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Abstract: The key purpose of this paper is to demonstrate that optimization of evacuation warnings
by time period and impacted zone is crucial for efficient evacuation of an area impacted by a
hurricane. We assume that people behave in a manner consistent with the warnings they receive.
By optimizing the issuance of hurricane evacuation warnings, one can control the number of evacuees
at different time intervals to avoid congestion in the process of evacuation. The warning optimization
model is applied to a case study of Hurricane Sandy using the study region of Brooklyn. We first
develop a model for shelter assignment and then use this outcome to model hurricane evacuation
warning optimization, which prescribes an evacuation plan that maximizes the number of evacuees.
A significant technical contribution is the development of an iterative greedy heuristic procedure
for the nonlinear formulation, which is shown to be optimal for the case of a single evacuation zone
with a single evacuee type case, while it does not guarantee optimality for multiple zones under
unusual circumstances. A significant applied contribution is the demonstration of an interface of
the evacuation warning method with a public transportation scheme to facilitate evacuation of a
car-less population. This heuristic we employ can be readily adapted to the case where response rate
is a function of evacuation number in prior periods and other variable factors. This element is also
explored in the context of our experiment.

Keywords: hurricane disaster; evacuation warning; risk communication; evacuation decision-making;
hurricane evacuation planning

1. Introduction

In 2012, Hurricane Sandy made landfall in the U.S. and inundated parts of New York City (NYC),
which caused substantial loss of lives and property damage. At least 113 people were killed.
Heavy rainfall, storm surge, high winds, inland flooding, fires and heavy snow were all recorded
in association with Sandy, as up to 60 million people in 24 states were affected [1]. In order to
reduce injury and mortality from hurricanes, the necessity of efficient evacuation management is well
recognized. To facilitate efficient evacuation, public and private decision-makers need to account for
risk and uncertainty during hurricanes and behavioral and managerial factors need to be controlled.
A major problem encountered during hurricane evacuation is unexpected congestion, which reduces
traffic flows, especially in metropolitan areas, and it can be catastrophic and life threatening [2,3].
The most notable lesson in this regard is that an evacuation plan can fail because of excessive reliance
on automobiles, resulting in traffic congestion and fuel shortages [4]. Congestion can cause vehicles
to run out of gas and create gridlock of the evacuation system, frustrating evacuees [5]. A study
prescribed an evacuation plan which minimized the total congestion-related evacuation time [6].
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Evacuation planning helps households make more informed and efficient decisions and also helps the
government develop a well-planned strategy to improve efficiency of evacuation.

Understanding evacuee behavior is essential if an evacuation plan is to be successful [7].
People’s decisions to evacuate are likely influenced by multiple factors and one of the challenges to
those responsible for managing evacuations from hurricanes is how to best inform and direct the
public’s response to the pending emergencies [8]. Even though evacuees typically make decisions by
themselves, they also often want to choose the most reliable way to protect their families. As many
studies [9–12] indicated that in reality a share of travelers likely decides not to comply with the
evacuation warnings. When they think those protective actions are unnecessary or are being initiated
too soon [10], or want to protect their property [11], they are unlikely to comply with evacuation
warnings. A study [12] concluded that the complex and somewhat bewildering phenomenon of why
people sometimes decide not to evacuate from a dangerous situation is influenced by a combination
of individual characteristics and three basic social psychological processes: (a) risk perception;
(b) social influence; and (c) access to resources. Thus, people in evacuation zones may leave at different
times or alternatively stay at home after they receive the warning messages. Good communication
of risk during an evacuation is important so that the households not only get valuable information
but also understand the risk they face, which could help them make suitable evacuation decisions.
The process of risk communication of a hurricane involves sending different types of warnings over a
period of time until the strike of the hurricane. The compliance of evacuation warnings may change
over time and also will be affected by the sources of warnings. Based on the likelihood of evacuation
after receiving different sources of warnings over time, we can predict, by zone, the number of
people who will evacuate and when these peoples will depart, and thus make evacuation effective by
controlling the warning system.

In this study, we assume that decision-makers have complete information on the response rate
of evacuation when warnings are received from different sources in different time periods. In reality,
this information comes from understanding evacuation behaviors. In the past decade, many researchers
studied a multitude of evacuation behaviors extensively (see Section 2.2) that can provide evacuation
response rates. Based on these response rates, we formulate a warning optimization problem that aims
to optimize evacuation by managing congestion in the traffic network during the process of evacuation.
The output of our model is an evacuation warning schedule.

The remainder of the paper is organized as follows. In Section 2, we provide a brief review of the
relevant literature. In Section 3, we discuss model details related to shelter allocation and hurricane
evacuation warning optimization. A case study of the proposed models is presented in Section 4.
Concluding remarks and future work considerations are offered in the last section.

2. Literature Review

The key components of this research are maximizing the number of evacuees and reducing
congestion during hurricane evacuation by optimal utilization of the warning sources with strict time
constraints. Therefore, in this section, we present separate reviews of the literature in the general area
of hurricane evacuation planning and warnings.

2.1. Hurricane Evacuation Planning

A study reviewed the research of evacuation modeling and simulation over the past decade,
which highlight the need of interdisciplinary efforts between social scientists and engineers in the
future [13]. This study included major components of roadway transportation planning and operations
and concluded that evacuation models should be based on the following aspects: evacuation warnings
and information dissemination, zoning, demand modeling, traffic assignment and route selection,
evacuation strategies and logistical issues.
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The mode of transportation taken to evacuate mainly depends on different population groups.
The most traditional mode choice is to evacuate by private vehicle [14,15]. The main reason of choosing
other modes is related to the unavailability of a personal vehicle (car-less population).

Lindell and Prater [16] revealed that evacuees who have personal vehicles are largely assumed to
evacuate by themselves. The majority of studies on improving the efficiency of evacuation focus on
traffic assignment. A research reviewed studies related to emergency evacuation planning and paid
particular attention to the network design problem (NDP) since most strategies and approaches of
evacuation planning can be formulated as an NDP [17]. The study [18] presents a capacitated network
flow model to maximize the total evacuees for short notice evacuation planning represented by
hurricanes. The approach is based on the time-expanded network, and, as a result, a decision-making
tool is developed that deals with assigning evacuation routes, flows and schedules. NDP considers
capacity constraints of evacuation networks necessary for evacuation planning. Background traffic is a
factor that cannot be ignored, affecting the practical capacity of an evacuation network. An optimal
zone-based vehicle evacuation strategy was developed based on an optimization-simulation approach,
which included background traffic to simulate the traffic conditions [19]. It is noted that the use of a car
to evacuate depends very much on the location of the nearest safe zone. A study used diurnal factors
to convert average daily trip tables to average hourly trip tables and describe a hurricane evacuation
model concerning the background demand obtained from the normal daily vehicle trips by hour [5].

