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Abstract: Landscape metrics are useful tools in investigating spatial structure and in describing
the heterogeneity of landscapes, but are sensitive to grain size. Thus, it is necessary to determine
the appropriate grain size before researching landscape patterns. However, there have been few
large-scale investigations in high-precision research about the effect of grain size on landscape
patterns, especially in arid valleys in China. Thus, we selected three representative sample areas
according to the basic characteristics of arid valleys, and we chose 22 grain sizes from 15 to 450 m
to calculate twelve landscape metrics at the landscape level and six landscape metrics at the class
level to analyze the most appropriate grain size for the arid valleys. All basins in the study area were
converted to an appropriate-sized grid to analyze the landscape patterns. Our results showed that
the effect of grain size on landscape metrics can be categorized as: no law, increasing, decreasing,
or no change. The majority of the fitted landscape index curves were good, with high R2 values.
The most appropriate grain size at both levels was 75 m. The landscape pattern of arid valleys was
scale-dependent. At the landscape level, arid valley landscape patterns changed from northwest
to southeast due to topography and hydrothermal conditions. While the value of aggregation for
different size classes was high, the other metrics showed significant differences due to area and
degree of human activity at the class level.
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1. Introduction

Landscape metrics are widely used to investigate spatial structure and describe the heterogeneity
of landscapes [1–5]. It is important to consider the effects of scale on interpretation of spatial
heterogeneity and its ecological consequences [6]. With improved calculations and methods for
analyzing landscape patterns, assessing the scale effect on landscape pattern metrics has been a key
area of research in landscape ecology [7].

Scaling functions are the most precise and concise way of explicitly quantifying multiscale
characteristics [8–10]. In landscape research, the scale effect is generally considered in spatial and
temporal contexts [6,11]. Spatial scale is a central variable in research on landscape patterns and has
two important components: extent and grain size [12,13]. Extent is the total length, area, or volume
that exists or is analyzed; grain size is the basic landscape unit, affecting not only the precision and
accuracy of the calculation but also the validity and completeness of the information extracted [14,15].
The choice of grain size depends on the study objectives and the landscape characteristics. When grain
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size is closest to the actual scale of the landscape in question, interpretations of landscape patterns are
most accurate [16].

Our understanding of landscape spatial heterogeneity, including landscape patterns, functions,
and processes, is dependent on the scale and resolution used for observations [17]. With the
accumulation of historical data and the development of remote sensing, including geographic
information systems (GIS) and other technologies, making examination of the “scale effect” more
feasible and significant but complicating the issue of how to determine the scale to use in macroscopic
research [18]. The advancement of landscape technical methods, especially application of the software
FRAGSTATS [19], facilitates the large-scale study of scale effects on landscape heterogeneity.

The scale effect depends on many factors [20]. Examination of the ways in which pattern
metrics change with scale in real landscapes will improve understanding of scale-dependent spatial
heterogeneity [17]. Disturbances lead to variations in natural scale [21]. The response of landscape
metrics to changing grain size is influenced by zonality and spatial heterogeneity, which vary
significantly across landscapes [22]. The effect of landscape metrics on the choice of grain size has
been examined by many ecologists. The metrics value is sensitive to land-cover composition and
to misclassification of land cover [23]. Spatial patterns have a strong influence on interpretation of
species diversity [24]; insects and vertebrate diversity is widely used in conservation management and
is scale-dependent [5,25]. Scale-dependent landscape metrics can also be used to analyze highly linked
hydrological processes [26]. Moving-window analyses of spatial patterns in floodplains at multiple
scales showed that scale influences all surface metric values and their spatial organization [27].

The use of landscape metrics has become popular in efforts to quantify and characterize landscape
patterns with remote data and technology [1–3]. Although most landscape metrics are sensitive to
changes in spatial extent, spatial resolution, and thematic resolution, the sensitivity varies among
metrics and study areas [1,3]. The optimum scale and landscape pattern analysis need to be combined
to increase the accuracy in landscape measurements [3]. Metrics have three types of responses
to grain size: predictable responses with simple scaling relations, staircase-like responses without
simple scaling relations, and erratic responses without general scaling relations [17]. Scale-related
studies have focused on various topographic areas in China, including plains [28], hills [29,30],
mountains [31,32], and habitats such as settled landscapes and ecotones [33]. With rapid urbanization,
researchers have examined the effects of grain size on understanding of landscapes such as urban
and urban–rural transitional areas [34]. Some researchers have performed comparative analyses of
different patches within a given area, or of similarities and differences in the effects of grain size on
landscape classification, to explore the relationships between patch type and size and grain size [35].
Under the optimum scale identified by multiresolution analysis, landscape patterns can be measured
well [9,10].

Arid valleys are ecologically important features of mountainous landscapes in China, and finding
the grain size of arid valley landscapes is important to helping ensure regional ecological security and
to promote environmental protection measures appropriate to local conditions [36]. In recent years,
there has been severe aridification and secondary aridification (human activity-induced aridification) of
arid valleys. At the same time, the geothermal energy usage of these valleys has enabled concentrated
population growth, despite their limited land area, which has led to degradation of biological diversity
and regional ecological functioning [37,38]. There is an urgent need to address the ways in which
scale affects interpretation of arid valley landscape patterns under human influence. Areal extent and
grain size should be determined prior to describing landscape patterns. Thus, this paper has four
objectives: (1) to determine how extent influences landscape patterns in arid valleys by using three
different-sized sample areas; (2) to determine how landscape metrics change with grain size and how
grain size influences our understanding of landscape patterns; (3) to determine whether extent or grain
size has a more significant effect on interpretation of arid valley landscapes; and (4) to determine the
most appropriate grain size for analyzing landscape characteristics of arid valleys at the landscape and
class levels.
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2. Materials and Methods

2.1. Study Area

The Hengduan Mountains are located in the southeastern region of the Qinghai-Tibet Plateau,
adjacent to the northwestern boundary of Yunnan Province. They range from 24◦40′N to 34◦00′N lat
and from 96◦20′E to 104◦30′E long [39]. This area is part of China’s subtropical climate zone, under
the influence of high-elevation westerly wind currents, the Indian Ocean, and the Pacific monsoon.
Winters are dry, and summers are very rainy. There is a distinct division between the dry and wet
seasons; wet season normally occurs from May to October, with precipitation accounting for 75 to 90%
of the annual total [40]. Dry season occurs from October to April; precipitation during this period is
under 30 mm in most of the meteorological stations in the Hengduan Mountains [41]. Arid valleys are
unique natural landscapes of the Hengduan Mountains region in southwestern China. These valleys
mainly occur along the Jinsha, Nujiang, Lancangjiang, Yuanjiang, Yalong, Minjiang, Dadu, and
Anning rivers and some of their tributaries [36]. Arid valleys are relatively fragile ecosystems that
are susceptible to natural disasters such as debris flows, collapse, and landslides due to having steep
slopes. These valleys have deep rivers and north–south mountain ranges that minimize the influence
of the southeastern Pacific monsoon and the southwestern Indian Ocean monsoon. Coupled with the
“foehn effect” (strong, warm dry winds), the valleys are dry and hot, sparsely vegetated, and have low
levels of land cover. The climate of the arid valleys has a clear vertical distribution. The Hengduan
Mountains are well-known for their biodiversity [42], but they have low plant diversity and cover,
and more shrubs than trees. Shrubs are the dominant drought-tolerant species; their morphological
adaptations to dry conditions include thorns and hairiness. The soils are acidic and include red soils
and heavy clay. Most arid valley soils are leached, iron- or aluminum-enriched, thin, and severely
eroded and degraded as a result of human activity [37].

