
sustainability

Article

A Hybrid Local Search Algorithm for the Sequence
Dependent Setup Times Flowshop Scheduling
Problem with Makespan Criterion

Yunhe Wang 1 ID , Xiangtao Li 1,* and Zhiqiang Ma 1,2,*
1 School of Information and Science Technology, Northeast Normal University, Changchun 130117, China;

wangyh082@nenu.edu.cn
2 Department of Computer Science, College of Humanities & Sciences of Northeast Normal University,

Changchun 130117, China
* Correspondence: lixt314@nenu.edu.cn (X.L.); mazqnenu@126.com (Z.M.);

Tel.: +86-0431-8453-6338 (X.L.); +86-0431-8453-6335 (Z.M.)

Received: 25 October 2017; Accepted: 9 December 2017; Published: 14 December 2017

Abstract: This paper focuses on the flowshop scheduling problem with sequence dependent
setup times (FSSP-SDST), which has been an investigated object for decades as one of the most
popular scheduling problems in manufacturing systems. A novel hybrid local search algorithm
called HLS is presented to solve the flowshop scheduling problem with sequence dependent setup
times with the criterion of minimizing the makespan. Firstly, the population is initialized by the
Nawaz-Enscore-Hoam based problem-specific method (NEHBPS) to generate high quality individuals
of the current population. Then, a global search embedded with a light perturbation is designed
to produce a new population. After that, to improve the quality of individuals in the current
population, a single insertion-based local search is applied. Meanwhile, a further local search strategy
based on the insertion-based local search is used to find better solutions for the individuals which
are non-improved. Finally, the heavy perturbation is used to explore potential solutions in the
neighbor region. To validate the performance of HLS, we compare our proposed algorithm with
other competitive algorithms on Taillard benchmark problems. From the experimental results, it can
be concluded that the proposed algorithm outperforms the benchmark algorithms.

Keywords: optimal scheduling; sequence dependent setup times; local search; makespan

1. Introduction

Permutation flowshop scheduling is one of the classical combinatorial optimization problems
since the seminal work of Johnson Seminal [1], which is widely applied in real life, such as computer
work, industrial engineering, mathematics. In particular, the permutation flowshop scheduling
problem with sequence dependent setup times has attracted the attention of many researchers. For this
problem, the sequence dependent means that the setup times of the processing jobs depend both on
the preceding job and the job to be processed. It is different from the sequence independent which
depends only on the job to be processed [2,3]. Meanwhile, the setup time is regarded as negligible in a
lot of cases thus it is often ignored or dealt with a part of processing time [4–7].

Recently, many heuristic methods have been introduced to solve this problem since exact
methods [8] may take too much computation cost. However, the exact methods are applied
widely in the hybridization algorithms for many combinational optimization problems. Such as,
Nishi and Hiranaka employed the Lagrangian relaxation and cut generation technique for solving
sequence-dependent setup time flowshop scheduling problems to minimise the total weighted
tardiness effectively [9], and in the book about the use of metaheuristics in optimization [10],

Sustainability 2017, 9, 2318; doi:10.3390/su9122318 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-0013-4530
http://dx.doi.org/10.3390/su9122318
http://www.mdpi.com/journal/sustainability

Sustainability 2017, 9, 2318 2 of 35

the chapters [11,12] surveyed the integer linear programming techniques and metaheuristics derived
from branch and bound for the combinatorial optimization respectively. Furthermore, Andreagiovanni
and Nardin [13] proposed an improved ant-colony algorithm for designing sensor networks in
2015, where linear programming relaxations were employed to take better variable fixing decisions.
Andreagiovanni and et al. also raised a very effective and fast algorithm [14] integrated an ant
colony-like algorithm with an approximation algorithm and linear relaxations for solving multiperiod
network design. Besides, Gambardella and et al. [15] presented how ant colony algorithms combined
with solution improvement phases following some simple but effective rules can lead to good
improvements in the quality of obtained solutions. In terms of the heuristic algorithms, the advantage
of them is that some excellent solutions can be gained quickly, contrarily the disadvantage is that the
quality of the solutions can not be guaranteed in general. There are three types of heuristics including
constructive heuristic, meta-heuristic and hybrid heuristic respectively to deal with FSSP-SDST in
the literature. A constructive heuristic comprises a stochastic construction and a greedy construction,
and constructs feasible solutions by adding jobs one by one to the partial permutation. NEH algorithm
was proposed by Nawaz et al. [16] and proved effective in finding the good solution for FSSP-SDST.
Based on it, Rios-Mercado and Bard [17] proposed an extension constructive deterministic heuristic
(NEHT_RMB) with high effectiveness for FSSP-SDST with the makespan objective. Meanwhile,
a greedy randomized adaptive search procedure (GRASP) was also presented to improve the fitness
of solutions. Ruiz et al. [18] used two algorithms namely a novel genetic algorithm (GA) and a
memetic algorithm (MA) based on the classical genetic algorithm and they performed better than
that of Rios-Mercado and Bard [19]. Rajendran and Ziegler [20] proposed an ant colony optimization
(PACO) to enhance the solutions for FSSP-SDST with the objective of makespan and total flowtime
of jobs respectively using NEHT_RMB method. Another ant colony optimization algorithm (ACO)
was developed by Gajpal et al. [21] for FSSP-SDST with makespan criterion. Tseng et al. [22]
presented an inventive heuristic algorithm and compared it with an existing index heuristic algorithm.
The migrating birds optimization meta-heuristic was proposed by Benkalai et al. [23] and its good
performance was proved by related experiments. The last but not least type of the heuristic is the
hybrid algorithm; it also contains many algorithms blended with local search methods. Rios-Mercado
and Bard [19] developed a heuristic algorithm called the hybrid algorithm which was the modification
of the four heuristics compared with three benchmarks presented by Simons [24]. Besides, a new
heuristic method called iterative greedy algorithm (IG) was proposed by Jacobs and Brusco [25],
which was applied widely in other heuristics and had shown better performance for FSSP-SDST in the
algorithm developed by Ruiz et al. [26]. Based on the basic IG (IG_RS), an effective local search was
added to it in the destruction and construction phases for FSSP-SDST. In the same way, that effective
local search was also added to the original MA which was called MALS to solve the same problem.
By the experiments, it has to be noted that the above two hybrid algorithms, IG_RSLS and MALS,
outperformed others including earlier heuristics and that of Rajendran and Ziegler [27] in getting better
solutions. In addition, another effective iterated local search algorithm (ILS) developed by Wang et al.
was shown its high efficiency with the objective of makespan in FSSP-SDST [28]. However, most of
the above algorithms still cannot find solutions with high quality in a reasonable computational time.
In this paper, we propose a hybrid local search algorithm for the sequence dependent setup times
flowshop scheduling problem with makespan criterion. The difference of our proposed algorithm
is that in most of the above algorithms, the initial individuals are generated randomly to keep the
diversity of the population and most of them are not of high quality and this leads to solutions of low
quality in next generations. In HLS, a NEH based problem-specific method is applied to guarantee
the diversity and quality of the initial solutions at the same time. Besides, some of the above methods
only focus on the global search capability and on contrary close attention to the local search ability is
paid in some algorithms such as ILS and ACO. Hence, we combine the global search with the local
search to enhance the solution quality in HLS. Furthermore, without effective perturbation methods,
some algorithms such as IG_RS and IG_RSLS, are easy to be trapped into a local optimum after a

Sustainability 2017, 9, 2318 3 of 35

number of iterations of local search without improving the quality of solutions further. Thus, in HLS,
an efficient perturbation method is carried out to guide the search towards another area of the solutions
and achieve better exploration.

Based on the above analyses, the hybrid local search algorithm can be summarized as follows:
first of all, an overall framework of HLS based on local search and perturbation operators is presented
to solve FSSP-SDST. During the search, the NEH based problem-specific method is used to initialize
the population. Then to improve the performance of current population, a global search with a
perturbation is applied. Next, we use an insertion-based local search to enhance the solutions for
FSSP-SDST. What’s more, a further local search method is used to exploit neighbors with good quality
if the individuals cannot be improved by single local search method. At last, an update method is
applied to update the current population. In order to show the performance of our proposed algorithm,
six state-of-the-art algorithms namely GA, MA, MALS, IG_RS, IG_RSLS and PACO are compared to test
its high effectiveness. For the purpose of experimentation, we use the Taillard benchmark problems
for FSSP-SDST at four levels including SDST10, SDST50, SDST100 and SDST125 with 12 sizes of data
to analyze the performance of all the above seven algorithms. The statistical results show the high
efficiency and competitive performance of HLS.

The rest of this paper is organized as follows: Section 2 describes the flowshop scheduling problem
with sequence dependent setup times. The detail of the proposed algorithm is given in Section 3.
In Section 4, the computational experiments are conducted. Finally, we draw the conclusion and the
future work in Section 5.

2. The Flowshop Scheduling Problem with Sequence Dependent Setup Times

For the flowshop scheduling problem with sequence dependent setup times, a set of n jobs or tasks
in J = {1, 2, 3, ..., n} has to be processed on a set M = {1, 2, 3, ..., m} of m machines sequentially, such as
first on machine 1, then on machine 2, till the end on machine m. The objective of this problem is to
find a processing sequence with the minimized makespan (Cmax). For all the machines, the operating
order of each processing sequence is identical. For a job permutation sequence π = {π1, π2, ..., πn},
the value of the setup times depends on the current job processing on the certain machine and the next
job in the same permutation. Each job can be processed on one machine every time and meanwhile
each machine can process only one job. All n×m operations are non-preemptive and none of them
on each machine has the priority. The definition of the flowshop scheduling problem with sequence
dependent setup times can be described as follows:

C(π1, 1) = pπ1,1

C(πi, 1) = C(πi−1, 1) + pπi ,1 + S1,πi−1,πi , i = 2, ..., n

C(π1, j) = C(π1, j− 1) + pπ1,j, j = 2, ..., m

C(πi, j) = max(C(πi−1, j) + Sj,πi−1,πi , C(πi, j− 1)) + pπi ,j, i = 2, ..., n; j = 2, ..., m

Cmax(π) = C(πn, m)

(1)

where Sj,πi ,πk is denoted as the setup time when producing job πk on the machine j after having
processed job πi. pπi ,j denotes the processing time of job πi on machine j. The C(πi, j) is the complete
time of job πi on machine j. In this paper, we assume that Sj,0,πi = 0, Cπi ,0 = 0 and Cπ0,j = 0
(j ∈ M, i, k ∈ J).

Next, in order to show the problem simply, a problem with three jobs and three machines
are introduced. The setup times and processing times are presented in Tables 1 and 2 respectively.
A scheduling chart is outlined in Figure 1. From this figure, we can calculate the value of makespan
is 20.

Sustainability 2017, 9, 2318 4 of 35

Table 1. Processing times of jobs on each machine.

J1 J2 J3

M1 2 3 1
M2 4 2 5
M3 3 1 2

Table 2. Sequence dependent setup times of jobs on each machine.

M1 M2 M3

J1 J2 J3 J1 J2 J3 J1 J2 J3

J1 – 2 3 J1 – 3 1 J1 – 2 4
J2 2 – 4 J2 1 – 3 J2 3 – 8
J3 3 4 – J3 3 2 – J3 6 7 –

0 2 4 6 8 10 12 14 16 18 20 22

M1

M2

M3

M
ac

hi
ne

Time(s)

J2 J3J1

J1 J3J2

J1J2 J3

setupTimes

J1

J2

J3

Figure 1. Gratt chart for J2-J1-J3 to the example problem.

3. A Hybrid Local Search Algorithm

3.1. Overall Framework

In this section, the hybrid local search framework for solving FSSP-SDST with the objective
of makespan is proposed by integrating some problem-specific methods. Each operator plays an
important role in improving the efficiency of HLS.

At the beginning of the proposed algorithm, a NEH based problem-specific heuristic is utilized to
initialize the population with N individuals. In other words, N permutation sequences for FSSP-SDST
are formed. Then an improved population with good neighbor individuals is developed by the global
search method. In addition, an effective single insertion-based local search method is applied to each
individual for exploiting good individuals around it. If a better individual is found, the previous one
will be updated. Otherwise, the multiple insertion-based local search is executed deeply as a further
search regarding the individuals that are trapped into the local optima. Then, the solution will be
stored in PotentialInd to maintain the good individual completely. In order to explore individuals
transversely, the heavy perturbation approach is used to partly guide the trend of search. At last,
we apply an effective update method to update the current population. The detail schemes of HLS are
given in Algorithm 1.

Sustainability 2017, 9, 2318 5 of 35

Algorithm 1 HLS.
Input:
The population size N.
The number of jobs n.
The maximum times of further search FSNummax.
Output:
The best individual sbest.