Although most evacuees leave by taking their own cars, some researchers have investigated
the needs for car-less populations and efficient use of public transportation since Hurricane
Katrina [4,20–22]. A study that we specifically draw upon in our case study proposed a multistage
approach for public transportation evacuation, formed by a planning framework and a model by using
a simulation tool to simulate dispatching of the given number of buses, stochastic arrival of evacuees,
queueing effects at the pickup locations, and the transportation of evacuees to safety regions [23].
This study only focuses on the public transportation, and provides a mass-evacuation strategy that
serves as an evaluation tool for a route design. Our study also considers self-evacuation. By using a
warning schedule, we integrate the multistage approach with the demand of public transportation,
in order to help with evacuation planning.

Clearly, hurricanes are not the only natural disaster events that lead to mass evacuations. Another
example of this are flood events, especially work from the Netherlands. For example, the work by
Pengel et al. [24] discusses an urban flood warning system that monitors data from a variety of sources,
including embankments, dikes, levees and dams. Such a system can be compiled with evacuation of
flood prone areas.

2.2. Hurricane Evacuation Warning

Warnings are messages that are transmitted from a source via a channel to a receiver, so the
message, source and channel can strongly influence evacuation behavior [25]. A warning source is the
agency responsible for initiating hazard communication with the public. Sources can be government
authorities, media figures, or peers such as friends and relatives [26].

According to extensive research in hurricane evacuation, receiving a warning is the main reason
for people to make an evacuation decision. Clear and effective communication of evacuation orders
is crucial to carrying out an evacuation [13]. In order to better manage hurricane evacuations,
a study analyzed Hurricane Lili from the perspectives of household reliance on information sources,
factors affecting their decisions to evacuate, timing of their hurricane evacuation decisions, and the time
it takes them to prepare to evacuate [27]. Evacuation studies conducted over the past two decades have
found that various population groups employ different sources to seek evacuation information [28].
Evacuees behavior were motivated by the Governor’s official evacuation order, Weather Channel/
National Weather Service/local news, local officials’ warnings, and actions/advice from peers [29].
During Hurricane Bret in 1999, television networks were found to be the most important source of
information, followed by local radio broadcasts [30].
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Advice and orders from officials strongly affects evacuation behavior, even though they receive
information from public officials less frequently than from other sources, and a series of evacuation
studies have proved that people are more likely to evacuate if they receive state or local official
evacuation orders or if they receive threat assessments from a reputable weather channel such as
the National Hurricane Center. A hurricane evacuation behavior survey was administrated in order
to understand pre-hurricane evacuation decisions and communication preferences of residents [31].
They found that evacuees prefer leaving in the daytime rather than at night.

Studies emphasize the importance of multiple sources of information in studying evacuation
behavior [32], stating that multiple information sources affirms an evacuation warning, thus coaxing
an individual to evacuate [33].

In terms of the sources of hurricane information, the Weather Channel and numerous web sites
provide forecasts and hurricane-related information around the clock [34]. Warnings can be received
from the U.S. Weather Service, media outlets, peers (friends, relatives, neighbors, and coworkers),
and government officials [35]. However, not every source has equal credibility, which results in
different compliance of an evacuation order when people seek information from various sources.

In the U.S., the National Weather Service (NWS) of the National Oceanic and Atmospheric
Administration (NOAA) issues hurricane watches, warnings, and several other hurricane-related alerts.
The NWS issues a hurricane warning for an area when weather conditions for a hurricane are expected
within 36 h [36], since the NWS sends weather warnings to phones and people will automatically pick
up warnings by nearby cell towers [37]. The warnings from the NWS are authoritative and credible,
which could help people make evacuation decisions.

Moreover, media outlets such as television, radio and newspapers are reported as the most
important sources of hurricane information in previous studies, especially television broadcasts [30,38].
This is the most traditional way to obtain hurricane information, since it is considered to be high
in expertise and trustworthiness [27]. However, one should note that the least effective approach
was “issuing a bulletin through the media” according to the report conducted by the New York State
Resiliency Institute for Storms and Emergencies [39].

Furthermore, social networks are another source that cannot be ignored, which means obtaining
warning information from peers, through phone apps, social media, or word of mouth. Friends and
families often are viewed as trustworthy sources [35], and social media has drawn attention in recent
years due to its enhanced features in sharing information [40].

Last but not the least, the advice of state officials and local emergency managers has been among
the key factors affecting people’s decisions to evacuate [34]. If the danger is significant, state or
local government officials may issue an evacuation notice, which could be mandatory or voluntary.
Some studies indicate that travel door-to-door urging evacuation and explaining risk of remaining
behind by using uniformed officers is the most effective way to communicate [39,41]. According to the
report after Hurricane Sandy developed by the Mayor’s Office with input from many NYC agencies,
NYCHA (New York City Housing Authority) employees knocked on 3436 doors of residents who
have special needs as well as the doors of 7680 seniors preceding the storm [42]. As an information
channel, social media has also been used by officials for sending warning messages. The NYC sent
more than 2000 tweets and gained more than 175,000 social media followers during Hurricane Sandy
as the report showed [42]. In addition, local emergency management staff also praised the Weather
Channel for public education and information, which provides a national and local weather forecast
for cities, as well as weather radar, report and hurricane coverage [43].

In summary, there is considerable understanding of evacuation modeling from the perspective of
communication strategies. In addition, many studies investigate utilization of evacuation warning
sources and their potential impact on evacuation behavior during hurricanes. However, most studies
focus on the effect of information sources on the decision-making of an evacuation and there is no
investigation of how to use the warning sources in different time periods prior to the hurricane disaster.
The at-risk public can be served by continuous education in order to make them understand the
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meaning of evacuation warning [39]. Our study develops a method to provide a schedule of sending
evacuation warnings and also helps reduce congestion during a hurricane evacuation.

2.3. Hurricane Evacuation Response Rate

Evacuation demand can be predicted by using the response rate of evacuation if we have
enough knowledge of the individuals’ decision of evacuation such as evacuating or not and when
to evacuate. This decision process is affected by multiple factors, such as the characteristics of a
household [44–52], conditions in which they reside (e.g., income, type of house, vehicle ownership,
time of day) [49,50,53,54], warning time [55,56], perceived information [57–62] and personal risk
perception [63–68].