Research on arid valleys in the Hengduan Mountains advanced in the 1980s and focused primarily
on physical features, such as soil and soil-forming characteristics, vegetation, species richness [43],
temperature and hydrology. Arid valleys have been classified into four subcategories based on
temperature and hydrology: dry-hot, dry-warm, dry-lukewarm, and dry-cool; these categories are
used to determine the most appropriate plant species for different areas [36].

There has been little research on Hengduan Mountain arid valleys in the 21st century, although
some studies have examined environmental degradation, development issues, and protection measures
in relation to climate change. Data from 27 meteorological stations in the Hengduan Mountains
from 1961 to 2012 reflect a decrease in precipitation extremes from southwest to northeast [44].
More specifically, the average temperature of arid valleys in the Hengduan Mountain area increased
by 0.11 ◦C per decade, but relative humidity and sunshine hours showed a decreasing trend [45].
The ability of ecosystems in the region to adapt to these changes was investigated [46], and research on
sustainable development has been pursued [47]. A summary of basic research indicates that the extent
of arid valleys has increased and that habitat quality has deteriorated, and research on ecological
restoration has been recommended [38]. Other work in arid valleys in the Hengduan Mountains has
focused on specific features such as rivers. Most river research was performed in the upper reaches of
the Minjiang River [48], and the Jinsha [49], Lancangjiang [50], and Dadu [51] rivers. Other research
has focused on administrative areas, mostly in Sichuan Province [51,52]. These studies show that the
boundaries of arid valleys have been expanding while environmental conditions have been worsening.

2.2. Methods

2.2.1. Sample Selection

Based on the range of arid valleys, we selected 32 good-quality images within the study area from
2014 LANDSAT 8 data [53]. Using remote sensing software such as ArcGIS and ENVI, the boundaries
of the arid valleys were obtained and the spatial distribution of the valleys was determined. In
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ENVI 5.1, these data were changed by Tasseled Cap Transformation, and the ISODATA Unsupervised
Classification tool was used to divide the study area into seven categories: forest, shrub, grassland,
water, farmland, settlement, and unused land. The overall accuracy was 85.7%, indicating that the
classification result was accurate.

To ensure that calculated landscape pattern metrics were meaningful, discontinuous arid valleys
were marked from north to south and from west to east. For example, the Jinsha River has four
discontinuous valleys, which were labeled js1, js2, js3, and js4. We used the same method to mark the
Nujiang, Lancang, and Yalong river valleys (Figure 1).

Sustainability 2017, 9, 2263  4 of 20 

ISODATA Unsupervised Classification tool was used to divide the study area into seven categories: 
forest, shrub, grassland, water, farmland, settlement, and unused land. The overall accuracy was 
85.7%, indicating that the classification result was accurate. 

To ensure that calculated landscape pattern metrics were meaningful, discontinuous arid valleys 
were marked from north to south and from west to east. For example, the Jinsha River has four 
discontinuous valleys, which were labeled js1, js2, js3, and js4. We used the same method to mark the 
Nujiang, Lancang, and Yalong river valleys (Figure 1). 

 

Figure 1. The arid valleys distribution from north to south and from west to east, and their labels. 

We first calculated basal data for the valleys in the eight river basins (Table 1). To reduce the 
amount of data and to obtain more intuitive observations of basin characteristics, three samples were 
selected: arid valleys in the upper reaches of the Jinsha River, characterized by large areal extent, high 
elevation, steep slopes, a grassland landscape matrix, and minimal impact from human activity; the 
arid valley in Minjiang River, which has relatively small areal extent, low elevation, gentle slopes, a 
shrub landscape matrix, and moderate human influence; and the arid valley in Yuanjiang River, with 
small areal extent, low elevation, gentle slopes, a grassland matrix, and severe anthropogenic 
influence (Figure 2). 

Table 1. The area, length of river and boundary, mean DEM and mean slope of arid valleys. 

Basin  
Attributes 

Area 
(km2) 

The Length of 
River (km) 

The Length of 
Boundary (km) 

Mean 
DEM (m) 

Mean 
Slope (°) 

Dadu River 1202.11 229.23 2845.23 2387.66 29.31 
Yuanjiang 1378.76 187.50 1357.49 807.456 19.41 
Minjiang 1489.17 404.41 3330.44 2377.56 30.46 

Anning River 2693.62 677.71 2781.95 1649.52 15.10 
Yalong River 3347.99 340.33 5734.65 2177.29 27.89 

Lancang River 3457.13 586.16 4197.94 2572.87 29.68 
Nujiang 4100.81 730.54 3312.10 2264.63 29.13 

Jinsha River 15,390.53 2438.28 15,844.28 1927.06 25.58 

Figure 1. The arid valleys distribution from north to south and from west to east, and their labels.

We first calculated basal data for the valleys in the eight river basins (Table 1). To reduce the
amount of data and to obtain more intuitive observations of basin characteristics, three samples were
selected: arid valleys in the upper reaches of the Jinsha River, characterized by large areal extent,
high elevation, steep slopes, a grassland landscape matrix, and minimal impact from human activity;
the arid valley in Minjiang River, which has relatively small areal extent, low elevation, gentle slopes,
a shrub landscape matrix, and moderate human influence; and the arid valley in Yuanjiang River,
with small areal extent, low elevation, gentle slopes, a grassland matrix, and severe anthropogenic
influence (Figure 2).

Table 1. The area, length of river and boundary, mean DEM and mean slope of arid valleys.

Basin
Attributes Area (km2)

The Length of
River (km)

The Length of
Boundary (km)

Mean DEM
(m)

Mean
Slope (◦)

Dadu River 1202.11 229.23 2845.23 2387.66 29.31
Yuanjiang 1378.76 187.50 1357.49 807.456 19.41
Minjiang 1489.17 404.41 3330.44 2377.56 30.46

Anning River 2693.62 677.71 2781.95 1649.52 15.10
Yalong River 3347.99 340.33 5734.65 2177.29 27.89

Lancang River 3457.13 586.16 4197.94 2572.87 29.68
Nujiang 4100.81 730.54 3312.10 2264.63 29.13

Jinsha River 15,390.53 2438.28 15,844.28 1927.06 25.58
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2.2.2. Choice of Landscape Metrics and Grain Size

Landscape metrics include the patch, class, and landscape levels. We considered six types of
landscape metrics: area and edge, shape, core area, contrast, aggregation, and diversity. We chose
12 metrics at the landscape level (Table 2) and six metrics at the class level: percentage of landscape
(PLAND), number of patches (NP), PD, LPI, PAFRAC, and AI (The same as the landscape level metrics
in Table 2).
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Table 2. Landscape pattern metrics, and their description, were chosen at landscape level.