1: Initialize the current population Pc = s1, s2, ..., sN and PotentialInd;
2: Initialize sbest = s1;
3: while the stopping criterion is not met do
4: GlobalSearch;
5: for i = 1 to N do
6: position set R = {1, 2, ...n};
7: isReplacing = false;
8: select r ∈ R;
9: R = R \ r;

10: s′i = Insertion-based Local Search(r, si);
11: if Cmax(s′i) < Cmax(si) then
12: si = s′i; isReplacing = true;
13: else
14: iterNum = 0;
15: while iterNum ≤ FSNummax do
16: select r′ ∈ R;
17: R = R \ r′;
18: s′i = Insertion-based Local Search(r′, si);
19: if Cmax(s′i) < Cmax(si) then
20: si = s′i; isReplacing = true; break;
21: else
22: iterNum = iterNum + 1;
23: end if
24: end while
25: end if
26: if isReplacing = true then
27: Update the PotentialInd;
28: else
29: si = HeavyPerturbation(si);
30: end if
31: Pc = UpdatePc(si);
32: Update sbest using si;
33: end for
34: Update sbest using PotentialInd;
35: end while
36: return sbest

3.2. Initialization

Regarding the initialization stage, it is divided into three parts including the population
initialization, PotentialInd initialization and the initialization of sbest. First, for the population
initialization, it is generated randomly. Then, in order to produce some high quality solutions,
the NEH based problem-specific method is applied to initialize the population which is composed of
N random individuals. After that, HLS can provide some high quality solutions at the beginning of
the search process. NEH method can be presented as follows in detail:

Sustainability 2017, 9, 2318 6 of 35

(1) Select a solution s from Pc randomly, the first two jobs are extracted and two partial possible
schedules with these two jobs are evaluated. The better one based on makespan is chosen as the
current sequence.

(2) For each unscheduled job j in s, put it into all the possible positions of the current scheduled
sequence to generate all the possible partial sequences. The best one is selected as the current
sequence for scheduling the next job.

(3) A new individual snew is formed after scheduling all jobs, if snew is better than s, then it will replace s.

With respect to NEHBPS, for N times of iterations, a random individual is chosen to carry out
NEH. Not all the individuals are processed by NEH, hence, the diversity of the initial population can
be ensured. In summary, a population Pc is generated with the feature of quality and diversity.

Secondly, HLS will initialize PotentialInd by assigning it a determinate sequence to store some
problem-specific heuristic information. It is promised that a good individual is stored completely to
get ready for finding the best individual during the search process.

Lastly, we initialize sbest using the first individual in the population. This individual is updated
via the iterations of search process in HLS. At the end of HLS, sbest will be outputted with the minimum
makespan for FSSP-SDST.

3.3. Global Search Method

The goal of this method is to gain an improved population by perturbing the good individuals
and then updating them. In this subsection, the top 25% individuals are chosen as a new elite
population to carry out the light perturbation. This setting aims to explore large search space using
the appropriate solutions. Furthermore, we update the current population by using the individual
which has undergone the light perturbation for enhancing the fitness of the population overall.
The framework of GlobalSearch is shown in Algorithm 2.

Algorithm 2 GlobalSearch.
Input:
The number of jobs n.
The current population Pc.
The maximal number of GlobalSearch GSNummax.
The mutation probability MP.
Output:
The improved population Pb.

1: i = 0, j = 0;
2: Sort individuals in Pc by an ascending makespan order.
3: while i ≤ GSNummax do
4: for each individual s in the first 25% range of Pc do
5: while j < MP× n do
6: s′ = LightPerturbation(s);
7: Pc = UpdateInds(s′);
8: if Cmax(s′) < Cmax(s) then
9: s = s′;

10: end if
11: j = j + 1;
12: end while
13: end for
14: Sort individuals in Pc by an ascending makespan order;
15: i = i + 1;
16: end while
17: Pb = Pc;
18: return Pb

Sustainability 2017, 9, 2318 7 of 35

This method allows the perturbed solution to maintain some characteristics of the previous
solution and find other characteristics in new solutions for improving the diversity of the population.
It also helps HLS to find other optimal solutions in the neighborhoods. The light perturbation strength
is so sufficient to lead the search trajectory to another neighbor region which can result in a different
solution. In conclusion, GlobalSearch can both enhance the diversity of the population and improve the
convergence rate of HLS.

3.4. Update Method

In this section, two algorithms, namely Algorithms 3 and 4, are presented. In Algorithm 3, we use
the specified individual to update the individual randomly in the current population. At the same
time, the update population method is presented in Algorithm 4. After achieving it, an elite population
including some individuals with top fitness has acquired.

Algorithm 3 UpdateInds.
Input:
The current population Pc.
An individual to be used for updating s.
Output:
The current population with updated individuals Pc.

1: TempPc = Pc;
2: while TempPc 6= ∅ do
3: Randomly select an individual s′ in Pc;
4: if Cmax(s) < Cmax(s′) then
5: s′ = s; break;
6: else
7: remove the solution s′ in TempPc;
8: end if
9: end while

10: return Pc

Algorithm 4 UpdatePc.
Input:
The population size N.
Each individual in the current population si.
The maximal update number UpdateNummax.
Output:
The updated population Pc.

1: iter = 0;
2: t = {1, 2, ...N};
3: while iter < UpdateNummax do
4: Randomly select a position k in t;
5: t = t \ k;
6: if Cmax(si) < Cmax(sk) then
7: sk = si; break;
8: end if
9: iter = iter + 1;

10: end while
11: return Pc

Sustainability 2017, 9, 2318 8 of 35

Except for the above two update methods, another update method is used for PotentialInd.
As Algorithm 1 dedicates, if the current solution has improved successfully in the single insertion-based
local search or the further search section, PotentialInd will be updated.

3.5. Perturbation and Local Search Methods

In the single insertion-based local search and the further search, if the current individual has
been replaced with a better individual, then the better one is stored. Otherwise, it means that this
solution has been trapped into a local optimum, the heavy perturbation will be employed to the
current solution. Compared with the light perturbation, the heavy perturbation has larger interference
strength to provide enough perturbation for the high quality solutions. The heavy perturbation is
used to obtain some characteristics of the previous solution, but it isn’t apt for all the local search
methods. Such as in GlobalSearch, the light perturbation method is more suitable as it has a better result
for disturbing the good solution with the relatively fitting strength. The light perturbation and the
heavy perturbation operations can be defined as follows:

The heavy perturbation:

(1) Input a solution s. Three different positions p1, p2, p3 of s are randomly selected, where
p1 < p2 < p3.

(2) Let S1 represent the partial sequence between p1 and p2 and S2 denote the other partial sequence
between p2 and p3 (not including p2), then exchange S1 and S2 to generate a new solution snew

to be outputted.

The light perturbation:

(1) Input a solution s. Two different positions p1, p2 of s are randomly selected, where p1 < p2.
(2) Let S represent the partial sequence between p1 and p2 (not including p1), then move the job in

position p1 behind S to generate a new solution snew to be outputted.

On the first phase, a single insertion-based local search is employed to HLS for exploring better
solutions. In [29–37], this local search has shown its high effectiveness in obtaining the better quality
solutions than the local search based on swap operators. The curial idea of this method is to compare
the previous makespan with the new makespan of the sequence, which has inserted a job into all
positions of the sequence. Then the better one will be accepted. But if a solution cannot be improved,
it will experience the further search to make it rope out of the local optimum on the second phase.
Moreover, the further search with the purpose of exploiting good individuals in the neighborhood
can increase the convergence speed of HLS. The effective insertion-based local search is described
as follows:

(1) Input a solution s and a position r.
(2) Let the job j be a job in the position r. Put j into each of the left possible positions of s to generate

n− 1 neighborhood solutions.
(3) Let sbest be the best solution based on the minimal makespan among the n− 1 neighborhood

solutions.
(4) Output sbest.

3.6. How to Balance between Exploitation and Exploration

For designing the hybrid heuristic algorithm, it is known to all that diversity and convergence
are the two basic issues. In terms of diversity, exploitation is executed in HLS for improving the
convergence rate. Otherwise, explorations to other search directions on breadth is applied to HLS
for maintaining or enhancing the diversity of the population. HLS can trade off the convergence and
diversity efficiently where the diversity is pursued by the exploration and the convergence is increased
in the manner of the exploitation.

Sustainability 2017, 9, 2318 9 of 35

(1) Regarding the exploitation: It means that a further search in the large and deep search space
can be executed. For the purpose of searching better solutions, firstly we have used the single
insertion-based local search to begin the evolution of population. Furthermore, if the current
individual cannot be replaced with the new one after carrying out the single local search,
thus secondly we choose the further search based on the insertion-based local search to search
the solutions deeply. After above methods, the rate of convergence can be improved quickly.

(2) Regarding the exploration: In other words, the central idea of it is to maintain the diversity
of the population. In the search process, we have applied the heavy perturbation method to
the individuals which are trapped in the local optima. This way effectively avoids the current
population being trapped into the local optima and urges that population to an anticipant
direction for next generation. It is particularly worth mentioning here that the light perturbation
in GlobalSearch keeps the diversity of the improved population, which has a high convergence
for searching good solutions at the same time.

As we expect, a good population with high quality and diversity will be formed. Moreover, at the
foundation of the above analyses, HLS can balance the exploitation with exploration in the search
process successfully.

4. Experimental Results

4.1. Environmental Setup

HLS is performed on a PC with 4 GB RAM and a CPU of 3.40 GHz on Windows 7 OS. It is
programmed in C++ by Microsoft Visual Studio 2013. It is obviously known that the algorithm with
the more running time can bring out the better result. To compare with other algorithms fairly, the stop
criterion of HLS is CPU time limit given by (n×m/2)× f milliseconds. Besides, f is set as 30, 60, 90
respectively, which is the same as Ruiz used in [38].

4.2. Benchmark Problem Instances and Benchmark Algorithms

To verify the performance of the proposed algorithm, Taillard-based sets from Vallada et al. (2003)
including 4 sets and 480 benchmark instances are used. The instances in each set range from 20 jobs
with 5 machines to 500 jobs with 20 machines, consisting of 20 × 5, 20 × 10, 20 × 20, 50 × 5, 50 × 10,
50 × 20, 100 × 5, 100 × 10, 100 × 20, 200 × 10, 200 × 20 and 500 × 20 respectively. Besides, each size
has 10 specific examples. It’s remarkable that each set is different in processing times and setup times.
The first two sets are SDST10 and SDST50, in which the setup times are 10% and 50% of the average
processing times pπi ,j. In other words, the setup times are generated equably from the distribution
ranges [1, 9] and [1, 49] because pπi ,j in this benchmark are uniformly generated in the distribution
range [0, 99]. Similarly, the last two sets are SDST100 and SDST125, in which the setup times are
generated uniformly from the distribution ranges [1, 99] and [1, 124], respectively 100% and 125%
of pπi ,j.

Then, to show the effectiveness of HLS, six efficient algorithms including GA, MA, MALS,
PACO, IG_RS, and IG_RSLS on FSSP-SDST [18,38] are used to compare with our proposed algorithm.
Furthermore, a response variable called the relative percentage deviation (RPD) is applied to show the
increase between a specific solution produced from a certain algorithm and the best bound found in
http://soa.iti.es/problem-instances.

RPD =
SOMEsol − BESTsol

BESTsol
× 100(%) (2)

4.3. Experimental Parameter Settings

HLS has five control parameters, comprised of N, MP, GSNummax, UpdateNummax and FSNummax.
Instances Ta071–Ta080 (100× 10) in SDST50 are used to calibrate the parameters as the base case due

http://soa.iti.es/problem-instances

Sustainability 2017, 9, 2318 10 of 35

to space limitations in the following experiments. Each experiment runs ten times independently with
CPU time equaling to (n×m/2)× 30. The good results relatively are marked in bold.

4.3.1. The Influence of the Population Size N

It is obvious that the population size is an essential parameter to heuristic algorithms. Selecting an
appropriate size has been known as a challenging and puzzling task. If the size is too small, it is easy for
the algorithm to have a fast convergence which leads to local optima prematurely. However, using too
large size will bring about additional computation costs. To get the influence of the population size
on the search performance distinctly, the population size has been varied from 10 to 40 with the RPD
results summarized in Table 3.

Table 3. The RPD of different numbers of N. The bold numbers are the relatively good ARPD results.

DataNo. 10 20 30 40

Ta071 0.72 0.47 0.54 0.50
Ta072 0.80 0.81 0.94 1.17
Ta073 0.65 0.58 0.59 0.56
Ta074 0.62 0.68 0.58 0.89
Ta075 0.70 0.46 0.77 0.76
Ta076 0.67 1.11 1.13 0.78
Ta077 0.86 0.65 0.63 0.66
Ta078 0.41 0.41 0.88 0.80
Ta079 0.56 0.67 0.56 0.78
Ta080 1.02 0.83 1.05 0.91

Average 0.70 0.67 0.77 0.78

From the average results of RPD in Table 3, the population size 20 can provide better average
RPD (ARPD) in some instances including Ta071, Ta075, Ta078 and Ta080. In Ta078, a population size 10
provides the same least ARPD as a population size 20 with the value of 0.41. Besides a population
size 10 and 30 can bring out the same least ARPD (0.56) in Ta079. Moreover, HLS with a population
size 30 can gain a better RPD in instances Ta074, Ta077 and Ta079. Figure 2 gives an empirical insight of
influence on each population size using the confidence intervals at the 95% confidence level of ARPD
for Ta071–Ta080 and it is observed that the population size 20 beats other settings with the best ARPD.
Therefore, it is concluded that the population size 20 outperforms other settings in producing better
ARPD results.