In the field of evacuation behavior, a lot of studies agree that individuals make evacuation
decisions according to how they perceive risk, and this is why the researchers take risk perception as
the most prominent factor. A substantial number of empirical studies supported the fact that people
would like to seek information, assess their personal risk, and make independent evacuation decisions
rather than follow the advice and orders from public officials. This explains the need to improve our
understanding of the type of reaction that this information triggers among evacuees.

Among the factors, the characteristics of the household show a significant effect on the evacuation
decisions [44–50], including its timing [51,68], destination [28,67] and mode [52]. One reason is that the
characteristics of the household are consistently associated with risk perception. A similar statement
can be made about factors related to information. They all affect risk perception as risk is influenced
by social dimensions and particular contexts [65]. According to the characteristics of the household,
we divided the people into different groups (types), and each group has their own risk-perception rule.

Evacuation demand models should be sensitive to time-varying characteristics of a storm and the
contextual conditions surrounding an evacuee [49]. Thus, the likelihood of people to evacuate also
needs to consider the time dimension. For example, when people receive a warning at the beginning,
they need more information to confirm the risk and more time to prepare evacuation, so the evacuation
response rate is usually lower. On the contrary, if they receive a warning when the hurricane is within
a few hours of landfall, the public risk perception is higher and usually leads to higher likelihood of
evacuation. Therefore, the evacuation response rate distribution obeys an S-curve as postulated in
many studies [69,70].

We set up a response rate variable pijt that related evacuee type (i), sources of the information
(j) and time (t) to represent risk perception level, which is the leading factor that influences
evacuation behavior.

By using discrete choice theory, the sequential logit model is developed used to predict the share
of people who will evacuate [53]. It relates time dependent factors to a sequence of choices made by
an evacuee in multiple time periods. A study compared the time-dependent nested logit model and
the time-dependent sequential logit model, concluding that the time-dependent nested logit model is
superior [49]. In order to understand the causal factors that influence the household-level evacuation
timing decision, the random parameters are used in a hazard-based modeling approach [68]. The study
concluded that, in addition to environmental, social and demographic factors, risk perception is
another key element to understanding the influence of warning response in an evacuation setting.

It is evident from the above discussion that we can reliably obtain pijt values from evacuation
behavior modeling studies. For our analysis, we assume perfect knowledge of pijt values and further
assume that these are deterministically known. To increase realism of our model, we allow pijt to vary
depending upon the evacuation outcomes of time periods.
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3. Research Methodology

3.1. Notation

Mathematical notation used in this paper is listed in Table 1. Type is defined as the kind of
evacuees who evacuate by using a specific transportation mode. We use i ∈ I to denote the types.
Another index j ∈ J is used to denote the information source. It is essential to clarify that J is a
combination of warning sources, which means that we could send evacuation warning messages
through different sources at the same time. Furthermore, network G = (N′, A′) represents the
transportation network in the area of interest. In this network, N′, A′ represent the total nodes and
arcs, respectively, but, in fact, the network is typically large and it is not necessary to take all the nodes
and arcs into consideration. Thus, we use N, A to represent the nodes, arcs which are used in the
process of evacuation and divide the set of nodes N into three subsets: Nk as evacuation zone nodes,
Nd as evacuation shelter nodes and No as intersections of evacuation routes. Other parameters and
indices are explained in Table 1.

Table 1. Definition of indices, input parameters and decision variables in the model.

Indices

i index for type of evacuees
j index for source type of warnings
t index for time period
k index for evacuation zone
d index for destination shelter
a index for arcs

Notation

I set of evacuee types
J set of combination types of warning source
T set of time intervals
Nk set of evacuation zone nodes
Nd set of evacuation shelter nodes
No set of intersections of evacuation routes
A set of arcs in traffic network used in the evacuation process
β percentage of self-evacuate people who evacuate to shelters

Qid capacity of evacuation shelter d for the evacuees of type i
rkd travel time from zone k to shelter d
nik1 number of evacuees of type i in evacuation zone k at beginning (time period 1)
pijt evacuation response rate of type i evacuees who received warning from source j at time t
Ca capacity of link a in travel network
Bat background traffic of link a at time t in travel network
Rt capacity of public transportation at time period t

δak

{
1, if link a is used by the evacuees from zone k
0, otherwise

Decision Variables

wikd

{
1, if evacuees of type i in zone k are assigned to shelter d
0, otherwise

xijkt

{
1, if a message is sent to type i evacuees from source j in zone k at time t
0, otherwise

nikt number of evacuees of type i in evacuation zone k at time period t, t ≥ 2

3.2. Objective and Process

This research aims to optimize warning messages from different sources to specific types of
evacuees prior to a hurricane landfall. Warning optimization is a key component of an evacuation
plan, allowing management of congestion and proper utilization of evacuation resources like public
transportation. The following process is suggested:

1. Identification of danger zones: Identification of risky areas that need to be evacuated depends
on the severity of hurricanes. Division of the risky area into geographic zones, and census tract
boundaries are used in this study, as this facilitates the generation of population information.
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Location of evacuation zone nodes according to the size and location of the tracts is accomplished
using zone centroids.

2. Identification of evacuation routes: After locating the evacuation zone nodes and shelter nodes,
we need to determine the routes that evacuees could take. We assume that all evacuees who
evacuate by themselves would like to evacuate using the shortest path. Thus, we calculate the
shortest paths from each evacuation zone to each shelter by using Dijkstra’s algorithm. However,
we note that if more information on realistic route choice decisions are available, this can be used
to define δak.

3. Assignment to shelters: Usually, government agencies set up shelters that are safety areas in
response to a hurricane. Considering the capacity of each evacuation shelter, it is typically
impossible to accommodate all the people if all evacuees choose the nearest destination. We use
a shelter allocation model to assign evacuees from different zones to specific shelters, so as to
minimize the total evacuation distance without exceeding the capacity of each shelter. Moreover,
when we decide which shelter to use, the route to the destination is determined (δak) due to the
assumption of choosing the shortest path.

4. Evacuation warning optimization: After the above steps, all the input data of our hurricane
evacuation warning model are obtained. This model maximizes the total number of evacuees
by controlling the spread of warning messages. Its output is an evacuation warning schedule,
which provides government decision-maker specific suggestions of spreading warning messages.