Metrics Name Description

Area and Edge metrics
Total Area (TA) The area of the landscape

Largest Patch Index (LPI) The proportion of the largest patch area

Shape metrics
Perimeter-Area Fractal Dimension (PAFRAC) Non-randomness or degree of aggregation for different patches

Fractal Index Distribution (FRAC_MN) The shape complexity of patches, which approaches 1 for shapes with simple perimeters and
2 for complex shapes

Aggregation metrics

Number of Patches (NP) The number of patches

Patch Density (PD) Number of patches per unit area

Splitting Index (SPLIT) The number of patches of a landscape divided into equal sizes keeping landscape division
constant, express the separation degree of individual distribution in different

Interspersion and Juxtaposition Index (IJI) The measurement of evenness of patch adjacencies and the degree of intermixing of patch types

Aggregation Index (AI) The degree of aggregation of similar patches

Landscape Shape Index (LSI) The continuity and complex of landscape shape and the measurement of the perimeter-to-area
ratio for the landscape as a whole.

Diversity metrics
Shannon’s Diversity Index (SHDI) Uncertainties and landscape heterogeneity of patches

Shannon’s Evenness Index (SHEI) The degree of evenness of each patch in the area, which only consider the evenness of patch
sizes, not the number of patches
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Landscape pattern data were transformed into GRID raster data for FRAGSTATS 4.2 [54] in ESRI’s
ArcGIS 10.0 [55]. We selected 22 landscape grain sizes from 15 m to 450 m. We used a grain-size
interval of 15 m between 15 m and 210 m, and an interval of 30 m between 210 m and 450 m. Figure 3
shows images of the same site using grain sizes of 15 m, 180 m, and 450 m. As the patch resolution is
reduced, landscape boundaries become smoother and detail is lost.

The calculated data were imported into Origin 8.5 [56] to complete a map of the impact of
landscape metrics on grain size effect. Using the curve-fitting function and regression analysis in SPSS
19.0, the functional relationship between landscape metrics and grain size was established, and the
strength of the correlation was tested.
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3. Results

3.1. Impact of Landscape Metrics

3.1.1. Landscape Level

Grain Size Response Curve

We used FRAGSTATS to calculate 12 landscape-level metrics for the three samples using 22 grain
sizes, and a response curve for landscape size and performance index in relation to grain size was
generated. The values for total area (TA) varied greatly so the grain size effect of this index for the
three samples were shown separately; the other 11 metrics were placed on one map of the three sample
areas for comparison (Figure 4).
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There were four types of response curves for the 12 metrics:
Type I: No-law scaling relations. Area and edge, specifically TA and LPI, are Type-1 metrics.

With changing grain size, these metrics show small-amplitude fluctuations with no obvious regularity
or characteristic function. Fluctuations in TA increase and become less regular with increasing grain
size, so accuracy was greater at smaller calculation scales. For LPI, the patch index at 30 m, 90 m and
210 m identified the inflection point, but there was no obvious change in the law.

Type II: Increasing scaling relations. This response curve corresponds to PAFRAC in the shape
metric and IJI in the aggregation metric. The PAFRAC response curve has inflections at 30 m and
210 m, and the whole curve is smoother. The IJI response curve has inflection points at 60 m and 180 m;
the index of arid valley js2 begins to be disordered at 195 m, while the response curves of mj and yj
fluctuate greatly after 300 m.

Type III: Decreasing scaling relations. This response curve corresponds to FRAC_MN in the shape
metric. Its curve is concave and tends to stabilize after the inflection point at 150 m. In addition,
aggregation metrics with the exception of IJI have this relationship. The curves of NP and PD are
convex, flat, and mostly stable after the inflection point at 300 m. The SPLIT curve declines rapidly
before 45 m and then gradually begins to flatten. The AI curve is concave and flattens after 330 m.
The response curve of LSI decreases linearly with slight waves at 45 m, 150 m, and 220 m.

Type IV: No change in scaling relations. This response curve corresponds to diversity metrics,
including SHDI and SHEI. The curve is stable and unaffected by grain size, with only a small change
in amplitude after 195 m.

Curve Fitting

Simulation by SPSS 19.0 (Table 3).

Table 3. The estimation of response curves of landscape metrics in landscape level.

Metrics
js2 mj yj

Curve Fitting R2 Curve Fitting R2 Curve Fitting R2

TA
LPI S function 0.870 S function 0.790 Cubic function 0.746

PAFRAC Log function 0.994 Log function 0.991 Log function 0.972
FRAC_MN Cubic function 0.987 Cubic function 0.991 Cubic function 0.988

NP Exp function 0.989 Exp function 0.987 Exp function 0.990
PD Exp function 0.989 Exp function 0.987 Exp function 0.990

SPLIT S FUNCTION 0.894 S FUNCTION 0.827 S FUNCTION 0.683
IJI Cubic function 0.933 Cubic function 0.751 Cubic function 0.897
AI Cubic function 0.999 Cubic function 0.998 Cubic function 0.998
LSI Cubic function 0.999 Cubic function 0.998 Cubic function 0.998

SHDI
SHEI

The greatest effect of grain size on landscape metrics in the three samples can be well simulated
by the different functions. There is no suitable function to simulate the effects of TA, SHDI, or
SHEI, and simulation of LPI and SPLIT is poor. The shape metric can be simulated well, with
precision > 95%; PAFRAC fits a logarithmic function, average shape index, and FRAC_MN is a
cubic function. LSI and AI are simulated using cubic functions; IJI is also cubic, but only js2 has
precision > 90%. Of the aggregative metrics, NP and PD can be simulated with exponential functions,
with fitting precision > 98%.

The first scale domain and the appropriate grain size were obtained from the response curves and
simulation results for the 12 landscape level metrics (Table 4). The first scale domain at the landscape
level is 60–90 m, and the optimum size is 75 m. For a single index, the scale domain is divided based
on the inflection point of the index curve [57]. In the first scale domain, selecting the appropriate
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grain size can not only reflect the characteristic information of the landscape better, but also avoid the
redundant computation [58]. The overlap of the appropriate grain size for each index is the optimum
size for landscape pattern research for each index can be best explained in this grain size.

Table 4. The appropriate grain size of the landscape metrics by calculating in landscape level.

Metrics First Scale Domain The Appropriate Grain Size

TA The smaller, the better
LPI 30–90 m 45–75 m

PAFRAC 30–210 m 45–195 m
NP 60–105 m 75–90 m
PD 60–105 m 75–90 m

SPLIT 30–90 m 45–75 m
IJI 60–180 m 75–125 m
AI 45–240 m 60–210 m
LSI 45–105 m 60–135 m

SHDI <195 m
SHEI <195 m
All 60–90 m 75 m

3.1.2. Class Level

Grain-Size Response Curve

In FRAGSTATS, 22 grain sizes for six landscape metrics at the class level were calculated for
the three samples, and response curves were generated for landscape size and performance index
according to grain size (Figure 5).