A
R

P
D

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

N

40302010

95% Confidence Intervals Error Bar

Figure 2. ARPD plot for Ta071–Ta080 with different numbers of N.

Sustainability 2017, 9, 2318 11 of 35

4.3.2. The Influence of the Maximal Number of GlobalSearch GSNummax

In this experiment, we will discuss the effect of GSNummax. In GlobalSearch, GSNummax indicates
the maximum number of iterations that conduct the search on the selected individuals who can be
further interfered. To demonstrate the effect of GSNummax on the proposed algorithm, Ta071–Ta080 are
also applied to present the performance measured as RPD with GSNummax chosen from set {3, 4, 5, 6}.
Other parameters temporarily set as the previous experiment in this experiment. Table 4 summaries
RPD results of each GSNummax.

Table 4. The RPD of different numbers of GSNummax. The bold numbers are the relatively good
ARPD results.

DataNo. 3 4 5 6

Ta071 0.42 0.55 0.62 0.60
Ta072 1.22 0.91 0.94 0.90
Ta073 0.76 0.73 0.59 0.65
Ta074 1.10 0.65 0.23 0.83
Ta075 0.86 0.22 0.77 0.62
Ta076 0.92 0.62 1.05 0.86
Ta077 0.87 0.69 0.63 0.91
Ta078 0.82 0.29 0.40 0.55
Ta079 0.93 0.54 0.55 0.74
Ta080 1.05 0.54 1.05 0.90

Average 0.89 0.57 0.68 0.76

From Table 4, it is easily observed that GSNummax = 3 gains only one best result in Ta071,
while GSNummax = 4 can perform better in Ta075, Ta076, Ta078, Ta079 and Ta080. What’s more,
GSNummax = 5 provides better results on three instances including Ta073, Ta074 and Ta077, however
only in Ta072, GSNummax = 6 beats other settings. In general, GSNummax = 4 gives the best average
RPD on instance set Ta071–Ta080.

Figure 3 provides the 95% confidence interval error graph in terms of ARPD for Ta071–Ta080
with different GSNummax. We can find that GSNummax = 4 has a strong adaptability with higher
convergence ability and it is good in solving FSSP-SDST with the best ARPD among all the settings.
Based on the above analyses, it is summarized that GSNummax = 4 results in the better performance for
most instances in terms of RPD. Therefore, GSNummax = 4 is the best choice for HLS.

 A
R

P
D

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

GSNummax

6543

95% Confidence Intervals Error Bar

Figure 3. ARPD plot for Ta071–Ta080 with different numbers of GSNummax.

Sustainability 2017, 9, 2318 12 of 35

4.3.3. The Effect of the Mutation Probability MP

As HLS introduced before, in GlobalSearch, a mutation probability was used to control iteration
times to implement the perturbation and update process. It is so important that too large MP will
bring a move at angles to the space with better results and small values of MP will guide the search to
the parallel axes in the exploring space. Hence, a set of MP ranging from 0.1 to 0.4 is used to present
the relative performance in getting better results with Ta071–Ta080. Table 5 details the results with
different values of MP.

It is shown in Table 5 that MP = 0.1 can gain best RPD only in Ta075, while MP = 0.2 provides
better RPD in instances set Ta071, Ta074. Besides, MP = 0.3 can give better results in most of the
instances including Ta072, Ta073, Ta076, Ta079 and Ta080 with the smallest average RPD. For Ta077
and Ta078, MP = 0.4 performs better results among all the settings. ARPD concluded in average 95%
CI is presented in Figure 4. Generally speaking, the experiments implies that MP = 0.3 might be a
good setting to solve FSSP-SDST with the better ARPD.

Table 5. The RPD of different numbers of MP. The bold numbers are the relatively good ARPD results.

DataNo. 0.1 0.2 0.3 0.4

Ta071 0.77 0.46 0.63 0.85
Ta072 0.94 0.90 0.55 1.02
Ta073 0.63 0.62 0.58 0.81
Ta074 0.94 0.46 0.57 0.56
Ta075 0.51 0.91 0.72 0.72
Ta076 1.19 0.82 0.75 0.79
Ta077 1.16 1.08 1.08 0.93
Ta078 0.93 0.43 0.48 0.21
Ta079 0.82 0.47 0.35 0.38
Ta080 0.87 0.39 0.15 1.00

Average 0.88 0.65 0.59 0.73

MP

0.40.30.20.1

A
R

P
D

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

95% Confidence Intervals Error Bar

Figure 4. ARPD plot for Ta071–Ta080 with different numbers of MP.

4.3.4. The Influence of the Maximal Number of Update UpdateNummax

In the update method UpdatePc of HLS, we use UpdateNummax to present the maximal iteration
number of update taking advantage of an individual separately. To maintain the diversity of the
population, the value of it can’t be too large and it should be less than the population size N according
to the framework of UpdatePc, however if it was too small, the update method has little effect on gaining

Sustainability 2017, 9, 2318 13 of 35

better result in the search space. A certain number is not apt for all instances. Here UpdateNummax is
set as 4, 6, 8, 10 to test its suitability. Other settings are as the preliminary experiments. Table 6 shows
the detail results.

From Table 6, UpdateNummax = 4 is suitable for Ta072, Ta073, Ta079 and Ta080. For Ta071, Ta074
and Ta077, UpdateNummax = 6 beats others in getting better RPD. By the same way, Ta072 and Ta075 can
give better results when UpdateNummax = 8 while UpdateNummax = 10 provides better RPD in instances
Ta076 and Ta078. Herein UpdateNummax = 4 and UpdateNummax = 8 present the same results in Ta072.
As can be seen in the average RPD, UpdateNummax = 6 outperforms other numbers of UpdateNummax.
It can be found in Figure 5, an average RPD plot with the confidence intervals at the 95% confidence
level is shown and it is easy to find out that UpdateNummax = 6 performs best among all the settings.
There can be concluded that different numbers of UpdateNummax will affect the performance of the
proposed algorithm variously and we set UpdateNummax to 6 for its good achivement.

Table 6. The RPD of different numbers of UpdateNummax. The bold numbers are the relatively good
ARPD results.

DataNo. 4 6 8 10

Ta071 0.67 0.54 0.83 0.66
Ta072 0.78 0.80 0.78 0.91
Ta073 0.33 0.59 0.37 0.39
Ta074 0.94 0.58 0.74 0.99
Ta075 0.79 0.77 0.64 0.68
Ta076 0.92 1.13 0.78 0.69
Ta077 1.08 0.63 1.18 0.97
Ta078 0.78 0.40 0.82 0.37
Ta079 0.40 0.56 0.81 0.79
Ta080 0.62 1.05 0.86 0.91

Average 0.73 0.71 0.78 0.74

UpdateNummax

10864

A
R

P
D

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

95% Confidence Intervals Error Bar

Figure 5. ARPD plot for Ta071–Ta080 with different numbers of UpdateNummax.

4.3.5. The Effect of the Maximum Number of Further Search FSNummax

If some individuals cannot be improved in the single insertion-based local search, then a further
search method will be applied to them. In this section, the effect of FSNummax used to define the
maximal number of the further exploitation will be discussed. We have taken advantage of Ta071–Ta080
measured as RPD to present the effect. The value of it varies through the set {10, 15, 20, 25} and other

Sustainability 2017, 9, 2318 14 of 35

parameter settings are the same as the previous experiments. The results of the settings are summarized
in Table 7.

From Table 7, FSNummax = 10 provides good RPD on Ta072, however for Ta078 and Ta073,
FSNummax = 20 and FSNummax = 25 perform better than other settings respectively. For the rest
instances including Ta071, Ta074, Ta075, Ta076, Ta077, Ta079 and Ta080, FSNummax = 15 is a good
setting beating other values in gaining better RPD. It is obvious that FSNummax = 15 outperforms
others on most of the instances. Besides, Figure 6 demonstrates ARPD with 95% confidence interval
of all the ten instances. It can be easily seen that FSNummax = 15 has the best result for solving the
instances in HLS.

Table 7. The RPD of different numbers of FSNummax. The bold numbers are the relatively good
ARPD results.

DataNo. 10 15 20 25

Ta071 0.71 0.28 0.54 0.78
Ta072 0.67 0.84 0.80 0.95
Ta073 0.39 0.41 0.59 0.32
Ta074 0.83 0.56 0.58 0.64
Ta075 0.52 0.22 0.77 0.76
Ta076 1.21 0.62 1.05 0.88
Ta077 0.91 0.49 0.63 0.86
Ta078 0.86 0.88 0.40 1.08
Ta079 0.59 0.50 0.55 0.62
Ta080 0.69 0.49 1.05 0.96

Average 0.74 0.53 0.70 0.78

FSNummax

25201510

A
R

P
D

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

95% Confidence Intervals Error Bar

Figure 6. ARPD plot for Ta071–Ta080 with different numbers of FSNummax.

4.4. Effect of NEH Based Problem-Specific Heuristic

In the initial stage of the proposed algorithm, a NEH based problem-specific heuristic method is
used to initialize the population which is produced by a random method. It plays an important part in
enhancing the results of the algorithm. Without it, the search of getting good individuals will spread
out in a quite broad direction. We respectively use the instances Ta071–Ta080 (100× 10) in SDST50
and SDST125 ran ten times to demonstrate the vital effect of it. Besides, the rest frameworks are the
same in order to compare fairly. Table 8 shows the results of instances in SDST50 and SDST125 clearly.
The better RPD results are marked in bold.

Sustainability 2017, 9, 2318 15 of 35

From Table 8, with the exception of Ta071, RPD of other instances in SDST50 using the method
with NEHBPS are all better than those without NEHBPS. Besides NEHBPS on all the instances of
SDST125 behaves the same as that on SDST50 except for Ta073. It means that RPD of the instances in
SDST125 taking advantage of the method with NEHBPS outperforms the method without NEHBPS
except Ta071 and Ta073. ARPD plot with 95% confidence interval of SDST50 and SDST125 is directly
shown in Figure 7. It has demonstrated that if NEHBPS is not adopted, the performance of HLS
seriously degrades. In summary, the NEH based problem-specific heuristic method has affected
the proposed algorithm to a great extent. HLS that making use of it to initialize the population is a
great strategy.

Table 8. The RPD for SDST50 and SDST125 with or without NEHBPS. The bold numbers are the
relatively good ARPD results.

DataNo.
HLS_noNEHBPS HLS_NEHBPS

SDST50 SDST125 SDST50 SDST125

Ta071 0.08 0.43 0.59 0.55
Ta072 0.80 0.86 0.38 0.60
Ta073 0.29 1.05 0.14 1.41
Ta074 0.60 0.99 0.52 0.70
Ta075 0.33 0.90 0.15 0.41
Ta076 0.42 1.09 0.23 0.78
Ta077 0.90 1.13 0.21 0.79
Ta078 0.77 0.78 0.47 0.42
Ta079 0.28 0.63 −0.05 0.58
Ta080 0.84 0.79 0.72 −0.38

Average 0.53 0.87 0.34 0.59

A
R

P
D

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

DataType

SDST125_NEHBPSSDST125_noNEHBPSSDST50_NEHBPSSDST50_noNEHBPS

95% Confidence Intervals Error Bar

Figure 7. ARPD plot for SDST50 and SDST125 with or without NEHBPS.

4.5. Effect of Different Perturbation Operators

In GlobalSearch, a perturbation has applied to disturb some individuals which trapped in local
optima of the current population in terms of balancing the exploration and exploitation. It has an
important role in finding individuals with high quality and reducing the further local search. However,
there are many kinds of perturbation operators with different effects on the proposed algorithm.
Here, two operators consisting of light and heavy perturbation mentioned before are compared by
the experiments using instances Ta071–Ta080 in SDST50 and SDST125. In order to compare fairly, it is
necessary to make sure the rest frameworks are the same. The effect of the two perturbations details in
Table 9 which the better results are marked in bold.

Sustainability 2017, 9, 2318 16 of 35

From Table 9, for the instances in SDST50, the heavy perturbation method performs better in
Ta072, Ta074, Ta078 and Ta080. In contrast, the light perturbation behaves better in the other seven
instances. In terms of the instances in SDST125, the light perturbation also performs better in most
of the instances including Ta072, Ta073, Ta074, Ta075, Ta076, Ta077, Ta078 and Ta080. However,
the heavy perturbation beats the light one only in instances Ta071 and Ta079. Figure 8 can provide
the direct comparison between the two methods. It is proved that the light perturbation exhibits
the superior performance in gaining better overall ARPD compared with the heavy perturbation.
To conclude, the heavy perturbation is a quite efficient method to help the individuals quit the local
optimal condition.