3.3. Mathematical Models

3.3.1. Shelter Allocation

Min Z = ∑
k∈K

∑
d∈D

rkd w1kd, (1)

Subject to:

∑
k∈K

w1kd n1k1 β ≤ Q1d ∀d ∈ D, (2)

∑
d∈D

w1kd = 1 ∀k ∈ K, (3)

w1kd ∈ {0, 1} ∀d ∈ D, ∀k ∈ K. (4)

The objective in (1) states that the total travel time from all the evacuation zones to shelters is to be
minimized. Constraint (2) makes sure that the number of people who choose to evacuate by themselves
to each assigned shelter is no more than the shelter’s capacity for private transport. Constraint (3)
makes sure that each evacuation zone is assigned to one shelter. Constraint (4) defines the decision
variables as being binary.

The main purpose of this model is to find out the destination of self-evacuation and then identify
the corresponding shortest paths in the transportation network. Thus, we only take private transport
into consideration for shelter allocation. For the public transit part, we use another model [23] to assign
shelters and generate subnetworks for public evacuation route in the case study (Section 4.2.4).

3.3.2. Hurricane Evacuation Warning

(P) Max Z = ∑
i∈I

∑
j∈J

∑
k∈K

∑
t∈T

nikt pijt xijkt, (5)
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Subject to

∑
j∈J

∑
k∈K

n1kt p1jt x1jkt δak ≤ Ca − Bat ∀a ∈ A, ∀t ∈ T, (6)

∑
j∈J

∑
k∈K

n2kt p2jt x2jkt ≤ Rt ∀t ∈ T, (7)

nik,t+1 = nikt −∑
j∈J

nikt pijt xijkt ∀i ∈ I, ∀k ∈ K, ∀t ∈ T, (8)

∑
j∈J

xijkt ≤ 1 ∀i ∈ I, ∀k ∈ K, ∀t ∈ T, (9)

xijkt ∈ {0, 1} ∀i ∈ I, ∀j ∈ J, ∀k ∈ K, ∀t ∈ T. (10)

The objective in (5) is to maximize the total number of evacuees at the end of evacuation time
period T. Constraint (6) makes sure that the number of people who evacuate by themselves that
use each link is no more than its capacity. Constraint (7) makes sure that the public transport
capacity at each evacuation time period is enough for the people who evacuate by public buses.
Constraint (8) calculates the number of evacuees of type i in zone k at the next evacuation time period;
this is the number of the evacuees of type i in zone k who remain. Constraint (9) ensures that, in each
time period, there is no more than one way to send the warning messages to the particular type of
people in one zone because each way (j) represents different possible combination of warning sources.
Constraint set (10) defines the decision variables as being binary.

In this model, we take network capacity into consideration as indicated in Constraint (6) in order
to minimize the impact of congestion during an evacuation. However, there are also many other factors
that could cause congestion in reality. It is noted that the problem of evacuation congestion has been
widely studied in the field of transportation research [2,71,72]. We use a simple constraint method for
congestion control. Constraint (6) takes background traffic into consideration when we calculate the
road capacity, which refers to vehicles in the network that do not belong to evacuation traffic. It is
often estimated as a percentage of normal trip tables or a modification thereof [13]. Background traffic
includes typical day commuting trips of people who have not received evacuation warnings, trips made
in preparation for evacuation such as gathering family members, trips made to gather supplies by
those who do not intend to evacuate, and trips made by those evacuating from their homes passing by
this region.

In our case study (Section 4), we make the assumption that people choose the shortest paths
to assigned shelters or other places near the shelters as the evacuation destinations. Therefore,
evacuation routes of self-evacuation are obtained after solving the Shelter Allocation Model, which is an
input (δak) to the Hurricane Evacuation Warning Model, as indicated by Section 3.2. Nevertheless, it is
well-known that evacuees would like to evacuate to hotels, friends/relatives’ homes and other places,
not just the assigned shelters. Furthermore, the shortest paths can also be replaced by other routes.
Thus, when this model is applied to practice, besides choosing shelters as destinations (consistent with
β in Shelter Allocation Model), the deformation of constraints (6) can further accommodate traffic that
travels to hotels or other places by adding known traffic. In addition to this, δak can also be updated if
we had more information than just assuming the shortest path.

We note that nik1 is known, but nikt, t ≥ 2 is a decision variable. Therefore, (P) is nonlinear (e.g., see
the objective function (5) and constraints (6)–(8)). Due to these nonlinearities, (P) cannot be solved
using a solver like CPLEX. To obtain a heuristic solution for (P), we employ an iterative procedure,
which works as follows. We start by determining xijk1 values by solving the following problem:
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(P1) Max Z1 = ∑
i∈I

∑
j∈J

∑
k∈K

nik1 pij1 xijk1, (11)

Subject to

∑
j∈J

∑
k∈K

n1k1 p1j1 x1jk1 δak ≤ Ca − Ba1 ∀a ∈ A, (12)

∑
j∈J

∑
k∈K

n2k1 p2j1 x2jk1 ≤ R1, (13)

∑
j∈J

xijk1 ≤ 1 ∀i ∈ I, ∀k ∈ K, (14)

xijk1 ∈ {0, 1} ∀i ∈ I, ∀j ∈ J, ∀k ∈ K. (15)

Then, we use the values of xijk1 variables to obtain

n̂ik2 = nik1 −∑
j∈J

nik1 pij1 x̂ijk1 ∀i ∈ I, ∀k ∈ K, (16)

where x̂ijk1 is the optimal solution for time period 1 from the iterative procedure. We use ̂ for
values updated from the iterative procedure including n̂ik2, the remaining population at zone k at
time 2. After this, we repeat the process T times, successively obtaining x̂ijk1, x̂ijk2, ... , x̂ijkT values
and the corresponding n̂ik1, n̂ik2, ... , n̂ikT values. The problem (P1) and the successive problems
(P2), (P3), ... , (PT) are linear and can be solved using a commercial MIP solver like Gurobi Optimizer.

It should be noted that there is no guarantee that the solution obtained using this iterative scheme
is optimal to (P). We argue, however, that the iterative procedure provides close-to-optimal solutions
through the cases in Appendixes A and B. In the first case (Appendix A), we demonstrate that the
iterative scheme method could get the optimal solution if there is a single type of evacuee in the single
zone. In the second case (Appendix B), when there are multiple zones, we find a counterexample that
shows our scheme is not the optimal. However, this situation is one of “exceptional cases” and there
are few such cases under the practical condition. For example, for multiple zones (share the same
links) evacuating in two time periods, this situation happening should meet at least the following two
conditions: (1) the maximum number of evacuees of iterative scheme solution in the last time period is
much less than the capacity and the gap is large enough; (2) the response rate of the last time period is
much higher than the first time period. In reality, these two conditions are very unlikely.