There were four types of response curves for the six metrics:
Type I: No law for scaling relations. This response curve applies to LPI. The values for water

decrease sharply at 45 m and values for grassland increase at 45 m for js2. The js2 index is more stable
from 60 to 120 m; mj is stable from 45 to 180 m, and yj is stable from 60 to 195 m.

Type II: Increasing scaling relations. This response curve also applies to LPI, showing an increasing
trend but fluctuating after 135 m. Changes in the water class differ from other patches, showing a
decreasing tendency in js2, but increasing before decreasing in mj and yj. The farmland and settlement
classes fluctuate more strongly than other landscape patches.

Type III: Decreasing scaling relations. This response curve includes NP, PD, and AI. The curves of
NP and PD are convex, and the response curve for water has a parabolic trend. All classes in AI show
a concave, declining trend. The grain-size response curve of js2 and mj fluctuate after 150 m, and the
curve of yj fluctuates after 120 m.

Type IV: No change in scaling relations. This response curve applies mostly to PLAND. The curve
of js2 does not change with increasing grain size, but the mj and yj curves fluctuate after 125 m and
135 m, respectively. Thus, smaller index sizes are better.
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Curve Fitting

Curve fitting simulated by SPSS 19.0 (Table 5).

Table 5. The estimation of response curves of landscape metrics in class level.

Metrics
js2 mj yj

Patch Curve Fitting R2 Curve Fitting R2 Curve Fitting R2

PLAND

Forest
Shrub
Grass
Water

Farmland
Settlement

Unused land

NP

Forest Cubic function 0.995 Cubic function 0.997 Cubic function 0.992
Shrub Cubic function 0.995 Cubic function 0.984 Cubic function 0.995
Grass Cubic function 0.991 Cubic function 0.994 Cubic function 0.990
Water Cubic function 0.518 Cubic function 0.490 Cubic function 0.399

Farmland Cubic function 0.984 Cubic function 0.996 Cubic function 0.996
Settlement Cubic function 0.950 Cubic function 0.985 Cubic function 0.977

Unused land Cubic function 0.996 Cubic function 0.990 Cubic function 0.987

PD

Forest Cubic function 0.995 Cubic function 0.997 Cubic function 0.992
Shrub Cubic function 0.995 Cubic function 0.984 Cubic function 0.995
Grass Cubic function 0.991 Cubic function 0.994 Cubic function 0.990
Water Cubic function 0.519 Cubic function 0.490 Cubic function 0.400

Farmland Cubic function 0.984 Cubic function 0.996 Cubic function 0.996
Settlement Cubic function 0.950 Cubic function 0.985 Cubic function 0.977

Unused land Cubic function 0.996 Cubic function 0.990 Cubic function 0.987

LPI

Forest S FUNCTION 0.708 Cubic function 0.609 Cubic function 0.484
Shrub S FUNCTION 0.458 Cubic function 0.487 Cubic function 0.524
Grass Exp function 0.547 S FUNCTION 0.499 S FUNCTION 0.551
Water Power function 0.909 S FUNCTION 0.408 Exp function 0.541

Farmland Cubic function 0.526 Cubic function 0.500 Cubic function 0.817
Settlement Cubic function 0.471 Cubic function 0.477 Cubic function 0.281

Unused land Cubic function 0.585 Cubic function 0.484 Cubic function 0.773

PAFRAC

Forest Power function 0.987 Power function 0.934 Power function 0.951
Shrub Power function 0.995 Power function 0.974 Power function 0.966
Grass Power function 0.969 Power function 0.973 Power function 0.958
Water Cubic function 0.830 Cubic function 0.346 Cubic function 0.503

Farmland Power function 0.951 Power function 0.954 Power function 0.961
Settlement Cubic function 0.376 Cubic function 0.562 Cubic function 0.937

Unused land Power function 0.733 Power function 0.821 Cubic function 0.338

AI

Forest Exp function 0.984 Exp function 0.988 Exp function 0.987
Shrub Exp function 0.984 Exp function 0.992 Exp function 0.988
Grass Cubic function 0.997 Cubic function 0.998 Exp function 0.989
Water Exp function 0.981 Exp function 0.963 Exp function 0.947

Farmland Cubic function 0.998 Cubic function 0.998 Exp function 0.989
Settlement Exp function 0.978 Exp function 0.980 Exp function 0.983

Unused land Exp function 0.988 Exp function 0.988 Exp function 0.969

The PLAND and LPI curve simulations are not good. All classes in the NP response curve can
be simulated by cubic functions, with precision > 95% except for water. Curve fitting is the same for
PD and NP. In PAFRAC, forest, shrub, grassland, farmland, and unused land take power functions
with precision > 95%, but water and settlement are fitted with cubic functions with low precision.
The classes in AI are well simulated, with precision > 94%; all classes take exponential functions,
except grassland and farmland in js2 and mj, which are described by cubic functions.

According to the response curves and the simulation results for the six class-level landscape
metrics, the first scale domain and the appropriate grain size were obtained (Table 6). The first scale
domain at the class level is 60–135 m, and the optimum size is 75 m.
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Table 6. The appropriate grain size of the landscape metrics by calculating in class level.

Metrics Basin First Scale Domain The Appropriate Grain Size

PLAND
js2 The smaller, the better
mj <125 m
yj <135 m

NP
js2 60–135 m 75–125 m
mj 60–135 m 75–125 m
yj 60–135 m 75–125 m

PD
js2 45–195 m 60–180 m
mj 45–195 m 60–180 m
yj 45–195 m 60–180 m

LPI
js2 <150 m
mj <150 m
yj <120 m

PAFRAC
js2 45–135 m 60–120 m
mj 45–150 m 60–135 m
yj 45–165 m 60–150 m

AI
js2 60–120 m 75–105 m
mj 45–180 m 60–165 m
yj 60–195 m 75–180 m

All 60–135 m 75 m

3.2. Landscape Pattern

In conclusion, the most suitable size for arid valleys is 75 m at both the landscape and class levels.
The spatial data were transformed into grid data with 75 m grain size in ArcGIS 10.0, and the landscape
metrics were then calculated in FRAGSTATS 4.2.

3.2.1. Landscape Level

The six landscape metrics calculated at the landscape level are shown in Figure 6.
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TA has the following characteristics: the area of js3 exceeds 10,000 km2 and is significantly larger
than the other basins. The landscape area of js1, js4, yj, and lc3 is <500 km2. The area of the other
basins is between 1000 and 3500 km2. NP shows the same trend as TA. The PD of lc3 is largest and has
the greatest uniformity; the PDs of js1 and js2 are low with more uniform landscape, and the others
are intermediate.

From the calculation results for LPI, there is a dominant patch in nj1, js2, js4, lc3, and bs. The first
four valleys have high elevation, steep terrain, little human disturbance, and thus little fragmentation.
However, the area of basin bs is small, so it has consistent patches that dominate. Basin an has low
elevation and flat terrain; an has been developed into a wide, uniform area of cultivated land, so the
LPI value is just 35. Basins lc3 and js1 are small and have intermediate LPI. The other LPI values are
<20, have no dominant patches, and are more fragile.