Table 9. The RPD of different perturbation operators in SDST50 and SDST125. The bold numbers are
the relatively good ARPD results.

DataNo.
HLS_heavy HLS_light

SDST50 SDST125 SDST50 SDST125

Ta071 0.63 0.59 0.59 0.75
Ta072 0.55 1.61 0.64 0.60
Ta073 0.84 1.85 0.48 1.41
Ta074 0.57 0.92 0.74 0.73
Ta075 0.72 1.78 0.64 0.69
Ta076 0.75 1.30 0.69 1.00
Ta077 1.11 1.14 0.28 1.07
Ta078 0.43 0.92 0.58 0.42
Ta079 0.35 0.46 0.25 0.79
Ta080 0.15 0.95 0.75 0.32

Average 0.61 1.15 0.56 0.78

DataType

SDST125_HLS_lightSDST125_HLS_heavySDST50_HLS_lightSDST50_HLS_heavy

A
R

P
D

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

95% Confidence Intervals Error Bar

Figure 8. ARPD plot for SDST50 and SDST125 with different types of local search.

4.6. Effectiveness Evaluation of Different Local Search Operators

In the beginning search process and the further search of the proposed algorithm,
an insertion-based local search local search was executed to find individuals with better fitness
in the neighbour search space. Different types of local search can guide the individuals to different
directions no matter they are good or bad. In this section, two other local search operators are used to
compare with the effective insertion-based local search by instances from Ta071 to Ta080 (100× 10) in
SDST50 and SDST125 running ten times. The compared two operators can be described as follows.

Sustainability 2017, 9, 2318 17 of 35

(1) exchange_based local search: For the positions ranging from 1 to n − 1 of the scheduling
permutation, exchange the job in it with the job in the adjacent next position.

(2) swap_based local search: For every position of the scheduling permutation (from 1 to n),
swap the job in it with the job in the given position.

It is noted that the other frameworks are the same in this comparison to make the comparison fair.
Table 10 demonstrates the details of the three operators. The better results are marked in bold. There are
definite differences among these three local search operators. For the standard deviation (SD) of these
instances in SDST50 and SDST125, the insertion-based local search has the smallest standard deviation
0.26 and 0.47 respectively among these local search methods. It means that the insertion-based local
search is much stabler in getting high-qualified solutions. Furthermore, ARPD that obtained by the
insertion-based local search of HLS is much smaller. Hence, it is obvious that the insertion-based local
search which can generate high quality solutions performs better than other two methods on all the
instances in SDST50 and SDST125. Figure 9 demonstrates that the insertion-based local search in the
proposed algorithm can yield better overall mean namely ARPD. In conclusion, the insertion-based
local search exhibits its superior performance with high efficiency in the proposed algorithm.

Table 10. The RPD and SD of different local search operators for instances in SDST50 and SDST125.
The bold numbers are the relatively good ARPD results.

DataNo.
HLS_exLS HLS_swLS HLS_inLS

SDST50 SDST125 SDST50 SDST125 SDST50 SDST125

Ta071 4.89 6.64 1.02 1.93 0.63 0.59
Ta072 5.69 7.67 2.29 2.58 0.55 1.61
Ta073 5.11 7.60 1.39 3.21 0.58 1.85
Ta074 4.82 6.78 2.05 2.03 0.57 0.92
Ta075 4.94 6.22 1.59 2.67 0.72 1.78
Ta076 5.60 7.69 1.95 3.16 0.75 1.30
Ta077 5.85 7.24 2.06 1.66 1.11 1.14
Ta078 4.83 5.74 1.55 2.68 0.43 1.05
Ta079 5.69 7.19 1.44 2.48 0.31 0.46
Ta080 5.50 6.42 1.40 2.65 0.15 0.95

SD 0.41 0.67 0.40 0.50 0.26 0.47

Average 5.29 6.92 1.67 2.50 0.58 1.16

A
R

P
D

8.0

6.0

4.0

2.0

0.0

8
.0

6
.0

4
.0

2
.0

0
.0

DataType

SDST125
HLS_inLS

SDST125
HLS_swLS

SDST125
HLS_exLS

SDST50
HLS_inLS

SDST50
HLS_swLS

SDST50
HLS_exLS

95% Confidence Intervals Error Bar

Figure 9. ARPD plot for SDST50 and SDST125 with different types of local search.

Sustainability 2017, 9, 2318 18 of 35

4.7. Comparison Results with Some State-Of-The-Art Approaches

In this subsection, the proposed algorithm with the best algorithm settings yielded from preceding
sections is tested with six compared benchmark algorithms containing GA, MA, MALS, IG_RS,
IG_RSLS and PACO which can be found in the literature [38] to present a comprehensive performance
comparison. Among them IG_RSLS and MALS are integrated IG_RS and MA respectively with an
effective local search. To examine the relative ranking of all the algorithms which are dependent on
the computation time with the comparative performances, three series of experiments setting the f
aforesaid at 30, 60 and 90 are carried out. For each benchmark instance in the following experiments,
HLS runs independently ten times and thirty times. HLS(10) denotes the running time of HLS is
ten, while HLS(30) represents that HLS is running thirty times. RPD is calculated to compare the
performance of different algorithms for each instance. Besides, the standard deviations for each type
of instances are calculated to show the robustness of the compared algorithms. The comparative
results are shown from Tables 11–16 grouped by instances type and size. Because of the limitation
of space, only the average RPD of problems in 12 different scales is presented in the sets including
SDST10, SDST50, SDST100 and SDST125. It means that ARPD values for each scale with 10 instances,
ARPD and SD of all the scales in each type of instance sets are shown in the corresponding tables.
The best results of ARPD for the specific algorithm are marked at bold. Besides the negative
values represent that the results found by HLS are better than the current best solution provided
in http://soa.iti.es/problem-instances. It has to be noted that in the following analyses the ARPDs are
achieving by HLS running ten times and the improvement of ARPD means the decrease of that value
compared with a certain value because the lower value of ARPD represents the better performance of
the algorithm.

Table 11. ARPD and SD for each algorithm in SDST10 and SDST50 setting f at 30; HLS(10) denotes the
experimental results of running 10 times; HLS(30) denotes the experimental results of running 30 times.
The bold numbers are the relatively good ARPD results for each type of algorithms.

DataSet GA MA MALS PACO IG_RS IG_RSLS HLS(10) HLS(30)

SDST10

20 × 5 Ta001–Ta010 0.43 0.49 0.12 0.18 0.21 0.08 0.04 0.04
20 × 10 Ta011–Ta020 0.59 0.55 0.13 0.33 0.28 0.08 0.07 0.06
20 × 20 Ta021–Ta030 0.44 0.59 0.14 0.20 0.30 0.07 0.03 0.02
50 × 5 Ta031–Ta040 1.04 0.77 0.43 0.53 1.00 0.37 0.13 0.12

50 × 10 Ta041–Ta050 2.10 1.21 1.12 1.23 1.58 0.76 0.60 0.57
50 × 20 Ta051–Ta060 2.23 1.38 1.16 1.27 1.85 0.91 0.57 0.49
100 × 5 Ta061–Ta070 1.28 0.76 0.54 0.87 1.44 0.43 0.11 0.12
100 × 10 Ta071–Ta080 1.48 0.91 0.78 0.99 1.49 0.61 0.30 0.25
100 × 20 Ta081–Ta090 2.07 1.49 1.27 1.49 1.75 0.88 0.47 0.46
200 × 10 Ta091–Ta100 1.63 0.81 0.79 1.04 1.50 0.58 0.33 0.30
200 × 20 Ta101–Ta110 2.00 1.14 1.11 1.31 1.45 0.79 0.61 0.59
500 × 20 Ta111–Ta120 1.38 0.74 0.69 0.82 1.01 0.46 0.72 0.69

SD 0.65 0.33 0.42 0.45 0.59 0.31 0.25 0.24

ARPD 1.39 0.90 0.69 0.86 1.16 0.50 0.33 0.31

SDST50

20 × 5 Ta001–Ta010 1.34 0.44 0.37 0.58 0.83 0.26 0.12 0.09
20 × 10 Ta011–Ta020 1.21 0.92 0.41 0.49 0.66 0.28 0.05 0.03
20 × 20 Ta021–Ta030 0.57 0.87 0.20 0.35 0.60 0.10 0.06 0.05
50 × 5 Ta031–Ta040 3.85 2.27 1.79 2.52 2.99 1.41 0.60 0.48

50 × 10 Ta041–Ta050 3.24 1.81 1.49 2.15 2.44 1.33 0.44 0.40
50 × 20 Ta051–Ta060 2.57 1.93 1.33 1.65 2.34 1.16 0.41 0.32
100 × 5 Ta061–Ta070 4.64 2.64 2.23 4.37 2.93 1.51 0.66 0.63
100 × 10 Ta071–Ta080 3.61 2.20 1.84 3.44 2.69 1.37 0.38 0.22
100 × 20 Ta081–Ta090 2.96 2.00 1.73 2.87 2.38 1.29 0.30 0.12
200 × 10 Ta091–Ta100 3.95 1.98 1.88 3.62 2.59 1.33 0.71 0.54
200 × 20 Ta101–Ta110 3.04 1.62 1.61 2.89 2.07 1.10 0.54 0.65
500 × 20 Ta111–Ta120 2.14 1.29 1.23 2.00 1.79 0.86 1.19 1.28

SD 1.24 0.66 0.67 1.30 0.87 0.50 0.32 0.36

ARPD 2.76 1.66 1.34 2.24 2.03 1.00 0.45 0.40

http://soa.iti.es/problem-instances

Sustainability 2017, 9, 2318 19 of 35

From ARPD through Table 11, which the computation time is (n×m/2)× 30, the algorithms
except for HLS, the best cross ARPD are all gained by IG_RSLS. It is said that the IG_RSLS owns
the optimal performance in the compared algorithms. In SDST10, HLS can provide slightly better
results for instances in the scales from 20 × 5 to 200 × 20 than the algorithm IG_RSLS. Among them,
the maximum improvement compared with IG_RSLS is 0.41 in the scale of 100 × 20 and the minimum
improvement is 0.01 for the scale of 20 × 10. As for the instances in large scale 500 × 20, IG_RSLS
gives a better result of ARPD which is 0.46 than the ARPD of our proposed algorithm 0.72. For the rest
algorithms, HLS performs better than all of them in obtaining better ARPD which has the lower value.
Overall HLS is better than IG_RSLS that is the suboptimal algorithm with an ARPD improvement of
0.17. In SDST50, the promotion of ARPD which is developed by HLS has a bit improvement than the
type of SDST10. Except for the scale of 500 × 20, HLS presents the best performance on each scale
among all the algorithms. But in terms of ARPD in the scale 500 × 20, HLS is just next to IG_RSLS
and is superior to the rest algorithms owing the second-best performance. The least improvement
of ARPD is 0.04 and the most improvement is 0.99 compared with the suboptimal RPD obtained by
IG_RSLS. To the overall ARPD, HLS beats all the other algorithms on average with the value of 0.45,
better than ARPD 1.00 of IG_RSLS. The ranking order of the algorithms as the best performing to the
worst performing are HLS, IG_RSLS, MALS, MA, IG_RS, PACO and GA.

Table 12. ARPD and SD for each algorithm in SDST100 and SDST125 setting f at 30; HLS(10) denotes the
experimental results of running 10 times; HLS(30) denotes the experimental results of running 30 times.
The bold numbers are the relatively good ARPD results for each type of algorithms.