3.4. Discussion

We developed and tested a simulated annealing heuristic to improve the solution obtained from
the iterative heuristic. Despite extensive attempts, we were not able to use simulated annealing to
improve the solution obtained by the iterative heuristic. This indicates that our iterative scheme
method may have already found a near-optimal solution, as indicated by the result in Appendix A.

The Hurricane Evacuation Warning Model is a multi-period model, which organizes the release
of warnings. When using the sequential logit model to estimate dynamic travel demand, the decision
to evacuate is considered as a series of binary choices over time [53]. Thus, as the government sends
warnings strategically over time, it makes an impact on the evacuation decision. Even though not all
the people would comply with the warnings, the response rate for evacuation in a certain time period
is affected by the warnings source, and also the time period (time pressure) and the type of people
receiving the warnings.

There could be any interactions across periods, leading to pijt values changing as the evacuation
process evolves. For example, as the number of non-evacuated individuals in a zone declines, this zone
would tend to have a lower response rate. Thus, the pijt of a zone might be expressed by the function
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of f ( ∑
j∈J

xijkt−1 pijt−1, Sijkt). Here, we define Sijkt = 1 if an evacuation warning has been issued before

time period t, and 0 otherwise.
One advantage of our iterative scheme method is its ability to change parameters after each

iteration. When we run the model, we calculate the remaining people of each time period as an input
to the next period, and this gives us an interface to recalculate the pijt based on the actual situation
that happened in order to get more realistic evacuation demand. Moreover, the capacity of links (Ca)
can also be modified after each iteration. The case where pijt values are changed to reflect response in
prior periods is tested in the case study (Section 4.2.2).

4. Case Study

For this study, Brooklyn (Kings County) in New York was chosen to be analyzed under the
backdrop of Hurricane Sandy. A hurricane evacuation warning schedule is generated as an outcome of
our model. To establish a point of comparison, we conduct another experiment that sends evacuation
warnings from all the sources together for each time interval. We also discuss the integration of public
transit into the evacuation planning approach.

4.1. Data Collection

4.1.1. Traffic Evacuation Zones and Shelter Locations

NYC Emergency Management plans and prepares for emergencies, educates the public about
preparedness, coordinates emergency response and recovery, and also collects and disseminates
emergency information. New York City’s hurricane contingency plans are based on six evacuation
zones that are color-coded. Figure 1 shows the evacuation area with different color labels for Brooklyn;
the red zones are the most affected zones.

Figure 1. Brooklyn evacuation zones and shelters.

Figure 1 also presents the evacuation centers in Brooklyn, which are labeled by blue points.
These locations are the shelters provided by the government and the information of the shelters are
available online for the public to prepare in case of an emergency. The capacity of each shelter can be
found on the Sandy Facilities list.
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4.1.2. Other Parameters and Assumptions

In order to obtain the number of people in evacuation zones and also the traffic network
information, Quantum GIS (QGIS) is used for visualization of shapefiles (geospatial vector data
format) and gathering of the information together.

Firstly, the underlying road network of Brooklyn has been taken from the metropolitan planning
organization, New York Metropolitan Transportation Council (NYMTC). In addition, the shape file is
created in QGIS, which includs basic information of the network such as the path distance, direction,
and number of lanes. Secondly, the shapefiles of Brooklyn Census Track dataset which join the geometry
and selected attributes from the 2010 Census TIGER/Line Shapefiles and the 2010 Census Summary
Demographic Profile are added in QGIS. In addition, according to the Figure 1, the evacuation area is
divided by tracts as separate evacuation zones and all the zones and shelters are located on the map
shown as Figure 2. Based on the evacuation zones (tracts) information, the evacuation zone nodes are
also located as the aggregate demand points. These nodes and underlying network are all displayed in
Figure 2.

Figure 2. Brooklyn underlying network.

The second step of our approach is to determine possible evacuation routes. Movement occurs
from each evacuation zone node to each possible shelter using the underlying network. Travel time
of each path is calculated first by using the path distance divided by the average vehicle speed on
that path. Then, Dijkstra’s algorithm is used to find the shortest path from each zone to each shelter
and a shortest travel time matrix is generated, which is an input data (rkd) to the Shelter Allocation
Model. After solving the Shelter Allocation Model, the links (a) used for each zone (k) are identified
(δak), as an input to the Hurricane Evacuation Warning Model. It is noted that, for odd-shaped zones
(e.g., west bank of Brooklyn), we can get unrealistic shortest path and allocation matrices.

Other inputs of the models are illustrated as follows:

Time interval (T): 3 h/interval (36 h), T = 12.

Number of different types of evacuees (nikt): Considering the percentage of car-free households
(56%) in New York City, we make the assumption that 44% of people evacuate by themselves (i = 1)
and 56% of people evacuate by public transportation (i = 2).

Percentage of people assigned to shelters (β): Not all people prefer to evacuate to shelters.
In fact, most evacuees like hotels and relatives’ houses. A study predicted that averages about
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15% of evacuated population use shelters in the United States by using behavioral survey data [73].
Thus, in this case study, we assume that 15% of people evacuated by themselves and assign them
to the corresponding shelter (β = 15%). Actually, β might be less than that according to research
reported [74], but we take the worst situation into account in order to make sure that all the shelters
could accommodate assigned people.

The evacuation response rate after receiving a specific warning (pijt): This parameter is calculated
based on evacuation behavior research and is an input from the social science field. Since it is not a key
object of this research to determine accurate pijt values, we assume that values of this parameter can
be calculated based on relevant references in the social science field [53]. The fixed input numbers are
set subject to these rules: (a) people who evacuate by themselves are more likely to evacuate by public
transportation; (b) people would like to evacuate after receiving information from an official source,
followed by NWS, media, friends and relatives. This means an evacuate decision is made based on
different information sources to varying degrees; (c) just as normal daily trips, people usually choose
to evacuate in the daytime rather than by night; (d) people make the decision of evacuation follows
some rules about the time before a hurricane landfall, and the cumulative departure usually follows
an S-curve. Based on the above, along with the practical situation of evacuation under the scenario of
a hurricane, we assume knowledge of the pijt parameters (Appendix C).