The calculated PAFRAC values of the arid valleys are between 1.4 and 1.5, which indicate that
landscape shape has intermediate complexity, with climatic and human influences, and follows a rule.
The calculation results for SPLIT show that valleys lc3, yl1, and dd have a greater degree of broken
landscape, and smaller basins such as an, have a unified landscape.

FRAC_MN shows a moderate level of shape complexity of patches. In comparison, the shape of
nj1 and js1 are more complex. However, nj2, lc, an, and yj have the most simple landscape shape.

IJI can reflect the distribution characteristics of ecosystems that are restricted by natural conditions.
The calculated values of js2, yl2, and an are low, which indicates that these ecosystems are severely
affected by vertical zonality and human activity, so their patches are distributed, and aggregation is
low. AI expresses the degree of connectivity of the patches. It can be seen that the least amount of
shared boundary between patches occurs in lc3, and connectivity between patches is greatest in nj1,
js1, and js2. LSI shows the degree of aggregation of like patches, which is greatest in js3.

SHDI and SHEI are widely used in community ecology to indicate landscape diversity and
uniformity. The results reflect landscape heterogeneity and are especially sensitive to the uneven
distribution of patch types. The trends of these two indicators are basically the same. Basin lc3
has the highest value, indicating that the landscape has high fragmentation and large uncertainty.
The values of nj1, lc1, and js2 are relatively low, indicating strong landscape integrity, a low degree of
fragmentation, and a small amount of information. The other valleys are intermediate between these
two scenarios.

3.2.2. Class Level

Landscape metrics of arid valleys at the class level were calculated for the different basins
(Figure 7).

PLAND represents how much of the total landscape area a given patch type accounts for.
The proportion of water, settlement, and unused land in all basins occupies less than 10%, and
the proportion of forest is also generally small, less than 20% of the total area. The landscape matrix
in bs, dd, mj, and yl2 is shrub, and the matrix in js, lc, nj, and yj is grass. The proportion of forest and
grassland patches is almost equal in yj1. Major anthropogenic influence is apparent in basins an, js4,
lc3, and nj2, which have a large proportion of farmland (>50% of the total area in an).

NP represents the number of patches in the landscape. NP is high in js3 because of its large
area. The same tendencies are seen in other basins: the NPs of water, settlement, and unused land
are low; farmland is the next lowest; the NPs of forest and grassland are equal; and shrub has the
greatest number of patches. NP and PLAND are related, but the correlation is not entirely positive.
For example, in the arid valley of an, although farmland occupies the largest proportion of landscape
area, farmland patches are large and regular, so there are fewer patches of farmland compared to forest
and shrub.

PD represents the number of patches per unit area. Landscape classes with low NP (water,
settlement, unused land) also have low PD. The shrub class has the largest number of patches in an, js,
and yl1, where it also has the largest PD. In bs, dd, nj, yj, mj, grassland has the highest PD, indicating
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that grassland is the most widely distributed landscape class. PD is not inevitably related to the
landscape matrix. Although the landscape matrix always has the largest area of all landscape classes,
PD is also affected by the degree of fragmentation and anthropogenic activity.

LPI represents the proportion of the largest patch of a given type in the whole landscape.
The dominant patch types are shrub in bs, mj, and yl2; grassland in js1, js2, lc1, nj, and yj; and
farmland in an and lc2. The other basins have no obvious dominant patch. LPI is positively correlated
with PLAND.

PAFRAC represents the shape distribution of patches. The river corridor has the most irregular
shape and the highest PAFRAC value. Patches that represent severe human influence, i.e., settlement
and farmland, are uniform and have low PAFRAC values. The calculated values of the shrub class
in js1 and nj1 are relatively low, which may be related to the use of shrub-type economic crops in
arid valleys.

AI indicates the degree of polymerization of the same patch type. Water is generally distributed
in the center of the arid valleys, occupying a small area and few patches, so the calculated AI value is
relatively small. However, because rivers differ in width, there is no obvious, uniform rule for the AI
of water. The arid valleys are oriented north–south and are long and narrow, and landscape patches
are closely distributed on both sides of the river. Therefore, the calculated AI of patches other than
water is high, and the highest AI value is for farmland in yl1.
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4. Discussion

4.1. Impact of Grain Size on Landscape Metrics

The effect of spatial scale on landscape patterns in ecosystems is an important feature of landscape
ecology [9,59]. Clarifying scale will make landscape research more effective and accurate [1,60].
Grain-size analysis is a differentiating factor in patterns observed in the study of the scale effect
on spatial patterns, including land cover diversity metrics [20,25]. In this paper, we calculated
12 landscape-level and six class-level landscape metrics in arid valleys and generated response curves
for grain size and landscape pattern. In a previous study on this subject, the metrics were classified
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into three categories (Wu et al. [61]); another study identified four types of metrics: monotonic increase,
monotonic decrease, no change, or erratic [61]. We followed the four-category classification and refined
the predictable responses to two, either increasing or decreasing. Using SPSS, we obtained high
precision in curve fitting to show the relationship between landscape metrics and grain size.

We demonstrated that landscape patterns in arid valleys are scale-dependent. At the landscape
level, the curves of area and edge have no low point; the curves of shape and aggregation metrics are
regular, showing either an increasing or a decreasing trend; and the curves of diversity metrics do
not change with grain size. With increasing grain size, small patches are “lost” or merge with bigger
ones [7], such that the shape and aggregation metrics changed in a regular fashion. Species richness
in the landscape increases with increasing extent, and landscape complexity has lower explanatory
power at medium and large scales [24]. However, in our study, landscape classification is coarse and
does not show changes in species diversity. At the class level, water has the lowest curve, and its
pattern of change is irregular and contrary to other patches; farmland and settlement reflect human
activity, so their metrics have a more significant effect on grain size selection than do those of natural
patch types. Based on the first scale domain and the most suitable grain size, the best grain size for
the landscape and class levels is 75 m; this grain size best predicts the landscape features measured.
Our finding that agriculture is located in low-elevation areas and in more regular patches is consistent
with the conclusions of other research [4].

The effect of changing grain size was more predictable than the effect of changing extent for
various North American landscapes, a finding that our results support [17]. The curves of the three
samples show the same trend, and their relationships can be fit by the same functions. However, the
metrics change as grain size changes, such that grain size has more impact than areal extent. The area
of the three samples we chose were different, but most of the grain size effects for calculated landscape
metrics were consistent across the three samples. We believe that the impact of area extent on landscape
metrics is not apparent in the study area, because we chose the specific landscape—arid valleys in
different basins whose structures were similar, with rivers in the middle and surrounded by various
types of vegetation.

4.2. Landscape Pattern

Landscape metrics are useful tools for quantifying the spatial patterns of landscapes after the
appropriate grain size or extent is determined [61]. We used a grain size of 75 m to calculate all
landscape metrics at two levels to observe the landscape patterns of arid valleys.