DataSet GA MA MALS PACO IG_RS IG_RSLS HLS(10) HLS(30)

SDST100

20 × 5 Ta001–Ta010 2.01 1.29 0.43 0.82 1.53 0.30 0.02 0.02
20 × 10 Ta011–Ta020 1.48 0.87 0.31 0.66 1.42 0.35 0.07 0.07
20 × 20 Ta021–Ta030 1.08 0.62 0.29 0.52 0.95 0.27 0.08 0.05
50 × 5 Ta031–Ta040 5.00 3.12 2.37 3.79 3.83 1.95 0.85 0.73

50 × 10 Ta041–Ta050 4.19 2.59 1.98 3.05 3.10 1.57 0.50 0.44
50 × 20 Ta051–Ta060 3.39 1.78 1.66 2.51 2.76 1.41 0.42 0.40
100 × 5 Ta061–Ta070 6.49 3.63 3.20 6.86 3.93 2.16 1.00 0.88
100 × 10 Ta071–Ta080 4.58 3.03 2.26 5.14 3.28 1.61 0.31 0.13
100 × 20 Ta081–Ta090 3.73 2.37 2.12 4.04 2.76 1.41 0.27 0.17
200 × 10 Ta091–Ta100 5.12 2.56 2.53 5.48 2.98 1.67 0.92 0.71
200 × 20 Ta101–Ta110 3.59 1.99 1.93 3.70 2.27 1.26 0.91 0.57
500 × 20 Ta111–Ta120 2.50 1.53 1.53 2.50 1.87 0.96 1.77 1.45

SD 1.61 0.93 0.93 2.00 0.96 0.64 0.51 0.43

ARPD 3.60 2.11 1.72 3.26 2.56 1.24 0.59 0.47

SDST125

20 × 5 Ta001–Ta010 2.06 1.69 0.67 0.88 1.96 0.46 0.02 0.02
20 × 10 Ta011–Ta020 1.74 1.02 0.51 0.85 1.62 0.53 0.07 0.04
20 × 20 Ta021–Ta030 1.06 1.37 0.28 0.47 0.94 0.26 0.07 0.04
50 × 5 Ta031–Ta040 6.09 3.71 2.97 4.59 4.57 2.37 1.00 0.80

50 × 10 Ta041–Ta050 4.64 3.14 2.07 3.60 3.95 1.94 0.36 0.22
50 × 20 Ta051–Ta060 3.32 2.16 1.59 2.55 2.77 1.42 0.44 0.21
100 × 5 Ta061–Ta070 7.33 4.38 3.55 8.19 4.70 2.41 1.06 1.00
100 × 10 Ta071–Ta080 5.33 3.24 2.78 6.02 3.66 2.07 0.53 0.34
100 × 20 Ta081–Ta090 3.99 2.56 2.31 4.37 2.91 1.52 0.06 −0.07
200 × 10 Ta091–Ta100 5.53 2.81 2.73 5.80 3.33 1.79 0.99 0.98
200 × 20 Ta101–Ta110 3.86 2.08 2.04 3.93 2.51 1.38 0.89 0.77
500 × 20 Ta111–Ta120 2.71 1.71 1.70 2.77 2.13 1.08 1.95 1.92

SD 1.90 1.00 1.03 2.33 1.17 0.73 0.58 0.59

ARPD 3.97 2.49 1.93 3.67 2.92 1.44 0.62 0.52

From Table 12, for the large sets SDST100 and SDST125, HLS can generate better results compared
to the small sets including SDST10 and SDST50. For SDST100, the least difference which is better
than IG_RSLS is 0.19 which is the difference between 0.27 and 0.08 in the scale of 20 × 20. The above
data records the most difference is 1.30. The values of ARPD in each scale of instances gaining by
HLS are all the best with the exception of the scale 500 × 20. Considering the cross average in this
table, the ranking of HLS is best. For SDST125, the least and the most difference which are improved

Sustainability 2017, 9, 2318 20 of 35

compared with IG_RSLS are 0.19 and 1.58 respectively. Seen from the overall ARPD, there is an ARPD
0.62 developed by HLS better than the other algorithms and it has the value of 0.82 in terms of the
improvement compared with the suboptimal ARPD in the algorithm IG_RSLS. It is noted that it has a
much higher average percentage promotion than other five algorithms. It also implies that HLS can
provide better performance with the increase of ratio between the setup times and the processing times.

From Tables 13 and 14, which are ARPD results of all the types in all the instances when we set
the computation time as (n×m/2)× 60, the same pattern are obtained in the four data sets. With the
exception of the instances in 500 × 20, all other ARPD are improved rather better gradually with the
increase of the setup times in the range of SDST10, SDST50, SDST100 and SDST125. It is clear that HLS
exceeds all other algorithms because of its good performance on the least overall ARPD.

Table 13. ARPD and SD for each algorithm in SDST10 and SDST50 setting f at 60; HLS(10) denotes the
experimental results of running 10 times; HLS(30) denotes the experimental results of running 30 times.
The bold numbers are the relatively good ARPD results for each type of algorithms.

DataSet GA MA MALS PACO IG_RS IG_RSLS HLS(10) HLS(30)

SDST10

20 × 5 Ta001–Ta010 0.46 0.90 0.10 0.21 0.19 0.05 0.02 0.02
20 × 10 Ta011–Ta020 0.57 0.28 0.13 0.26 0.22 0.05 0.05 0.05
20 × 20 Ta021–Ta030 0.37 0.52 0.09 0.16 0.22 0.05 0.03 0.02
50 × 5 Ta031–Ta040 0.93 0.57 0.31 0.44 0.88 0.32 0.10 0.07

50 × 10 Ta041–Ta050 2.07 1.38 0.83 1.02 1.58 0.60 0.53 0.49
50 × 20 Ta051–Ta060 2.18 1.21 0.96 1.06 1.70 0.64 0.51 0.42
100 × 5 Ta061–Ta070 1.10 0.70 0.40 0.80 1.36 0.38 0.02 0.01
100 × 10 Ta071–Ta080 1.39 0.81 0.60 0.84 1.37 0.44 0.20 0.13
100 × 20 Ta081–Ta090 1.93 1.11 0.97 1.25 1.48 0.71 0.26 0.24
200 × 10 Ta091–Ta100 1.42 0.73 0.61 0.94 1.39 0.43 0.18 0.17
200 × 20 Ta101–Ta110 1.79 0.93 0.87 1.10 1.25 0.53 0.45 0.39
500 × 20 Ta111–Ta120 1.31 0.54 0.54 0.69 0.88 0.31 0.54 0.52

SD 0.63 0.32 0.33 0.38 0.56 0.23 0.21 0.19

ARPD 1.29 0.81 0.53 0.73 1.04 0.38 0.24 0.21

SDST50

20 × 5 Ta001–Ta010 1.30 1.21 0.35 0.53 0.69 0.18 0.12 0.05
20 × 10 Ta011–Ta020 1.16 0.87 0.31 0.43 0.62 0.20 0.05 0.03
20 × 20 Ta021–Ta030 0.57 0.23 0.16 0.32 0.41 0.09 0.04 0.04
50 × 5 Ta031–Ta040 3.57 1.65 1.39 2.05 2.61 1.13 0.42 0.30

50 × 10 Ta041–Ta050 3.15 1.96 1.24 1.81 2.23 1.17 0.31 0.19
50 × 20 Ta051–Ta060 2.49 1.61 1.07 1.42 2.06 0.93 0.23 0.12
100 × 5 Ta061–Ta070 4.06 2.35 1.72 4.11 2.67 1.27 0.29 0.24
100 × 10 Ta071–Ta080 3.24 1.82 1.53 3.19 2.23 1.04 0.03 −0.10
100 × 20 Ta081–Ta090 2.71 1.66 1.35 2.66 2.01 0.96 −0.07 −0.22
200 × 10 Ta091–Ta100 3.64 1.71 1.43 3.48 2.19 0.88 0.10 0.00
200 × 20 Ta101–Ta110 2.82 1.34 1.17 2.78 1.77 0.74 0.12 0.15
500 × 20 Ta111–Ta120 2.09 0.99 0.96 2.00 1.47 0.50 0.78 0.89

SD 1.09 0.56 0.51 1.24 0.78 0.41 0.23 0.28

ARPD 2.57 1.45 1.06 2.06 1.75 0.76 0.20 0.14

It is the same as Tables 15 and 16 when the computation time is (n× m/2)× 90. For SDST50,
except for the scale of 500 × 20, ARPD of each algorithm in each scale decreases as the order of
GA, PACO, IG_RS, MA, MALS, IG_RSLS, HLS, which shows the best performance of HLS among
all the compared algorithms. For SDST100 and SDST125, it is shown the same pattern. However,
the tendency of increasing softens in SDST10 with the exceptions of ARPD in the scale of 20 × 10
and 500 × 20. For brevity, the remaining analyses of the minimum and maximum of ARPD between
the relatively good two algorithms which are HLS and IG_RSLS in each scale are omitted. But the
trend of performance for each algorithm is the same as the previous tables has shown. As we can
see from the overall ARPD, it is evident that there is the least ARPD in HLS which surpasses by
other algorithms attributed to the high effectiveness of each component in HLS. Furthermore, via the
standard deviations from Tables 11–16 of each compared algorithm, it is demonstrated that the high
stability of HLS in gaining good solutions.

Sustainability 2017, 9, 2318 21 of 35

Table 14. ARPD and SD for each algorithm in SDST100 and SDST125 setting f at 60; HLS(10) denotes the
experimental results of running 10 times; HLS(30) denotes the experimental results of running 30 times.
The bold numbers are the relatively good ARPD results for each type of algorithms.

DataSet GA MA MALS PACO IG_RS IG_RSLS HLS(10) HLS(30)

SDST100

20 × 5 Ta001–Ta010 1.88 1.73 0.37 0.71 1.48 0.25 0.02 0.02
20 × 10 Ta011–Ta020 1.26 0.88 0.28 0.47 1.01 0.25 0.07 0.07
20 × 20 Ta021–Ta030 1.00 0.28 0.26 0.41 0.92 0.18 0.02 0.02
50 × 5 Ta031–Ta040 5.35 2.65 2.24 3.40 3.89 1.95 0.44 0.31
50 × 10 Ta041–Ta050 4.21 2.72 1.66 2.73 3.09 1.48 0.29 0.10
50 × 20 Ta051–Ta060 3.23 2.11 1.35 2.14 2.58 1.28 0.18 0.10
100 × 5 Ta061–Ta070 5.99 3.50 2.69 6.89 3.82 1.95 0.55 0.23

100 × 10 Ta071–Ta080 4.39 2.67 2.01 4.96 2.95 1.44 −0.36 −0.48
100 × 20 Ta081–Ta090 3.67 2.31 2.03 4.04 2.65 1.35 −0.22 −0.36
200 × 10 Ta091–Ta100 4.95 2.31 2.19 5.62 2.86 1.25 0.00 −0.13
200 × 20 Ta101–Ta110 3.65 1.81 1.68 3.87 2.08 0.93 0.25 −0.06
500 × 20 Ta111–Ta120 2.66 1.44 1.35 2.75 1.70 0.73 1.34 0.94

SD 1.59 0.88 0.82 2.06 0.99 0.62 0.44 0.36

ARPD 3.52 2.03 1.51 3.17 2.42 1.09 0.22 0.06

SDST125

20 × 5 Ta001–Ta010 1.80 2.05 0.34 0.64 1.40 0.35 0.02 0.02
20 × 10 Ta011–Ta020 1.66 1.48 0.42 0.68 1.39 0.41 0.07 0.04
20 × 20 Ta021–Ta030 0.97 0.96 0.22 0.39 0.84 0.22 0.05 0.03
50 × 5 Ta031–Ta040 5.83 3.97 2.47 4.07 4.25 2.18 0.57 0.47
50 × 10 Ta041–Ta050 4.73 2.13 1.78 3.16 3.60 1.67 0.12 0.02
50 × 20 Ta051–Ta060 3.41 2.50 1.43 2.43 2.71 1.45 0.16 −0.03
100 × 5 Ta061–Ta070 6.86 4.45 3.02 7.89 4.58 2.27 0.32 0.18

100 × 10 Ta071–Ta080 5.14 3.10 2.37 5.89 3.43 1.65 −0.16 −0.31
100 × 20 Ta081–Ta090 3.79 2.40 1.80 4.32 2.69 1.22 −0.42 −0.55
200 × 10 Ta091–Ta100 5.65 2.76 2.51 6.27 3.17 1.60 0.12 0.08
200 × 20 Ta101–Ta110 3.88 1.94 1.74 4.20 2.40 1.06 0.21 0.12
500 × 20 Ta111–Ta120 2.89 1.66 1.53 3.03 1.91 0.83 1.44 1.39

SD 1.84 1.01 0.91 2.36 1.17 0.69 0.46 0.47

ARPD 3.88 2.45 1.64 3.58 2.70 1.24 0.21 0.12

Table 15. ARPD and SD for each algorithm in SDST10 and SDST50 setting f at 90; HLS(10) denotes the
experimental results of running 10 times; HLS(30) denotes the experimental results of running 30 times.
The bold numbers are the relatively good ARPD results for each type of algorithms.