Capacity and Background Traffic: The capacity of a road is 2400 vehicles per hour per lane for a
freeway and 1800 vehicles per hour per lane for urban roads [75]. Since there is limited information
about the amount of background traffic that would be present during an evacuation, approximations of
background traffic are used based on recorded daily traffic volumes [76]. A uniform distribution is
assumed for the rate of decline of the background traffic. This study calculates background traffic as a
percentage of normal trip tables, which declines as the evacuation occurs and decreases to zero. We use
the Hourly Traffic Data, which is the percentage of AADT (Annual Average Daily Traffic) occurring in
each hour of the day, to generate normal daily trips data of Kings county (Brooklyn). According to
the study, which makes the hourly distribution translate into sound levels using statistical data [77],
we employ an hourly traffic volume distribution table, and the AADT data of Brooklyn, which is
obtained from New York State Department of Transportation (NYSDOT), to generate normal trip tables.
Due to the uniform distribution for the rate of decline of the background traffic, the background traffic
volume also could be calculated for each time interval. It is to be noted that, when we calculate the
capacity of each link, we assume two persons as the average number in each vehicle, so as to convert
the capacity unit as persons per link.

4.2. Analysis of Results

4.2.1. Computational Results

We use the Brooklyn data to show the computational performance of our model. Given the
initial number of people in each evacuation zone, we solve the Shelter Allocation Model and
optimize the warning messages in the first evacuation time period using the Gurobi Optimizer
(mathematical programming solver), and then compute the evacuate number to calculate the next time
period of people who did not evacuate. At last, we use the iterative scheme outlined to determine the
optimal warnings for each time period.

Figure 3 shows the zones needed to send specific types of warnings at different time intervals.
As shown in Figure 3a, in the zones colored green, we do not send any evacuation messages in the
first time period in order to avoid congestion, and almost all the other zones, except zones 64 and 65,
where we send warning messages from all the sources. From Figure 3b, we see that there are more
zones that need to send no warning at time period 2. In addition, what should be noted is that at time
intervals 8 and 9, there are more warning source types that need to be used to improve evacuation
efficiency, and all the used warning types in the solution are labeled in Figure 3.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Evacuation warning schedule map. (a) evacuation warning map at time 1; (b) evacuation
warning map at time 2; (c) evacuation warning map at time 3; (d) evacuation warning map at times 5, 6;
(e) evacuation warning map at time 8; (f) evacuation warning map at time 9; (g) evacuation warning
map at other times; (h) color indicator.
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The table in Appendix D is the warning schedule of the Brooklyn area during a hurricane of
Category 1. The zone column represents the tracts that are needed to evacuate Brooklyn, and are
divided into 71 zones. The other columns are the warning source types at the corresponding time
intervals. In this case, j = 0 means sending no evacuation messages to this zone; j = 1, 2, 3, 4 represent
sending messages from official, NWS, media, and social network, respectively; j = 5–10 denote sending
messages from two kinds of sources at the same time interval; j = 11–14 respect for sending messages
from three kinds of source combinations; j = 15 sends messages from all the sources together (Table 2).

Table 2. Definition of warning type.

Warning Source j Source Type

j = 0 sending no evacuation messages
j = 1 official
j = 2 National Weather Service (NWS)
j = 3 media
j = 4 social network

j = 5–10 sending messages from two kinds of sources
which denotes official & NWS (1 & 2), 1 & 3, 1 & 4, 2 & 3, 2 & 4, 3 & 4 respectively

j = 11–14 sending messages from three kinds of source combination
which denotes 1 & 2 & 3, 1 & 2 & 4, 1 & 3 & 4, 2 & 3 & 4 respectively

j = 15 sending messages from all the sources together (1 & 2 & 3 & 4)

In the result shown (Appendix D), at times 5 and 6, there are no evacuation warnings. This is
because we set 12:00 p.m. as the beginning of the evacuation period and thus time intervals 5 and
6 refer to 12:00–6:00 a.m. in this case, and we assume that there are no warnings during the night.
At time intervals 10–12, there are not so many people needed to evacuate compared to the road capacity.
Therefore, all the warning source combinations should be used to evacuate more people.

In this experiment, there are 413,302 people living in the evacuation zones at the beginning,
and 393,742 people who evacuate at the end. This is a 95% evacuation rate.

4.2.2. Adjustment of Response Rate

Our iterative scheme makes it possible to adjust pijt at each time period, no matter how it
changes, and even make it specific to distinguish zones as pijkt if it is necessary. Based on the previous
case, we make some adjustments of parameter pijt, in order to show the procedure of our method,
which changes the input parameters over time. The examples are as follows:

Example 1. The parameter pijt is sensitive to the time interval, as in this case study. Since people might need
more time to prepare for an evacuation, the prior time period warning could lead to an increasing evacuation
rate at this time period, which also gives us the insight to conduct an evacuation demand model by considering
mobilization time in future work. We illustrated this case as the situation when people receive warnings during
the first time period but evacuate during the second time period, thus increasing the pij2 value.

Example 2. After several time periods, as the number of non-evacuated individuals declines, the pijt tends to be
lower, which means that the utility of warning decreases. We illustrated this case as after time period 7, and pijt
for t ≥ 7 is decreased over time.

The following steps are details of pijt adjustment in our method, and we put these two examples
in one experiment:

• Step 0. All the data inputs are the same as the previous case study.
• Step 1. Solve the shelter allocation model and hurricane evacuation model of time period 1 (Model

(P1)) by using Gurobi.
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• Step 2. Adjust values of response rate at time period 2 as p̂ij2. Then, update this parameter p̂ij2
along with n̂ijk2 obtained from Model (P1), input to Model (P2), and solve the linear problem (P2).

• Step 3. For time periods 3–6, repeat the iterative procedure with updated n̂ijkt values by using the
solution of the previous time period (x̂ijkt−1). Other parameters are the same as the previous case
study. Although p̂ijt during time periods 3–6 are the same as the previous case study, because of
the changing of p̂ij2, the results for time periods 3–6 are different.

• Step 4. For time periods 7–12, similar to step 2, updated values of p̂ijt each iteration, in addition
to n̂ijkt values, and then get the result of the whole warning schedule.