At the landscape level, the overall shape continuity and complex of arid valleys are intermediate.
The northwestern valleys are wide, located at high elevation, and are steep and deep, so the natural
landscape is well preserved; patches are closely connected with high integrity, and the degree of
segmentation by land use and fragmentation is low. The central arid valleys are mostly subalpine,
have relatively flat terrain, and are subject to some human activity; the landscape in these valleys
retains some natural characteristics. Arid valleys of the southeast are moderate in extent, have low
elevation and flat terrain, and are severely affected by human activity; the patch shape in these valleys
is relatively simple, and there is poor connection among patches and a high degree of landscape
segmentation and fragmentation. Highways and road construction expand anthropogenic impacts; as
patches merge and expand, habitat is fragmented and areas of natural vegetation decrease [62].

At the class level, water, settlement, and unused land occupied the smallest area and patch
number in the arid valleys. From northwest to southeast, the landscape matrix transitioned from
grassland to shrub, the proportion of forest increased, and the degree of human disturbance gradually
increased. Tightly distributed on both sides of the valley, all patches have a strong degree of aggregation.
Water is the least affected by human disturbance and always shows the opposite pattern to other patch
types. Artificial landscapes, specifically farmland and settlement, have the most regular patch shape.
Changes in land use caused by human activity affect the property and function of natural landscapes;
manipulated landscapes such as agricultural areas are characterized by physical connectedness and
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relatively simple geometries [4]. The two most important factors affecting landscape patterns are patch
area and the degree of human disturbance.

5. Conclusions

Arid valleys in southwestern China include fragile ecosystems which are vulnerable to ecological
degradation, and are difficult to protect. An increased understanding of landscape patterns in arid
valleys will help ensure regional ecological security, and aid in the development of environmental
protection measures appropriate to local conditions. The landscape metrics of arid valleys were
calculated at different spatial distributions with the use of remote sensing data to describe their
landscape pattern. First, we analyzed the effect of scale (grain size and extent) on landscape metrics
to calculate more effective and accurate metrics. We chose 22 size categories(from 15 to 450 m) to
calculate twelve metrics at landscape level, and six landscape metrics at class level to analyze the most
appropriate grain size for the arid valleys.

We found that the optimum grain size for the arid valleys in the Hengduan Mountains of China
at landscape and class levels was 75 m. The landscape pattern was scale-dependent and the effect of
changing grain size was more predictable than the effect of changing extent. At the landscape level, the
overall shape continuity and complexity of arid valleys were intermediate, and the landscape patterns
changed from northwest to southeast due to topography and hydrothermal conditions. At class level,
the value of aggregation for different size classes was high, and the other metrics showed significant
differences due to the size of the area and degree of human activity. Moving from the northwest to the
southeast of the area, the degree of landscape fragmentation increased with a decrease in elevation,
the terrain became flat, and man-made activity increased.

Acknowledgments: This research was jointly supported by the National Natural Science Foundation of China
(Grant No. 31670549,31170664), the Fundamental Research Funds for the Central University ( 310829173501 and
310827172007)and the Key Science and Technology Program for Creative Research Groups of Shaanxi Province,
China (2016KCT-23).

Author Contributions: Yonghua Zhao and Shu Fang conceived and designed the experiments; Shu Fang
performed the experiments, analyzed the data and wrote the paper; Lei Han and Chaoqun Ma optimized
the experiment and modified the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data, in the writing of the manuscript, and in the
decision to publish the results.

References

1. Remmel, T.K.; Csillag, F.; Mitchell, S.W.; Boots, B. Empirical Distributions of Landscape Pattern Indices
as Functions of Classified Image Composition and Spatial Structure. Available online: https://pdfs.
semanticscholar.org/23b6/4dd8f5d1dfd659494edd0cd2a84b8c08ecef.pdf (accessed on 5 December 2017).

2. Fortin, M.J.; Boots, B.; Csillag, F.; Remmel, T. On the role of spatial stochastic models in understanding
landscape indices in ecology. Oikos 2003, 102, 203–212. [CrossRef]

3. Baldwin, D.J.; Weaver, K.; Schnekenburger, F.; Perera, A.H. Sensitivity of landscape pattern indices to
input data characteristics on real landscapes: Implications for their use in natural disturbance emulation.
Landsc. Ecol. 2004, 19, 255–271. [CrossRef]

4. Plexida, S.G.; Sfougaris, A.I.; Ispikoudis, I.P.; Papanastasis, V.P. Selecting landscape metrics as indicators of
spatial heterogeneity—A comparison among greek landscapes. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 26–35.
[CrossRef]

5. Schindler, S.; von Wehrden, H.; Poirazidis, K.; Wrbka, T.; Kati, V. Multiscale performance of landscape metrics
as indicators of species richness of plants, insects and vertebrates. Ecol. Indic. 2013, 31, 41–48. [CrossRef]

6. Wu, J. Scale and scaling: A cross-disciplinary perspective. In Key Topics in Landscape Ecology;
Cambridge University Press: Cambridge, UK, 2007.

7. Saura, S. Effects of remote sensor spatial resolution and data aggregation on selected fragmentation indices.
Landsc. Ecol. 2004, 19, 197–209. [CrossRef]

https://pdfs.semanticscholar.org/23b6/4dd8f5d1dfd659494edd0cd2a84b8c08ecef.pdf
https://pdfs.semanticscholar.org/23b6/4dd8f5d1dfd659494edd0cd2a84b8c08ecef.pdf
http://dx.doi.org/10.1034/j.1600-0706.2003.12447.x
http://dx.doi.org/10.1023/B:LAND.0000030442.96122.ef
http://dx.doi.org/10.1016/j.jag.2013.05.001
http://dx.doi.org/10.1016/j.ecolind.2012.04.012
http://dx.doi.org/10.1023/B:LAND.0000021724.60785.65


Sustainability 2017, 9, 2263 18 of 20

8. Wu, J. Effects of changing scale on landscape pattern analysis: Scaling relations. Landsc. Ecol. 2004, 19,
125–138. [CrossRef]

9. Johnson, G.D.; Patil, G.P. Quantitative multiresolution characterization of landscape patterns for assessing
the status of ecosystem health in watershed management areas. Ecosys. Health 1998, 4, 177–187. [CrossRef]

10. Crow, T.R.; Perera, A.H. Emulating natural landscape disturbance in forest management—An introduction.
Lands. Ecol. 2004, 19, 231–233. [CrossRef]

11. Lam, N.S.N.; Quattrochi, D.A. On the issues of scale, resolution, and fractal analysis in the mapping sciences.
Prof. Geogr. 1992, 44, 88–98. [CrossRef]

12. Wu, J.; Qi, Y. Dealing with scale in landscape analysis: An overview. Ann. GIS 2000, 6, 1–5. [CrossRef]
13. Turner, M.G.; O’Neill, R.V.; Gardner, R.H.; Milne, B.T. Effects of changing spatial scale on the analysis of

landscape pattern. Landsc. Ecol. 1989, 3, 153–162. [CrossRef]
14. Wiens, J.A. Spatial scaling in ecology. Funct. Ecol. 1989, 3, 385–397. [CrossRef]
15. Dungan, J.L.; Perry, J.; Dale, M.; Legendre, P.; Citron-Pousty, S.; Fortin, M.J.; Jakomulska, A.; Miriti, M.;

Rosenberg, M. A balanced view of scale in spatial statistical analysis. Ecography 2002, 25, 626–640. [CrossRef]
16. Nagendra, H.; Munroe, D.K.; Southworth, J. From pattern to process: Landscape fragmentation and the

analysis of land use/land cover change. Agric. Ecosyst. Environ. 2004, 101, 111–115. [CrossRef]
17. Wu, J.; Shen, W.; Sun, W.; Tueller, P.T. Empirical patterns of the effects of changing scale on landscape metrics.