DataSet GA MA MALS PACO IG_RS IG_RSLS HLS(10) HLS(30)

SDST10

20 × 5 Ta001–Ta010 0.41 0.70 0.08 0.18 0.14 0.04 0.02 0.02
20 × 10 Ta011–Ta020 0.56 0.36 0.13 0.22 0.24 0.04 0.05 0.05
20 × 20 Ta021–Ta030 0.39 0.56 0.10 0.12 0.19 0.04 0.03 0.02
50 × 5 Ta031–Ta040 0.92 0.77 0.30 0.42 0.84 0.27 0.09 0.04
50 × 10 Ta041–Ta050 2.01 1.26 0.81 1.06 1.43 0.53 0.50 0.44
50 × 20 Ta051–Ta060 2.10 1.28 0.82 1.01 1.54 0.60 0.44 0.36
100 × 5 Ta061–Ta070 1.03 0.63 0.31 0.76 1.34 0.33 −0.02 −0.04

100 × 10 Ta071–Ta080 1.33 0.90 0.48 0.77 1.32 0.38 0.12 0.05
100 × 20 Ta081–Ta090 1.83 1.06 0.82 1.12 1.47 0.54 0.16 0.16
200 × 10 Ta091–Ta100 1.32 0.65 0.48 0.85 1.33 0.32 0.06 0.06
200 × 20 Ta101–Ta110 1.71 0.87 0.76 0.95 1.12 0.38 0.35 0.29
500 × 20 Ta111–Ta120 1.27 0.48 0.43 0.61 0.82 0.21 0.43 0.40

SD 0.60 0.29 0.29 0.36 0.53 0.20 0.19 0.17

ARPD 1.24 0.79 0.46 0.67 0.98 0.31 0.19 0.15

SDST50

20 × 5 Ta001–Ta010 1.15 1.50 0.30 0.51 0.58 0.10 0.04 0.02
20 × 10 Ta011–Ta020 1.17 0.77 0.32 0.44 0.58 0.19 0.05 0.03
20 × 20 Ta021–Ta030 0.49 0.78 0.16 0.25 0.37 0.07 0.04 0.03
50 × 5 Ta031–Ta040 3.43 2.18 1.13 1.98 2.42 1.04 0.29 0.22
50 × 10 Ta041–Ta050 3.01 1.68 1.08 1.62 2.12 0.92 0.14 0.07
50 × 20 Ta051–Ta060 2.43 1.69 0.89 1.28 2.03 0.82 0.17 0.07
100 × 5 Ta061–Ta070 3.98 2.34 1.38 3.95 2.33 1.09 0.03 0.00

100 × 10 Ta071–Ta080 3.07 1.52 1.21 3.10 2.13 0.88 −0.10 −0.25
100 × 20 Ta081–Ta090 2.51 1.54 1.03 2.45 1.82 0.81 −0.34 −0.42
200 × 10 Ta091–Ta100 3.49 1.35 1.21 3.37 1.90 0.63 −0.39 −0.40
200 × 20 Ta101–Ta110 2.67 1.19 1.02 2.64 1.51 0.53 −0.20 −0.12
500 × 20 Ta111–Ta120 2.07 0.76 0.79 2.00 1.28 0.31 0.51 0.65

SD 1.06 0.51 0.40 1.20 0.73 0.37 0.25 0.29

ARPD 2.46 1.44 0.88 1.97 1.59 0.62 0.02 −0.01

Sustainability 2017, 9, 2318 22 of 35

Table 16. ARPD and SD for each algorithm in SDST100 and SDST125 setting f at 90; HLS(10) denotes the
experimental results of running 10 times; HLS(30) denotes the experimental results of running 30 times.
The bold numbers are the relatively good ARPD results for each type of algorithms.

DataSet GA MA MALS PACO IG_RS IG_RSLS HLS(10) HLS(30)

SDST100

20 × 5 Ta001–Ta010 1.82 1.43 0.39 0.61 1.24 0.17 0.02 0.02
20 × 10 Ta011–Ta020 1.27 1.09 0.29 0.48 1.03 0.18 0.07 0.07
20 × 20 Ta021–Ta030 0.94 1.14 0.17 0.48 0.74 0.17 0.02 0.02
50 × 5 Ta031–Ta040 5.26 3.02 1.99 3.31 3.70 1.82 0.18 0.09

50 × 10 Ta041–Ta050 4.18 2.55 1.50 2.49 2.99 1.30 −0.07 −0.14
50 × 20 Ta051–Ta060 3.11 1.77 1.18 1.98 2.40 1.11 0.04 −0.06
100 × 5 Ta061–Ta070 6.00 3.04 2.16 6.65 3.48 1.63 −0.10 −0.2
100 × 10 Ta071–Ta080 4.15 2.45 1.61 4.89 2.77 1.02 −0.60 −0.68
100 × 20 Ta081–Ta090 3.49 2.39 1.53 3.91 2.46 1.05 −0.56 −0.61
200 × 10 Ta091–Ta100 4.71 2.19 1.77 5.53 2.49 0.92 −0.33 −0.5
200 × 20 Ta101–Ta110 3.48 1.68 1.40 3.82 1.92 0.76 −0.12 −0.39
500 × 20 Ta111–Ta120 2.64 1.16 1.14 2.75 1.50 0.46 1.01 0.61

SD 1.56 0.71 0.66 2.01 0.95 0.56 0.41 0.36

Average 3.42 1.99 1.26 3.07 2.23 0.88 −0.04 −0.15

SDST125

20 × 5 Ta001–Ta010 1.90 1.40 0.32 0.65 1.24 0.30 0.02 0.02
20 × 10 Ta011–Ta020 1.52 1.24 0.37 0.56 1.44 0.36 0.05 0.03
20 × 20 Ta021–Ta030 0.95 1.21 0.24 0.39 0.81 0.19 0.02 0.02
50 × 5 Ta031–Ta040 5.63 3.48 1.97 3.67 4.00 2.01 −0.02 0.04

50 × 10 Ta041–Ta050 4.59 3.35 1.50 2.96 3.47 1.54 −0.35 −0.34
50 × 20 Ta051–Ta060 3.25 1.63 1.26 2.06 2.59 1.18 −0.15 -0.16
100 × 5 Ta061–Ta070 6.82 3.65 2.52 7.75 4.14 1.91 −0.78 −0.28

100 × 10 Ta071–Ta080 4.80 2.84 1.94 5.61 3.26 1.34 −1.16 −0.85
100 × 20 Ta081–Ta090 3.50 2.16 1.50 4.15 2.60 1.00 −1.27 −1.05
200 × 10 Ta091–Ta100 5.37 2.63 2.14 6.20 2.94 1.17 −1.42 −0.84
200 × 20 Ta101–Ta110 3.69 1.69 1.49 4.16 2.24 0.76 −0.84 −0.55
500 × 20 Ta111–Ta120 2.83 1.36 1.23 3.02 1.64 0.52 1.37 1.15

SD 1.78 0.93 0.74 2.33 1.09 0.61 0.78 0.58

Average 3.74 2.22 1.37 3.43 2.53 1.02 −0.38 −0.23

In addition, it is obvious that each algorithm is benefited from additional computation time in all
the types of instances including SDST10, SDST50, SDST100 and SDST125. Figures 10–13 are used to
prove the importance of the computation time in different scales of instances by ARPD evaluated with
HLS running ten times. The trajectory of each curse in the figure overall declines and becomes closer
to the X axis along with the increase of f which represents the better cross ARPD. Besides, it is also
found that the average RPD shows an increasing trend because the increase of the instance size in the
number of machines classified by the number of jobs including 20, 50, 100, 200 and 500. Via the above
figures, what can be summarized is that the value of the cross ARPD is decreasing and becomes better
clearly with the increase of f regardless of the instance type and instance size.

Besides, the interactions between the ratio of the setup times in the processing times and the
scales have to be studied to verify the effectiveness of HLS. It is shown in Figures 14–16 to present the
different types of instances segregated by f = 30, 60 and 90 for HLS running ten times respectively.
As a matter of fact, the average RPD has reduced rather more acutely with a larger difference in
each algorithm for the large type of SDST100 and SDST125 compared with the type sets of SDST10
and SDST50. Moreover, the trend of each curve in Figures 15 and 16 demonstrates the performance
ranking of these compared algorithms are as the ascendent order of GA, PACO, IG_RS, MA, MALS,
IG_RSLS, HLS visually. However, Figure 14 has presented the descendent performance order of
algorithms is HLS, IG_RSLS, MA, IG_RS, MALS, PACO and GA. It is summarized that HLS gives
higher priority to the increase of the computation time and the increase ratio between the setup time
and the processing time.

Sustainability 2017, 9, 2318 23 of 35

20X5 20X10 20X20 50X5 50X10 50X20 100X5 100X10 100X20 200X10 200X20 500X20
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
R
P
D
(%
)

Scale

 30
 60
 90

0

2

4

6

8

10

Figure 10. ARPD plot for SDST10 with the different values of f .

20X5 20X10 20X20 50X5 50X10 50X20 100X5 100X10 100X20 200X10 200X20 500X20

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
R
P
D
(%
)

Scale

 30
 60
 90

0

2

4

6

8

10

Figure 11. ARPD plot for SDST50 with the different values of f .

20X5 20X10 20X20 50X5 50X10 50X20 100X5 100X10 100X20 200X10 200X20 500X20

-0.5

0.0

0.5

1.0

1.5

2.0

A
R
P
D
(%
)

Scale

 30
 60
 90

0

2

4

6

8

10

Figure 12. ARPD plot for SDST100 with the different values of f .

Sustainability 2017, 9, 2318 24 of 35

20X5 20X10 20X20 50X5 50X10 50X20 100X5 100X10 100X20 200X10 200X20 500X20

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

A
R
P
D
(%
)

Scale

 30
 60
 90

0

2

4

6

8

10

Figure 13. ARPD plot for SDST125 with the different values of f .

SDST10 SDST50 SDST100 SDST125
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 GA
 IG_RS
 MA
 PACO
 MA

LS

 IG_RS
LS

 HLS

Instance Type

A
R
P
D
(%
)

0

2

4

6

8

10

Figure 14. ARPD comparison of different methods on different types of instances (f = 30).

SDST10 SDST50 SDST100 SDST125
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 GA
 IG_RS
 MA
 PACO
 MA

LS

 IG_RS
LS

 HLS

Instance Type

A
R
P
D
(%
)

0

2

4

6

8

10

Figure 15. ARPD comparison of different methods on different types of instances (f = 60).

Sustainability 2017, 9, 2318 25 of 35

SDST10 SDST50 SDST100 SDST125
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
 GA
 IG_RS
 MA
 PACO
 MA

LS

 IG_RS
LS

 HLS

Instance Type

A
R
P
D
(%
)

0

2

4

6

8

10

Figure 16. ARPD comparison of different methods on different types of instances (f = 90).

The next tables from Tables 17–23 present the newbounds of makespan discovered by HLS
running ten times and the aforementioned best-known bounds grouped by different scales in different
types of instances. The differences between the two values are presented in the tables which shows
the high effectiveness in getting high-qualified solutions of HLS. Besides, they become larger as the
increase of the ratio of the setup times in the processing times and the scales of instances. By the
same pattern, the number of newbounds has raised progressively. For an example, in the scale 50 × 5,
the difference in Ta039 of SDST10 is −2, but for Ta038 of SDST100, the difference is −27. Table 18
provides the newbounds, the best-known bounds and the differences between them for the instances
in the scale 50 × 10. Hence, it is evident that the differences are bigger in SDST50 and SDST100 overall
which mean that HLS is much more effective. The tables are shown that HLS is statistically superior
to other well-performing algorithms. For the illustration purpose, what follows it is Table 24 that
shows some permutations of jobs chosen from the scale 50 × 5 in the instances of SDST10 and SDST100
because of space limitations. The permutation sequence begins from 0 and ends in 49 in each instance
which is the best solution with the newbound of makespan developed by HLS.

Table 17. NewBounds for instances with scale 50 × 5.

Scale Instances NewBound Best-Known_Bound Difference

50 × 5

SDST10

Ta031 2813 2814 −1
Ta039 2671 2673 −2

SDST100

Ta034 4019 4020 −1
Ta037 3995 3999 −4
Ta038 3939 3966 −27

SDST125

Ta031 4212 4226 −14
Ta034 4348 4356 −8
Ta035 4340 4342 −2
Ta039 4117 4145 −28

Sustainability 2017, 9, 2318 26 of 35

Table 18. NewBounds for instances with scale 50 × 10.

Scale Instances NewBound Best-Known_Bound Difference

50 × 10

SDST50

Ta045 3932 3939 −7
Ta048 3942 3950 −8
Ta050 3981 3983 −2

SDST100

Ta041 4796 4812 −16
Ta044 4813 4830 −17
Ta045 4787 4812 −25
Ta046 4809 4816 −7
Ta047 4889 4898 −9
Ta048 4839 4849 −10

SDST125

Ta041 5215 5275 −60
Ta042 5145 5177 −32
Ta043 5164 5193 −29
Ta044 5269 5286 −17
Ta047 5309 5340 −31
Ta048 5315 5317 −2
Ta049 5173 5194 −21
Ta050 5325 5334 −9

Table 19. NewBounds for instances with scale 100 × 5.

Scale Instances NewBound Best-Known_Bound Difference

100 × 5

SDST10

Ta061 5645 5647 −2
Ta062 5463 5465 −2
Ta063 5405 5406 −1
Ta064 5208 5213 −5
Ta065 5463 5466 −3
Ta069 5636 5641 −5
Ta070 5536 5537 −1

SDST50

Ta061 6525 6542 −17
Ta064 6175 6182 −7
Ta066 6248 6270 −22
Ta067 6385 6390 −5
Ta069 6556 6576 −20

SDST100

Ta061 7697 7714 −17
Ta062 7591 7610 −19
Ta063 7497 7539 −42
Ta070 7664 7735 −71

SDST125

Ta061 8246 8339 −93
Ta062 8121 8230 −109
Ta063 8085 8168 −83
Ta064 7995 8005 −10
Ta065 8197 8231 −34
Ta066 8009 8082 −73
Ta067 8188 8267 −79
Ta068 7959 7993 −34
Ta069 8324 8393 −69
Ta070 8232 8290 −58

Sustainability 2017, 9, 2318 27 of 35

Table 20. NewBounds for instances with scale 100 × 10.

