
10.44%

	
11.61%

	
10.83%

	
11.61%

	
2qkpcg4

	
12,589

	
22.55%

	
23.91%

	
22.55%

	
23.91%

	
23.91%

	
23.91%

	
2qkpcg5

	
10,810

	
15.90%

	
16.37%

	
16.02%

	
16.37%

	
16.02%

	
16.37%

	
3qkpcg1

	
5843

	
22.77%

	
27.59%

	
22.77%

	
27.59%

	
25.57%

	
27.59%

	
3qkpcg2

	
6068

	
17.83%

	
21.01%

	
19.45%

	
21.01%

	
21.01%

	
21.01%

	
3qkpcg3

	
6091

	
17.94%

	
19.16%

	
18.22%

	
19.16%

	
18.22%

	
19.16%

	
3qkpcg4

	
7978

	
0.11%

	
0.11%

	
0.13%

	
0.16%

	
0.13%

	
0.16%

	
3qkpcg5

	
6290

	
13.77%

	
16.85%

	
13.77%

	
16.85%

	
13.77%

	
16.85%

	
4qkpcg1

	
18,025

	
3.33%

	
7.94%

	
3.53%

	
7.94%

	
5.03%

	
7.94%

	
4qkpcg2

	
17,049

	
6.02%

	
9.70%

	
8.39%

	
12.85%

	
9.97%

	
12.85%

	
4qkpcg3

	
15,835

	
26.41%

	
29.81%

	
28.99%

	
31.76%

	
29.70%

	
31.76%

	
4qkpcg4

	
26,428

	
14.50%

	
17.61%

	
14.50%

	
17.61%

	
16.31%

	
17.61%

	
4qkpcg5

	
15,768

	
10.70%

	
16.91%

	
11.71%

	
16.91%

	
14.68%

	
18.77%

	
5qkpcg1

	
10,663

	
37.09%

	
39.27%

	
37.16%

	
39.27%

	
38.28%

	
39.46%

	
5qkpcg2

	
10,720

	
37.50%

	
40.56%

	
38.87%

	
40.56%

	
39.52%

	
40.56%

	
5qkpcg3

	
10,846

	
35.59%

	
36.69%

	
37.31%

	
37.74%

	
37.80%

	
39.52%

	
5qkpcg4

	
13,639

	
32.18%

	
34.76%

	
33.03%

	
34.76%

	
33.97%

	
34.76%

	
5qkpcg5

	
10,883

	
40.27%

	
43.41%

	
40.52%

	
43.41%

	
40.71%

	
43.41%

	
6qkpcg1

	
6032

	
44.21%

	
44.23%

	
45.37%

	
48.69%

	
46.55%

	
48.69%

	
6qkpcg2

	
6041

	
49.87%

	
52.18%

	
49.87%

	
52.18%

	
50.62%

	
52.18%

	
6qkpcg3

	
6429

	
30.51%

	
32.20%

	
31.42%

	
32.34%

	
32.28%

	
32.34%

	
6qkpcg4

	
7366

	
15.95%

	
20.00%

	
15.95%

	
20.00%

	
24.31%

	
30.74%

	
6qkpcg5

	
5866

	
57.29%

	
59.14%

	
57.86%

	
59.14%

	
59.14%

	
59.14%

	
7qkpcg1

	
18,900

	
20.99%

	
27.71%

	
26.01%

	
28.02%

	
27.98%

	
30.17%

	
7qkpcg2

	
22,545

	
21.91%

	
25.24%

	
24.05%

	
26.51%

	
25.77%

	
27.24%

	
7qkpcg3

	
15,637

	
39.76%

	
49.77%

	
42.30%

	
49.77%

	
43.54%

	
49.77%

	
7qkpcg4

	
27,146

	
17.66%

	
20.24%

	
18.96%

	
20.24%

	
19.17%

	
20.24%

	
7qkpcg5

	
18,714

	
13.96%

	
18.26%

	
15.45%

	
21.49%

	
16.29%

	
21.49%

	
8qkpcg1

	
12,388

	
50.01%

	
50.01%

	
50.01%

	
50.01%

	
50.01%

	
50.01%

	
8qkpcg2

	
13,221

	
46.26%

	
47.89%

	
46.26%

	
47.89%

	
46.78%

	
48.40%

	
8qkpcg3

	
11,054

	
51.12%

	
53.56%

	
52.70%

	
58.03%

	
53.78%

	
58.03%

	
8qkpcg4

	
13,060

	
54.94%

	
57.07%

	
55.37%

	
57.07%

	
57.15%

	
58.61%

	
8qkpcg5

	
12,960

	
37.57%

	
42.59%

	
37.57%

	
42.59%

	
38.89%

	
42.59%

	
9qkpcg1

	
6823

	
63.53%

	
63.86%

	
63.53%

	
63.86%

	
63.86%

	
63.86%

	
9qkpcg2

	
7673

	
35.36%

	
36.45%

	
37.09%

	
37.85%

	
37.29%

	
37.85%

	
9qkpcg3

	
5291

	
100.51%

	
105.42%

	
102.77%

	
105.42%

	
105.11%

	
105.42%

	
9qkpcg4

	
8241

	
33.08%

	
36.37%

	
33.38%

	
36.37%

	
37.22%

	
42.59%

	
9qkpcg5

	
6792

	
56.03%

	
57.73%

	
56.10%

	
57.73%

	
56.10%

	
57.73%

	
Av.