Landsc. Ecol. 2002, 17, 761–782. [CrossRef]
18. Wu, J.; Jelinski, D.E.; Luck, M.; Tueller, P.T. Multiscale analysis of landscape heterogeneity: Scale variance

and pattern metrics. Geogr. Inform. Sci. 2000, 6, 6–19. [CrossRef] [PubMed]
19. McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying

Landscape Structure. Available online: https://www.fs.usda.gov/treesearch/pubs/3064 (accessed on
24 November 2017).

20. Jackson, N.D.; Fahrig, L. Landscape context affects genetic diversity at a much larger spatial extent than
population abundance. Ecology 2014, 95, 871–881. [CrossRef] [PubMed]

21. Levin, S.A. The problem of pattern and scale in ecology. Ecology 1992, 73, 1943–1967. [CrossRef]
22. Uuemaa, E.; Roosaare, J.; Mander, Ü. Scale dependence of landscape metrics and their indicatory value for

nutrient and organic matter losses from catchments. Ecol. Indic. 2005, 5, 350–369. [CrossRef]
23. Wickham, J.D.; O’Neill, R.V.; Riitters, K.H.; Wade, T.G.; Jones, K.B. Sensitivity of selected landscape

pattern metrics to land-cover misclassification and differences in land-cover composition. Photogramm. Eng.
Rem. Sens. 1997, 63, 397–402.

24. Amici, V.; Rocchini, D.; Filibeck, G.; Bacaro, G.; Santi, E.; Geri, F.; Landi, S.; Scoppola, A.; Chiarucci, A.
Landscape structure effects on forest plant diversity at local scale: Exploring the role of spatial extent.
Ecol. Complex. 2015, 21, 44–52. [CrossRef]

25. Kallimanis, A.S.; Koutsias, N. Geographical patterns of corine land cover diversity across europe: The effect
of grain size and thematic resolution. Prog. Phys. Geogr. 2013, 37, 161–177. [CrossRef]

26. Yuan, J.; Cohen, M.J.; Kaplan, D.A.; Acharya, S.; Larsen, L.G.; Nungesser, M.K. Linking metrics of landscape
pattern to hydrological process in a lotic wetland. Landsc. Ecol. 2015, 30, 1893–1912. [CrossRef]

27. Scown, M.W.; Thoms, M.C.; De Jager, N.R. Measuring floodplain spatial patterns using continuous surface
metrics at multiple scales. Geomorphology 2015, 245, 87–101. [CrossRef]

28. Long, D.Y.; Wang, J.; Bai, Z.K.; Guo, Y.Q. Grain effect of landscape pattern index of land consolidation area
in the west of songnen plain. Res. Soil Water Conserv. 2014, 21, 65–70. (In Chinese with English Abstract).

29. Qiu, Y.; Yang, L.; Wang, J.; Zhang, Y.; Meng, Q.H.; Zhang, X.G. Grain effect of landscape pattern indices
in a gully catchment of loess plateau, china. Acta Ecol. Sin. 2010, 21, 1159–1166. (In Chinese with
English Abstract).

30. Liu, Y.X.; Jiao, F. Landscape pattern characteristics and grain effect of landscape index in loess hilly region.
Res. Soil Water Conserv. 2013, 20, 23–27. (In Chinese with English Abstract).

31. Hou, S.Y.; Li, Y.X. Analysis on grain effect on landscape indices in mountain and plain based on gis. J. Hebei
Agric. Sci. 2010, 5, 43. (In Chinese with English Abstract).

32. Zhang, L.L.; Shi, Y.F.; Liu, Y.H. Effects of spatial grain change on the landscape pattern indices in yimeng
mountain area of shandong province, east china. Chin. J. Ecol. 2013, 32, 459–464. (In Chinese with
English Abstract).

http://dx.doi.org/10.1023/B:LAND.0000021711.40074.ae
http://dx.doi.org/10.1046/j.1526-0992.1998.00091.x
http://dx.doi.org/10.1023/B:LAND.0000030762.86156.5d
http://dx.doi.org/10.1111/j.0033-0124.1992.00088.x
http://dx.doi.org/10.1080/10824000009480528
http://dx.doi.org/10.1007/BF00131534
http://dx.doi.org/10.2307/2389612
http://dx.doi.org/10.1034/j.1600-0587.2002.250510.x
http://dx.doi.org/10.1016/j.agee.2003.09.003
http://dx.doi.org/10.1023/A:1022995922992
http://dx.doi.org/10.1080/10824000009480529
http://www.ncbi.nlm.nih.gov/pubmed/11315667
https://www.fs.usda.gov/treesearch/pubs/3064
http://dx.doi.org/10.1890/13-0388.1
http://www.ncbi.nlm.nih.gov/pubmed/24933807
http://dx.doi.org/10.2307/1941447
http://dx.doi.org/10.1016/j.ecolind.2005.03.009
http://dx.doi.org/10.1016/j.ecocom.2014.12.004
http://dx.doi.org/10.1177/0309133312465303
http://dx.doi.org/10.1007/s10980-015-0219-z
http://dx.doi.org/10.1016/j.geomorph.2015.05.026


Sustainability 2017, 9, 2263 19 of 20

33. Ji, Y.Z.; Zhang, X.L.; Wu, J.G.; Li, H.B. Analysis of mechanism of the settlements landscape change during
transforming data with several spatial granularities. Resour. Environ. Yangtze Basin 2013, 22, 322–330.
(In Chinese with English Abstract).

34. Fan, C.; Myint, S. A comparison of spatial autocorrelation indices and landscape metrics in measuring urban
landscape fragmentation. Landsc. Urban Plan. 2014, 121, 117–128. [CrossRef]

35. Wu, W.; Xu, L.P.; Zhang, M.; Ou, M.H.; Fu, H. Impact of landscape metrics on grain size effect in different
types of patches: A case study of wuxi city. Acta Ecol. Sin. 2016, 9, 35. (In Chinese with English Abstract).
[CrossRef]

36. Zhang, R. The Dry Valleys of the Hengduan Mountains Region; Science Press: Beijing, China, 1992. (In Chinese
with English Abstract).

37. Yang, Z.-P.; Chang, Y.; Hu, Y.-M.; Liu, M.; Wen, Q.-C.; Zhang, W.-G. Landscape change and its driving forces
of dry valley in upper reaches of minjiang river. Chin. J. Ecol. 2007. (In Chinese with English Abstract).
[CrossRef]

38. Yang, Z.P.; Chang, Y.; Bu, R.C.; Liu, M.; Zhang, W.G. Long-term dynamics of dry valleys in the upper reaches
of mingjiang river, China. Acta Ecol. Sin. 2007, 27, 3250–3256. (In Chinese with English Abstract).