Scale Instances NewBound Best-Known_Bound Difference

100 × 10

SDST10

Ta072 5675 5683 −8
Ta076 5606 5607 −1

SDST50

Ta071 7442 7450 −8
Ta072 7011 7033 −22
Ta073 7254 7262 −8
Ta074 7518 7549 −31
Ta075 7232 7240 −8
Ta076 6955 6964 −9
Ta078 7273 7290 −17
Ta079 7443 7452 −9

SDST100

Ta071 9138 9201 −63
Ta072 8758 8794 −36
Ta073 8937 9004 −67
Ta074 9186 9276 −90
Ta075 8954 9002 −48
Ta076 8671 8689 −18
Ta077 8811 8858 −47
Ta078 8948 9028 −80
Ta079 9082 9133 −51
Ta080 9075 9114 −39

SDST125

Ta071 9930 10070 −140
Ta072 9511 9631 −120
Ta073 9772 9808 −36
Ta074 10040 10168 −128
Ta075 9770 9852 −82
Ta076 9426 9529 −103
Ta077 9580 9696 −116
Ta078 9737 9891 −154
Ta079 9885 10004 −119
Ta080 9864 10013 −149

To illustrate the robustness of HLS, the instances in the set SDST50 are chosen to be the base
examples. Besides, Figures 17–19 use ARPD in confidence intervals at the 95% confidence level taking
the CPU time of (n × m/2) × 30, (n × m/2) × 60 and (n × m/2) × 90 respectively to analyse the
robustness. The ARPDs here are developed by HLS running ten times. The length of the error bar
represents the stability degree of each algorithm. It means if the length of the bar for one algorithm is
short, then the algorithm gives the better robustness. It is clearly shown that HLS has the strongest
robustness with the shortest interval among all the compared algorithms no matter how long the CPU
time is. The robustness order of other algorithms are PACO, GA, IG_RS, MA, MALS, IG_RSLS from
worst to best as the above figures have provided. Moreover, the above figures have presented the
best effectiveness of HLS with a smallest value of the average RPD. As a result, the average RPD also
shows that the effectiveness ranking of other algorithms is GA, PACO, IG_RS, MA, MALS, IG_RSLS
from the last rank to the first rank. Although PACO has the better effectiveness which has a lower
ARPD compared with GA, in terms of robustness GA is stabler than PACO. Through synthetical
consideration of the effectiveness and the robustness for each algorithm, HLS is resulted to the best
algorithm in all the compared algorithms.

Sustainability 2017, 9, 2318 28 of 35

Table 21. NewBounds for instances with scale 100 × 20.

Scale Instances NewBound Best-Known_Bound Difference

100 × 20

SDST50

Ta081 8415 8437 −22
Ta082 8364 8387 −23
Ta084 8303 8389 −86
Ta085 8431 8471 −40
Ta086 8520 8548 −28
Ta087 8457 8482 −25
Ta088 8622 8662 −40
Ta089 8464 8473 −9
Ta090 8505 8519 −14

SDST100

Ta081 10513 10578 −65
Ta082 10492 10535 −43
Ta083 10528 10552 −24
Ta084 10451 10479 −28
Ta085 10499 10539 −40
Ta086 10600 10679 −79
Ta087 10580 10645 −65
Ta088 10694 10794 −100
Ta089 10508 10612 −104
Ta090 10605 10651 −46

SDST125

Ta081 11572 11694 −122
Ta082 11539 11679 −140
Ta083 11566 11701 −135
Ta084 11450 11634 −184
Ta085 11489 11675 −186
Ta086 11631 11740 −109
Ta087 11630 11784 −154
Ta088 11713 11883 −170
Ta089 11581 11731 −150
Ta090 11617 11753 −136

Algorithm

HLSPACOIG_RSIG_RSMAMAGA

 A
R

P
D

4.0

3.0

2.0

1.0

0.0

4
.0

3
.0

2
.0

1
.0

0
.0

95% Confidence Intervals Error Bar

LS LS

Figure 17. ARPD in 95% CI for each algorithm in SDST50 (f = 30).

Sustainability 2017, 9, 2318 29 of 35

Table 22. NewBounds for instances with scale 200 × 10.

Scale Instances NewBound Best-Known_Bound Difference

200 × 10

SDST10

Ta095 11195 11207 −12
Ta100 11276 11284 −8

SDST50

Ta091 13908 14005 −97
Ta092 13769 13902 −133
Ta093 13972 14087 −115
Ta094 13795 13873 −78
Ta096 13625 13653 −28
Ta097 14083 14115 −32
Ta098 13988 14018 −30
Ta099 13811 13857 −46
Ta100 13885 13894 −9

SDST100

Ta091 17199 17307 −108
Ta092 17132 17210 −78
Ta093 17354 17386 −32
Ta094 17167 17206 −39
Ta095 17185 17244 −59
Ta096 16995 17022 −27
Ta098 17298 17407 −109
Ta099 17129 17194 −65
Ta100 17195 17263 −68

SDST125

Ta091 18589 18930 −341
Ta092 18584 18876 −292
Ta093 18747 19059 −312
Ta094 18610 18934 −324
Ta095 18608 18906 −298
Ta096 18451 18659 −208
Ta097 18857 19118 −261
Ta098 18819 19058 −239
Ta099 18576 18819 −243
Ta100 18615 18793 −178

Algorithm

HLSPACOIG_RSIG_RSMAMAGA

A
R

P
D

4.0

3.0

2.0

1.0

0.0

4
.0

3
.0

2
.0

1
.0

0
.0

95% Confidence Intervals Error Bar

LS LS

Figure 18. ARPD in 95% CI for each algorithm in SDST50 (f = 60).

Sustainability 2017, 9, 2318 30 of 35

Table 23. NewBounds for instances with scale 200 × 20.

Scale Instances NewBound Best-Known_Bound Difference

200 × 20

SDST50

Ta102 15627 15644 −17
Ta103 15585 15689 −104
Ta104 15619 15627 −8
Ta105 15435 15470 −35
Ta106 15480 15514 −34
Ta107 15640 15669 −29
Ta108 15627 15645 −18
Ta109 15538 15544 −6
Ta110 15632 15694 −62

SDST100

Ta101 19599 19618 −19
Ta102 19787 19816 −29
Ta103 19830 19881 −51
Ta104 19714 19810 −96
Ta107 19814 19888 −74
Ta108 19797 19826 −29
Ta109 19666 19757 −91

SDST125

Ta101 21513 21765 −252
Ta102 21714 21973 −259
Ta103 21844 21975 −131
Ta104 21810 21984 −174
Ta105 21568 21773 −205
Ta106 21625 21829 −204
Ta107 21789 22055 −266
Ta108 21814 21902 −88
Ta109 21684 21821 −137
Ta110 21854 21975 −121

Algorithm

HLSPACOIG_RSIG_RSMAMAGA

A
R

P
D

3.0

2.0

1.0

0.0

3.0

2.0

1.0

0.0

95% Confidence Intervals Error Bar

LS LS

Figure 19. ARPD in 95% CI for each algorithm in SDST50 (f = 90).

Sustainability 2017, 9, 2318 31 of 35

Table 24. Permutations of Jobs for Some Instances.

Scale Instances

50 × 5

SDST10 Permutation of Jobs Makespan

Ta031 30 16 40 0 39 49 25 5 17 29 31 12 35 9 28 7 45 19 33 44 38 10 20 24 4 281337 23 36 13 3 6 14 21 8 1 42 26 43 27 46 15 41 48 22 47 32 18 11 2 34

Ta039 45 43 23 48 14 40 0 12 32 29 46 49 41 9 6 19 10 31 20 44 24 3 21 22 37 267135 4 33 39 28 17 2 47 5 34 15 8 42 18 1 25 30 36 38 27 26 16 7 11 13

SDST100 Permutation of Jobs

Ta034 25 49 12 21 23 43 16 47 9 11 0 2 29 8 45 27 31 13 26 34 19 41 35 14 7 401930 4 48 46 15 44 6 32 1 17 24 3 40 39 36 10 42 28 38 22 37 18 33 5 20

Ta037 36 48 4 21 18 29 20 14 17 44 26 32 38 46 8 30 42 35 34 13 31 9 39 47 399545 10 24 3 19 40 1 43 23 2 28 12 49 7 16 6 41 25 0 5 33 11 22 27 37 15

Ta038 33 38 13 17 4 1 24 15 9 25 7 16 19 45 34 46 14 35 29 8 39 21 27 0 26 23 393948 37 30 49 36 6 18 20 42 40 5 22 32 44 2 43 11 28 47 31 12 10 41 3

As we can see from the above tables and figures, it can be concluded that it is GA, PACO, IG_RS,
MA, MALS, IG_RSLS, HLS from the worst to the best performance for the comprehensive consideration
particularly because ARPD of all the 480 instances is decreasing in line. Although in the instances
of the scale 500 × 20, IG_RSLS can provide a better ARPD, HLS can present a better overall ARPD
regardless of instance type. Besides, HLS performs much better as the increase ratio of the setup times
in the processing times. Based on the above results, it can be said that HLS performs better than other
six algorithms. It is verified that HLS is an effective and robust algorithm for solving the flowshop
scheduling problem with sequence dependent setup times.

4.8. Comparison Results with Some Recent Algorithms

In order to further illustrate the effectiveness of the proposed algorithm, we reconstruct
an experiment to compare with two recent algorithms, namely the adaptive hybrid algorithm
(AHA) [39], and the enhanced migrating birds optimization (EMBO) [40] for FSSP-SDST with the
makespan criterion.

In AHA, each job is assigned an inheriting factor. For dynamically updating the factor, a novel
operator is constructed. Therefore, both good and bad genes can be explored. A new crossover
operator is proposed by inheriting good genes to the offspring and destroying the bad genes with a
high probability. Hence, the offspring is integrated with more and more good genes generation after
some generations. It helps to improve the effectiveness of AHA in obtaining high-qualified solutions.
The algorithm AHA is chosen to compare with HLS. Besides, for the migrating birds optimization
(MBO) [41], it is a metaheuristic inspired from the flight of migrating birds. To save the energy,
the known V-flight shape3 is developed. Thereafter, a basic migrating birds optimization (BMBO) [23]
is proposed to solve FSSP-SDST with the makespan criterion. In terms of EMBO, since the performance
of BMBO keeps decreasing with the increase in the size of instances, EMBO is based on the BMBO
with an or-opt neighbourhood which was designed for the travelling salesman problem (TSP) first and
the well-known heuristics to generate its leader bird. The or-opt neighbourhood operator is moving a
block of one, two, three jobs or four jobs and inserting it elsewhere in the sequence.

HLS runs 30 times to compare with the above algorithms. The RPD results for each scale
data in SDST10, SDST50, SDST100, SDST125 of each compared algorithm is presented in Table 25.
The relatively good results are marked in bold. From Table 25, it is seen that HLS is more suitable
than the other compared algorithms for achieving good results. In detail, HLS has the best values of
ARPD 0.31 and 0.40 in SDST10 and SDST50 respectively among the ARPDs gaining by the compared
algorithms. For SDST100 and SDST125, the values of the overall ARPD are 0.47 and 0.52 which are

Sustainability 2017, 9, 2318 32 of 35

clearly better than the other ARPD values of EMBO and AHA. In addition, Figure 20 is presented to
show the good effectiveness of HLS in obtaining high-qualified results intuitively.

In conclusion, HLS is very competitive to the good performing algorithms for solving FSSP-SDST
with makespan criterion.

Table 25. ARPD for compared algorithms in each dataset. The bold numbers are the relatively good
ARPD results for each type of instances.

DataSet
SDST10 SDST50 SDST100 SDST125

EMBO AHA HLS EMBO AHA HLS EMBO AHA HLS EMBO AHA HLS

20 × 5 0.67 0.34 0.04 1.88 0.51 0.09 3.71 0.62 0.02 3.05 1.01 0.02
20 × 10 1.10 0.46 0.06 1.87 0.92 0.03 2.64 0.99 0.07 3.63 1.29 0.04
20 × 20 1.09 0.71 0.02 1.46 1.04 0.05 2.17 1.23 0.05 2.12 1.38 0.04
50 × 5 1.83 0.92 0.12 5.88 0.99 0.48 9.27 1.05 0.73 10.73 1.32 0.80
50 × 10 3.50 1.30 0.57 5.92 1.20 0.40 7.54 1.82 0.44 8.91 2.04 0.22
50 × 20 3.93 1.48 0.49 5.05 1.78 0.32 5.82 1.92 0.40 6.31 2.41 0.21
100 × 5 2.15 0.78 0.12 7.35 1.58 0.63 10.36 1.75 0.88 11.96 2.00 1.00

100 × 10 2.91 1.23 0.25 5.75 2.56 0.22 7.83 2.56 0.13 9.47 2.29 0.34
100 × 20 3.48 1.74 0.46 5.28 2.54 0.12 6.87 2.29 0.17 6.60 2.66 −0.07
200 × 10 2.24 0.94 0.30 5.22 1.32 0.54 7.26 1.55 0.71 8.08 2.11 0.98
200 × 20 3.03 1.35 0.59 3.74 1.75 0.65 5.18 1.81 0.57 5.55 1.98 0.77
500 × 20 1.63 1.17 0.69 2.48 1.43 1.28 3.37 1.50 1.45 3.66 1.73 1.92

ARPD 2.30 1.04 0.31 4.32 1.47 0.40 6.00 1.59 0.47 6.67 1.85 0.52

SDST10 SDST50 SDST100 SDST125
0

2

4

6

8

Instance Type

A
R
P
D
(%
)

 EMBO
 AHA
 HLS

0

2

4

6

8

10

Figure 20. ARPD comparison for methods on different types of instances.