The updated numbers of pijt are shown in Appendix E, and the result of this adjustment are shown
in Appendix F. In this case, for 413,302 people living in the evacuation zones, it leads to 382,541 people
evacuated at the end. This is a 92% evacuation rate. Appendixes D and F are the warning schedules
with the adjustment of parameter pijt. By contrasting these two strategies, we found that when the
pij2 increase (Example 1), the warning sending solution needs to change in the zones 4, 15, 19, 64, 65
at time period 2 and also affects the strategies of the next period. As pijt changes in the last several
time intervals (Example 2), it mainly affects the strategies of time periods 8 and 9 in zones 55–65
because these zones’ evacuation routes share capacity of the same roads. In the last three time periods,
the effect of the warning is so minor that most of the people who decided to evacuate have already
left. It should be noted that we could also use this procedure to change the capacity of links if many
two-way roads were turned into one-way roads heading away from the coast according to the actual
circumstance.

4.2.3. Result Comparison

Figure 3 shows the evacuation warning schedule that gives us different warning sending strategies
with the change of time period. We conduct another experiment to compare with the situation when
all the warnings are sent to each zone in each time period.

In the second experiment, all of the data are as the same as the first one. We only change the
warning sending strategy by sending all warnings together at each time period. In this case, people
attempt to evacuate at the same time, which raises the demand of evacuation in all risky zones.
However, it is infeasible to apply this solution to our model, due to road capacity violation. Figure 4 is
the traffic network of evacuation in Brooklyn at the first and second time periods, and it shows blocked
roads (colored by red) when we send all evacuation warnings. In this case, we can not evacuate all the
people who want to evacuate. On the contrary, the evacuated cars could be stuck on the road and this
reduces the evacuation efficiency.

If we assume that all the people can be evacuated in time regardless of the road capacity, we can
send all the warnings together at each time period in order to evacuate as many people as we can.
Then, the evacuation rate is observed as shown in Figure 5b. In Figure 5, private lanes refer to the use
of the shoulder and center turning lanes for regular traffic, whereon public lanes refer to the use to
regularly usable lanes. Compared with the evacuation rate of the first experiment, which is the result
of optimal warning sending solution (Figure 5a), the evacuation rate of all warning increases faster
in every time period except time periods 5 and 6, and almost all the people evacuated before time
period 10. However, in reality, it is impossible to respond to the maximum demand of evacuation like
Figure 5b shows because of the limitation of road capacity. As is shown in Figure 4a, at the beginning
of evacuation, there has already been traffic congestion in some links. Moreover, in the next time
period, another large amount of cars join for evacuation, causing further congestion. Thus, it would
definitely delay the evacuation process if all warnings are sent in each time period, since avoiding
traffic congestion is an essential prerequisite for improving the efficiency of evacuation. Figure 5a
shows the evacuation rate of the first experiment, which gives the optimal solution of sending warnings
in order to avoid congestion, and it is likely the highest achievable evacuation rate in actual conditions
which take road capacity into consideration.
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(a) (b)

Figure 4. Congestion of all warnings. (a) congestion at time 1; (b) congestion at time 2.
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Figure 5. Evacuation rate. (a) evacuation rate—optimal; (b) evacuation rate—all warnings.

In order to view the distance effect on the optimal result, we classify the zones into three categories.
Zone 1 are the zones farthest from shelters, Zone 3 represents the nearest zones, and Zone 2 are the
zones in the middle. According to the Figure 6, the distance between the evacuation zone and shelter
has a notable effect on evacuation planning by analysis of the result of our optimal warning solution.

The most obvious difference between the nearest zones and farthest zones is that the closer
evacuation zones are from shelters, the faster the evacuation rate goes up, which is clearly shown in
Figure 6a,c. It means that, in the optimal solution, in order to evacuate as many people as we can, it is
necessary to evacuate the nearest zones before the farther zones, and Figure 6d shows the contrast of
total evacuation rate in different zones clearly.

4.2.4. Evacuate by Public Transit

For public transportation, we used a multi-stage approach presented by Swamy et al. [23] in this
paper. In their approach, they first use a Set cover model to obtain a set of pickup locations, then run a
Shelter assignment model to create the subnetworks that are the input to the Initial-route generation
model, and employ a Simulation model to reproduce a real world environment. In our case study
(experiment 1), we generated a warning schedule for both self-evacuation and car-less population,
thus obtaining the evacuation demand for different population types. However, due to the capacity
limitation of public transit, and evacuee-based events such as balk, not all people could be evacuated
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in a real-world environment. Therefore, we extend our case study by using the methodological
framework [23] to analyze the real public evacuation rate.
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Figure 6. Evacuation rate of different zones. (a) evacuation rate of the farthest zone 1; (b) evacuation
rate of farther zone 2; (c) evacuation rate of nearest zone 3; (d) total evacuation rate comparison.

In the study of public transportation [23], they also analyze the evacuation during Hurricane
Sandy in the area of Brooklyn. Since the same database is used in our research, we obtain the same
results of the Set cover model, Shelter assignment model, and Initial-route generation model, which
act as inputs to the simulation. The chosen bus stops are shown in Figure 7a. Our solution of sending
warnings to the people evacuated by public transportation generates a more realistic arrival demand
of each pickup location over time. Thus, we do some changes of the simulation parameters as follows:

• Demand arrival time period: 1 min;
• Evacuation period: 36 h, or 2160 min;
• Capacity of a bus: 56;
• Total number of available bus: 100;
• Balk threshold: 56 evacuees;
• Renege threshold: 45 min;
• Percentage of dissatisfied evacuees self-evacuation: 50%;
• Demand: When we apply our model to the Brooklyn region (experiment 1), we obtain the

optimal solution for sending evacuation warnings. Based on this warning schedule, the public
transportation demand of each time interval in experiment 1 (3 h/period) is calculated, and we
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make an assumption that the demand arrival distribution of each time interval fitted normal
distribution in order to get the demand for each time period (1 min) at each pickup location.

(a) (b)

Figure 7. Bus stops and pick up locations. (a) chosen bus stops; (b) evacuate locations.

In addition, it is necessary to mention the following points as supplements to illustrate the input
data. Firstly, all of the areas chosen for analysis are the same as experiment 1, which is the Brooklyn
region, so the number of people at each tract is unchanged. However, when we assign the number
of people to the pickup location (bus stops), all the people at zone nodes demand are merged to the
nearest pickup location except one zone (zone 71) shown in Figure 7b, which records the number of
evacuees coming from Staten Island. The reason we account for the self-evacuation in this zone is that
Staten Island is connected to Brooklyn by the bridge, and some of the people living in the part near
Brooklyn might want to evacuate to Brooklyn by their own vehicles. However, there are some shelters
located on the island, and there is no need for people who evacuate by public transportation to walk to
the bus stop in Brooklyn due to the distance.