	
12,012.38

	
27.80%

	
30.55%

	
28.74%

	
31.20%

	
29.96%

	
31.86%

From Table 3 and Table 4, we can observe the inferiority of the GLPK solver, which is based on one of the best exact algorithms: the branch-and-cut algorithm (see [17]). GLPK realizes an average objective value of [image: there is no content] compared to those reached by NSBM within less runtime. For three considered time limits, the average value of the mean objective values ([image: there is no content]) reached by NSBM over five trials are better than the average value of the best objectives values computed by GLPK, where [image: there is no content] for the time limit of 50 s, [image: there is no content] for 100 s and [image: there is no content] for 200 s. With the first limit of runtime (i.e., 50 s), if we consider only the best solutions returned by NSBM over five independent trials, we can observe that NSBM successes in improving the best solutions computed by GLPK on 44 cases and fails for only one instance. By extending the time limit to 100 seconds (resp. 200 s), the best solutions computed by NSBM over five trials become more robust. For two last cases, NSBM dominates GLPK on all cases. Furthermore, the computational effort required by NSBM is much more interesting than that consumed by the GLPK solver.

5. Conclusions

This paper investigated a new mathematical model for designing and optimizing economic policies in an environmental protection zone. To efficiently solve the proposed problem, we propose a metaheuristic to generate and explore a series of reduced solution spaces. The proposed method embeds an efficient starting solution procedure into a sophistical neighborhood search. The staring solution procedure consists of solving the original problem by successively ignoring the constraints and the quadratic term. The neighborhood search is introduced to build and explore a series of neighborhoods from the starting solution. The performance of the proposed approach is evaluated on a group of benchmark data sets and compared with a performant integer programming solver: GLPK. The provided results show the method’s success in providing high-quality solutions within reasonable runtime.

Acknowledgments

This work is partially funded by grants from the NSFC: 41501441, the Hubei Provincial Natural Science Foundation of China: 2013CFB294, and Wuhan University Grant: 2015qyw16.

Author Contributions

Xiaoliang MENG analyzed the data set; Xiaochuan SHI contributed reagents/ materials/analysis tools; Lei WU conceived and designed the models and experiments; Xiaochuan SHI and Lei WU wrote the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

	1.
Lee, B.; Won, D.; Park, J.H.; Kwon, L.N.; Moon, Y.H.; Kim, H.J. Patent-Enhancing Strategies by Industry in Korea Using a Data Envelopment Analysis. Sustainability 2016, 8, 901. [Google Scholar] [CrossRef]

	2.
Lee, D.; Kim, S.; Kim, S. Development of Hybrid Model for Estimating Construction Waste for Multifamily Residential Buildings Using Artificial Neural Networks and Ant Colony Optimization. Sustainability 2016, 8, 870. [Google Scholar] [CrossRef]

	3.
Li, L.; Lin, B. Green Economy Performance and Green Productivity Growth in China’s Cities: Measures and Policy Implication. Sustainability 2016, 8, 947. [Google Scholar] [CrossRef]

	4.
Shim, S.O.; Park, K.B. Technology for Production Scheduling of Jobs for Open Innovation and Sustainability with Fixed Processing Property on Parallel Machines. Sustainability 2016, 8, 904. [Google Scholar] [CrossRef]

	5.
Garey, M.; Johnson, D. Computers and Intractability: A Guide to the Theory of NP-Completeness; Freeman: New York, NY, USA, 1979. [Google Scholar]

	6.
Gallo, G.; Hammer, P.; Simeone, B. Quadratic knapsack problems. Math. Program. Study 1980, 12, 132–149. [Google Scholar]

	7.
Pisinger, D. The quadratic knapsack problem: A survey. Discret. Appl. Math. 2007, 155, 623–648. [Google Scholar] [CrossRef]

	8.
Pferschy, U.; Schauer, J. The knapsack problem with conflict graphs. J. Graph Algorithms Appl. 2009, 13, 233–249. [Google Scholar] [CrossRef]

	9.
Yamada, T.; Kataoka, S.; Watanabe, K. Heuristic and exact algorithms for the disjunctively constrained knapsack problem. Inf. Process. Soc. Jpn. J. 2002, 43, 2864–2870. [Google Scholar]

	10.
Chen, Y.; Hao, J.K. An iterated “hyperplane exploration” approach for the quadratic knapsack problem. Comput. Oper. Res. 2017, 77, 226–239. [Google Scholar] [CrossRef]

	11.
Hifi, M.; Saleh, S.; Wu, L. A Fast Large Neighborhood Search for Disjunctively Constrained Knapsack Problem. In Proceedings of the Third International Symposium, ISCO 2014, Lisbon, Portugal, 5–7 March 2014; pp. 396–407.

	12.
Hifi, M.; Saleh, S.; Wu, L. A hybrid guided neighborhood search for the disjunctively constrained knapsack problem. Cogent Eng. 2015. [Google Scholar] [CrossRef]

	13.
Glover, F.; Woolsey, E. Converting the 0–1 polynomial programming problem to a 0–1 linear program. Oper. Res. 1974, 22, 180–182. [Google Scholar] [CrossRef]

	14.
Martello, S.; Pisinger, D.; Toth, P. Dynamic programming and strong bounds for the 0–1 knapsack problem. Manag. Sci. 1999, 45, 414–424. [Google Scholar] [CrossRef]

	15.
Shaw, P. Using constraint programming and local search methods to solve vehicle routing problems. In Proceedings of the Fourth International Conference on Principles and Practice of Constraint Programming, CP98, Pisa, Italy, 26–30 October 1998; pp. 417–431.

	16.
Billionnet, A.; Soutif, E. An exact method based on Lagrangian decomposition for the 0–1 quadratic knapsack problem. Eur. J. Oper. Res. 2004, 157, 565–575. [Google Scholar] [CrossRef]

	17.
GLPK: GNU Linear Programming Kit. Available online: https://www.gnu.org/software/glpk/ (accessed on 23 June 2012).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

nav.xhtml

 sustainability-09-00236

 		
 sustainability-09-00236

media/file0.png