5. Conclusions and Future Work

In this paper, the flowshop scheduling problem with sequence dependent setup times is addressed
with minimizing the makespan. A hybrid local search algorithm based on novel local search methods
is presented to deal with this problem. First, to initialize the population, we apply an effective NEH
based problem-specific method to the initialize the population. Second, the global search embedded
with a light perturbation is used to generate the better population. Then, to find good individuals
in the current population, the insertion-based local search is adopted. Next, a further local search
is applied to individuals which are trapped into local optima. Last, a heavy perturbation is used to
explore better neighbours in the new research regions.

In order to demonstrate the performance of the proposed algorithm, extensive experiments are
conducted on all the 120 instances of four different scales. It is obviously shown in the compared
experiments that HLS gives better results than other six state-of-the-art algorithms, including GA, MA,

Sustainability 2017, 9, 2318 33 of 35

MALS, IG_RS, IG_RSLS and PACO. The experimental results confirm that it is appropriate in using the
combination of local search and perturbation methods in HLS.

In the future, the proposed HLS algorithm is expected to be used to solve other combinational
problems such as no-wait flowshop scheduling problems (NWFSSP), hybrid flowshop scheduling
problems (HFSSP), blocking flowshop scheduling problems (BFSSP) under makespan criterion.
Different values of parameters for HLS can be experimented comprehensively to enhance the
solution quality. In addition, different neighbourhood structures can be developed for improving
the effectiveness of HLS. Meanwhile, the interactions between the exploitation and the exploration
strategies should be investigated in depth. In other words, other techniques on different ways of local
search and perturbation which is more suitable for FSSP-SDST can be studied to guide the search to
other extensive spaces and enhance the performance of HLS. Moreover, it helps to construct other
metaheuristics with some effective ingredients adding to the basic HLS. For example, the restart
strategy that a new population is generated randomly with the current best individual not improving
after a given number of iterations and the elite strategy that keeps some elite individuals in current
population for a number of iterations.

Furthermore, we can integrate HLS with other heuristics, such as the variable neighbourhood
search and the tabu search. This would be more effective to keep balance between the intensification
and the diversification and improve the quality of solutions.

Acknowledgments: The authors would like to thank all anonymous reviewers for their constructive comments,
which have helped improve the study in numerous ways. This research is supported by the National Natural
Science Foundation of China under Grant No. 61603087 and also funded by the Natural Science Foundation of
Jilin Province under Grant No. 20160101253JC. Meanwhile, this research is also supported by the Fundamental
Research Funds for the Central Universities No. 2412017FZ026.

Author Contributions: Yunhe Wang operated the experiments and drafted the manuscript. Xiangtao Li designed
the research and Zhiqiang Ma checked the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

FSSP-SDST The flowshop scheduling problem with sequence dependent setup times
HLS Hybrid local search algorithm
NEHBPS Nawaz-Enscore-Hoam based problem-specific method
RPD Relatively percentage deviation

References

1. Johnson, S.M. Optimal two- and three-stage production schedules with setup times included. Nav. Res.
Logist. Q. 1954, 1, 61–68.

2. Cheng, T.C.E.; Gupta, J.N.D.; Wang, G. A review of flowshop scheduling reasearch with setup times.
Prod. Oper. Manag. 2000, 9, 262–282.

3. Vanchipura, R.; Sridharan, R. Development and analysis of constructive heuristic algorithms for flow shop
scheduling problems with sequence-dependent setup times. Int. J. Adv. Manuf. Technol. 2013, 67, 1337–1353.

4. Kheirkhah, A.; Navidi, H.; Bidgoli, M.M. Dynamic facility layout problem: A new bilevel formulation and
some metaheuristic solution methods. IEEE Trans. Eng. Manag. 2015, 62, 396–410.

5. Balouka, N.; Cohen, I.; Shtub, A. Extending the Multimode Resource-Constrained Project Scheduling
Problem by Including Value Considerations. IEEE Trans. Eng. Manag. 2016, 63, 4–15.

6. Li, S.; Wang, N.; Jia, T.; He, Z.; Liang, H. Multiobjective Optimization for Multiperiod Reverse Logistics
Network Design. IEEE Trans. Eng. Manag. 2016, 63, 223–236.

7. Kheirkhah, A.; Navidi, H.; Bidgoli, M.M. An Improved Benders Decomposition Algorithm for an Arc
Interdiction Vehicle Routing Problem. IEEE Trans. Eng. Manag. 2016, 63, 259–273.

Sustainability 2017, 9, 2318 34 of 35

8. Rios-Mercado, R.Z.; Bard, J.F. The flow shop scheduling polyhedron with setup times. J. Comb. Optim. 2003,
7, 291–318.

9. Nishi, T.; Hiranaka, Y. Lagrangian relaxation and cut generation for sequence-dependent setup time flowshop
scheduling problems to minimise the total weighted tardiness. Int. J. Prod. Res. 2013, 51, 4778–4796.

10. Christian, B.; Andrea, R.; Michael, S. Hybrid Metaheuristics: An Emerging Approach to Optimization; Studies in
Computational Intelligence; Springer: Berlin, Germany, 2008; Volume 114.

11. Raidl, G.R.; Puchinger, J. Combining (Integer) Linear Programming Techniques and Metaheuristics for
Combinatorial Optimization. Hybrid Metaheuristics 2008, 114, 31–62.

12. Blum, C.; Cotta, C.; Fernandez, A.; Sampels, M. Hybridizations of metaheuristics with branch & bound
derivates. Hybrid Metaheuristics 2008, 114, 85–116.

13. D’Andreagiovanni, F.; Nardin, A. Towards the fast and robust optimal design of wireless body area networks.
Appl. Soft Comput. 2015, 37, 971–982.

14. D’Andreagiovanni, F.; Krolikowski, J.; Pulaj, J. A fast hybrid primal heuristic for multiband robust capacitated
network design with multiple time periods. Appl. Soft Comput. 2015, 26, 497–507.

15. Gambardella, L.M.; Montemanni, R.; Weyland, D. Coupling ant colony systems with strong local searches.
Eur. J. Oper. Res. 2012, 220, 831–843.

16. Nawaz, M.; Enscore, E.E.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing
problem. Omega 1983, 11, 91–95.

17. Rios-Mercado, R.Z.; Bard, J.F. Heuristics for the flow line problem with setup costs. Eur. J. Oper. Res. 1998,
110, 76–98.

18. Ruiz, R.; Maroto, C.; Alcaraz, J. Solving the flowshop scheduling problem with sequence dependent setup
times using advanced metaheuristics. Eur. J. Oper. Res. 2005, 165, 34–54.

19. Rios-Mercado, R.Z.; Bard, J.F. An Enhanced TSP-Based Heuristic for Makespan Minimization in a Flow Shop
with Setup Times. J. Heuristics 1999, 5, 53–70.

20. Rajendran, C.; Ziegler, H. Ant-colony algorithms for permutation flowshop scheduling to minimize
makespan/total flowtime of jobs. Eur. J. Oper. Res. 2004, 155, 426–438.

21. Gajpal, Y.; Rajendran, C.; Ziegler, H. An ant colony algorithm for scheduling in flowshops with
sequence-dependent setup times of jobs. Int. J. Adv. Manuf. Technol. 2006, 30, 416–424.

22. Tseng, F.T.; Gupta, J.N.D.; Stafford, E.F. A penalty-based heuristic algorithm for the permutation flowshop
scheduling problem with sequence-dependent set-up times. J. Oper. Res. Soc. 2006, 57, 541–551.

23. Benkalai, I.; Rebaine, D.; Gagne, C.; Baptiste, P. The migrating birds optimization metaheuristic for the
permutation flow shop with sequence dependent setup times. IFAC PapersOnLine 2016, 49, 408–413.

24. Simons, J.V. Heuristics in flow shop scheduling with sequence dependent setup times. Omega 1992, 20,
215–225.

25. Jacobs, L.W.; Brusco, M.J. Note: A local-search heuristic for large set-covering problems. Nav. Res. Logist.
1995, 42, 1129–1140.

26. Ruizab, R. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling
problem. Eur. J. Oper. Res. 2007, 177, 2033–2049.

27. Rajendran, C.; Ziegler, H. A heuristic for scheduling to minimize the sum of weighted flowtime of jobs in a
flowshop with sequence-dependent setup times of jobs. Comput. Ind. Eng. 1997, 33, 281–284.

28. Wang, Y.; Dong, X.; Chen, P.; Lin, Y. Iterated Local Search Algorithms for the Sequence-Dependent Setup
Times Flow Shop Scheduling Problem Minimizing Makespan. In Foundations of Intelligent Systems; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 329–338.

29. Li, X.; Yin, M. An opposition-based differential evolution algorithm for permutation flow shop scheduling
based on diversity measure. Adv. Eng. Softw. 2013, 55, 10–31.

30. Li, X.; Yin, M. A hybrid cuckoo search via Levy flights for the permutation flow shop scheduling problem.
Int. J. Prod. Res. 2013, 51, 4732–4754.

31. Li, X.; Yin, M. A discrete artificial bee colony algorithm with composite mutation strategies for permutation
flow shop scheduling problem. Sci. Iran. 2012, 19, 1921–1935.

32. Wang, L.; Fang, C. A hybrid estimation of distribution algorithm for solving the resource-constrained project
scheduling problem. Expert Syst. Appl. 2012, 39, 2451–2460.

33. Fang, C.; Wang, L. An effective shuffled frog-leaping algorithm for resource-constrained project scheduling
problem. Inf. Sci. 2011, 181, 4804–4822.

Sustainability 2017, 9, 2318 35 of 35

34. Pan, Q.K.; Wang, L. Effective heuristics for the blocking flowshop scheduling problem with makespan
minimization. Omega 2012, 40, 218–229.

35. Li, X.; Wang, Q.; Wu, C. Efficient composite heuristics for total flowtime minimization in permutation flow
shops. Omega 2009, 37, 155–164.

36. Li, X.; Ma, S. Multi-Objective Memetic Search Algorithm for Multi-Objective Permutation Flow Shop
Scheduling Problem. IEEE Access 2017, 4, 2154–2165.

37. Li, X.; Li, M. Multiobjective Local Search Algorithm-Based Decomposition for Multiobjective Permutation
Flow Shop Scheduling Problem. IEEE Trans. Eng. Manag. 2015, 62, 544–557.

38. Ruizab, R. An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with
makespan and weighted tardiness objectives. Eur. J. Oper. Res. 2008, 187, 1143–1159.

39. Li, X.; Zhang, Y. Adaptive hybrid algorithms for the sequence-dependent setup time permutation flow shop
scheduling problem. IEEE Trans. Autom. Sci. Eng. 2012, 9, 578–595.

40. Benkalai, I.; Rebaine, D.; Gagne, C.; Baptiste, P. Improving the migrating birds optimization metaheuristic
for the permutation flow shop with sequence-dependent set-up times. Int. J. Prod. Res. 2017, 1–13,
doi:10.1080/00207543.2017.1327732.

41. Duman, E.; Uysal, M.; Alkaya, A.F. Migrating Birds Optimization: A new metaheuristic approach and its
performance on quadratic assignment problem. Inf. Sci. 2012, 217, 65–77.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Flowshop Scheduling Problem with Sequence Dependent Setup Times
	A Hybrid Local Search Algorithm
	Overall Framework
	Initialization
	Global Search Method
	Update Method
	Perturbation and Local Search Methods
	How to Balance between Exploitation and Exploration

	Experimental Results
	Environmental Setup
	Benchmark Problem Instances and Benchmark Algorithms
	Experimental Parameter Settings
	The Influence of the Population Size N
	The Influence of the Maximal Number of GlobalSearch GSNummax
	The Effect of the Mutation Probability MP
	The Influence of the Maximal Number of Update UpdateNummax
	The Effect of the Maximum Number of Further Search FSNummax

	Effect of NEH Based Problem-Specific Heuristic
	Effect of Different Perturbation Operators
	Effectiveness Evaluation of Different Local Search Operators
	Comparison Results with Some State-Of-The-Art Approaches
	Comparison Results with Some Recent Algorithms

	Conclusions and Future Work
	References