39. Li, B.Y. On the boundaries of the hengduan mountains. J. Mt. Res. 1987, 2, 74–82. (In Chinese with
English Abstract).

40. Li, Z.X.; He, Y.Q.; Wang, C.F.; Wang, X.F.; Xin, H.J.; Zhang, W.; Cao, W. Spatial and temporal trends of
temperature and precipitation during 1960–2008 at the hengduan mountains, China. Quat. Int. 2011, 236,
127–142. [CrossRef]

41. Dong, D.H.; Huang, G.; Tao, W.C.; Wu, R.G.; Hu, K.M.; Li, C.F. Interannual variation of precipitation over
the hengduan mountains during rainy season. Int. J. Climatol. 2017. [CrossRef]

42. Wen, Z.X.; Yang, Q.S.; Quan, Q.; Xia, L.; Ge, D.Y.; Lv, X. Multiscale partitioning of small mammal β-diversity
provides novel insights into the quaternary faunal history of qinghai–tibetan plateau and hengduan
mountains. J. Biogeogr. 2016, 43, 1412–1424. [CrossRef]

43. Yang, Q.; Zheng, D. Physico-gepgraphical feature and economic development of the dry valleys in the
hengduan mountains, southwest China. J. Arid Land Res. Environ. 1988, 2, 18–23. (In Chinese with
English Abstract).

44. Zhang, K.; Pan, S.; Cao, L.; Wang, Y.; Zhao, Y.; Zhang, W. Spatial distribution and temporal trends in
precipitation extremes over the hengduan mountains region, China, from 1961 to 2012. Quat. Int. 2014, 349,
346–356. [CrossRef]

45. Ding, W.R. Trend of the climate changes in dry valleys of hengduan mountains, China. J. Ecol. Rural Environ.
2013. (In Chinese with English Abstract). [CrossRef]

46. Li, M. Rational land exploitation of dry valleys in the hengduan mountains region. J. Nat. Res. 1991, 6,
326–334. (In Chinese with English Abstract).

47. Sun, H.; Tang, Y.; Huang, X.J.; Huang, C.M. Present situations and its r&d of dry valleys in the hengduan
mountains of sw china. World Sci-Tech R&D 2005, 3, 15. (In Chinese with English Abstract).

48. Li, Y.; Bao, W.; Wu, N. Spatial patterns of the soil seed bank and extant vegetation across the dry minjiang
river valley in southwest china. J. Arid Environ. 2011, 75, 1083–1089. [CrossRef]

49. Dandan, Z.; Zhiwei, Z. Biodiversity of arbuscular mycorrhizal fungi in the hot-dry valley of the jinsha river,
southwest china. Appl. Soil Ecol. 2007, 37, 118–128. [CrossRef]

50. Zhang, Y.; Liu, J.; Wang, L. Changes in water quality in the downstream of lancangjiang river after the
construction of manwan hydropower station. Resour. Environ. Yangtze Basin 2005, 14, 500–506. (In Chinese
with English Abstract).

51. Cai, F.L.; Zhang, J.; Hu, K.B. Distribution and area investigation of the arid valley in Sichuan province.
J. Sichuan For. Sci. Technol. 2009, 30, 82–85. (In Chinese with English Abstract).

52. Yan, H.; University, S.A. Arid river valley division research in sichuan province based on remote sensing.
J. Sichuan Agric. Univ. 2013, 31, 182–187. (In Chinese with English Abstract).

53. Roy, D.P.; Wulder, M.; Loveland, T.R.; Woodcock, C.; Allen, R.; Anderson, M.; Helder, D.; Irons, J.;
Johnson, D.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research.
Rem. Sens. Environ. 2014, 145, 154–172. [CrossRef]

http://dx.doi.org/10.1016/j.landurbplan.2013.10.002
http://dx.doi.org/10.5846/stxb201405171015
http://dx.doi.org/10.1007/s10980-005-4430-1
http://dx.doi.org/10.1016/j.quaint.2010.05.017
http://dx.doi.org/10.1002/joc.5321
http://dx.doi.org/10.1111/jbi.12706
http://dx.doi.org/10.1016/j.quaint.2014.04.050
http://dx.doi.org/10.1006/jare.2001.0851
http://dx.doi.org/10.1016/j.jaridenv.2011.05.012
http://dx.doi.org/10.1016/j.apsoil.2007.06.003
http://dx.doi.org/10.1016/j.rse.2014.02.001


Sustainability 2017, 9, 2263 20 of 20

54. Mcgarigal, K.S.; Cushman, S.A.; Neel, M.C.; Ene, E. Fragstats: Spatial Pattern Analysis Program
for Categorical Maps. Available online: www.umass.edu/landeco/research/fragstats/fragstats.htmlS
(accessed on 2 November 2017).

55. ESRI (Environmental Sciences Research Institute). Available online: http://www.esri.com/ (accessed on
11 June 2012).

56. Stevenson, K.J. Review of originpro 8.5. J. Am. Chem. Soc. 2011, 133, 5621. [CrossRef]
57. Hay, G.; Marceau, D.; Dube, P.; Bouchard, A. A multiscale framework for landscape analysis: Object-specific

analysis and upscaling. Landsc. Ecol. 2001, 16, 471–490. [CrossRef]
58. Zhao, W.W.; Fu, B.J.; Chen, L.D. The effects of grain change on landcsape indices. Quat. Sci. 2003, 3, 326–333.

(In Chinese with English abstract).
59. Turne, M.G. Landscape Ecology: The effect of pattern on process. Ann. Rev. Ecol. Syst. 1989, 20, 171–197.

[CrossRef]
60. Youssoufi, S.; Foltête, J.-C. Determining appropriate neighborhood shapes and sizes for modeling landscape

satisfaction. Landsc. Urban Plan. 2013, 110, 12–24. [CrossRef]
61. Buyantuyev, A.; Wu, J. Effects of thematic resolution on landscape pattern analysis. Landsc. Ecol. 2007, 22,

7–13. [CrossRef]
62. Liang, J.; Liu, Y.; Ying, L.; Li, P.; Xu, Y.; Shen, Z. Road impacts on spatial patterns of land use and landscape

fragmentation in three parallel rivers region, yunnan province, china. Chin. Geogr. Sci. 2014, 24, 15–27.
[CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

www.umass.edu/landeco/research/fragstats/fragstats.html S
http://www.esri.com/
http://dx.doi.org/10.1021/ja202216h
http://dx.doi.org/10.1023/A:1013101931793
http://dx.doi.org/10.1146/annurev.es.20.110189.001131
http://dx.doi.org/10.1016/j.landurbplan.2012.09.005
http://dx.doi.org/10.1007/s10980-006-9010-5
http://dx.doi.org/10.1007/s11769-014-0652-y
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Methods 
	Sample Selection 
	Choice of Landscape Metrics and Grain Size 


	Results 
	Impact of Landscape Metrics 
	Landscape Level 
	Class Level 

	Landscape Pattern 
	Landscape Level 
	Class Level 


	Discussion 
	Impact of Grain Size on Landscape Metrics 
	Landscape Pattern 

	Conclusions 