By using these data as an input to the simulation model, we can obtain the percentage evacuated.
Figure 8a shows the comprehensive results of evacuation rate by using this method. As we can see,
there is little difference when comparing Figures 5a and 8a, which is caused by the difference of public
transportation rate. Actually, the public transportation rate curve in Figure 5a is the demand over
time, which means that, when we send the warnings as planned, we get the percentage of people who
choose to evacuate instead of staying at home. Figure 8a describes the rate of evacuation, which means
the rate of people who have already evacuated by public transportation—it must be lower than the
demand rate in Figure 5a.

In order to assist with the decision-making process, we also analyzed the effect of the number of
buses used on the evacuation rate. According to the report after Hurricane Sandy, the NYCHA and
NYPD (New York Police Department) provided 200 buses to help residents evacuate [42]. Since the
buses are used for evacuating all of NYC, we compared the performance of different bus numbers for
the Brooklyn region, which included 50, 100, and 200. We observe that the evacuation rate grows with
the increasing of bus numbers (Figure 8b). Authorities could assign the buses based on existing public
transportation resources in order to satisfy the public evacuation demand.
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Figure 8. Result of public transportation. (a) new optimal solution (100 buses); (b) bus
number comparison.

5. Conclusions

In this paper, a modeling framework was presented to deliver warnings for evacuation planning
during a hurricane. It reveals that sending warnings judiciously could help evacuation efficiency.
The model determines warning sending sources in different time periods during the evacuation
process. Both self-evacuation and public transportation evacuation are considered in this methodology.
The entire modeling framework has been applied to the Hurricane Sandy scenario in the area of
Brooklyn. This case study shows that this methodology generates reasonable and meaningful results,
and it could be used for making evacuation planning and also informing the public during an
evacuation process. In addition, the modeling framework could easily be transferred to other regions.
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Appendix A. Optimality of Iterative Procedure for a Single Zone Case

Consider the simple case of a single evacuation zone and single evacuee type population with
two time periods (T = 2), and with no road capacity constraint. There are n1 evacuees of one single
type in period 1 for this single zone. The global objective is to maximize the total number of evacuees
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(Z = Z1 + Z2), while the iterative scheme will maximize the number of evacuees at each time period:
Z1 in time period 1, and the Z2 in time period 2. We show that the iterative procedure of evacuating
the maximum number of people for each time period leads to maximizing the total number of people:

Max Z = Z1 + Z2 = ∑
j∈J

n1 pj1 xj1 + ∑
j∈J

n2 pj2 xj2, (A1)

Subject to

∑
j∈J

xjt ≤ 1 ∀t ∈ T, (A2)

xjt ∈ {0, 1} ∀j ∈ J, ∀t ∈ T, (A3)

n2 = n1 −∑
j∈J

n1 pj1 xj1. (A4)

We can define p̂1 = ∑
j∈J

pj1 x̂j1, and p̂2 = ∑
j∈J

pj2 x̂j2 as the evacuation rate at each time period,

where p̂1 ∈ (0, 1), and p̂2 ∈ (0, 1). We obtain

Ẑ = Ẑ1 + Ẑ2 = n1 p̂1 + n2 p̂2 (A5)

= n1 p̂1 + n1(1− p̂1) p̂2 (A6)

= n1 ( p̂1 + p̂2 − p̂1 p̂2), (A7)

where Ẑ1, Ẑ2, and Ẑ are the numbers of evacuees in time period 1, 2, and total, respectively.
Letting p̂1

′ and p̂1
′′ be the values of possible p̂1, we verify that, for any p̂1

′ ≥ p̂1
′′, we have

p̂1
′ + p̂2 − p̂1

′ p̂2 ≥ p̂1
′′ + p̂2 − p̂1

′′ p̂2. (A8)

If the above claim is true, for any evacuation rate that is larger than or equal to time period 1 will
lead to a larger than or equal to total evacuation rate.

The proof is the following. Reorganizing Equation (A8),

p̂1
′ − p̂1

′ p̂2 ≥ p̂1
′′ − p̂1

′′ p̂2 ∀ p̂1
′ ≥ p̂1

′′, (A9)

p̂1
′ ≥ p̂1

′′ + ( p̂1
′ − p̂1

′′) p̂2 ∀ p̂1
′ ≥ p̂1

′′, (A10)

1 ≥ p̂2 ∀ p̂1
′ ≥ p̂1

′′. (A11)

Equation (A11) is true since p̂2 ∈ (0, 1). This means that no matter how many people we
evacuated at time period 2, the more people evacuated at time period 1 will lead to a bigger number of
total evacuees.

We now consider another case of three time periods (T = 3) with other conditions being the same
as the two time period case. The model is shown as follows:

Max Z = ∑
j∈J

n1 pj1 xj1 + ∑
j∈J

n2 pj2 xj2 + ∑
j∈J

n3 pj3 xj3, (A12)

Subject to

∑
j∈J

xjt ≤ 1 ∀t ∈ T, (A13)

xjt ∈ {0, 1} ∀j ∈ J, ∀t ∈ T, (A14)

nt+1 = nt −∑
j∈J

nt pjt xjt. (A15)
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Similar to the two time period case, we set p̂1 = ∑
j∈J

pj1 x̂j1, p̂2 = ∑
j∈J

pj2 x̂j2 and p̂3 = ∑
j∈J

pj3 x̂j3.

Then, p̂1 ∈ (0, 1), p̂2 ∈ (0, 1), and p̂3 ∈ (0, 1). We can obtain

Ẑ = Ẑ1 + Ẑ2 + Ẑ3 = n1 p̂1 + n2 p̂2 + n3 p̂3 (A16)

= n1 p̂1 + n1(1− p̂1) p̂2 + n1(1− p̂1) (1− p̂2) p̂3 (A17)

= n1 {( p̂1 + p̂2 − p̂1 p̂2) + [1− ( p̂1 + p̂2 − p̂1 p̂2)] p̂3}. (A18)

Let p̂12 be the average evacuation proportion in time period 1 to 2, so p̂12 ∈ (0, 1), and we have

p̂12 =
Ẑ1 + Ẑ2

n1
(A19)

=
n1 p̂1 + n2 p̂2

n1
(A20)

=
n1 ( p̂1 + p̂2 − p̂1 p̂2)

n1
(A21)

= p̂1 + p̂2 − p̂1 p̂2. (A22)

According to Equation (A18), we get the total evacuees number of the three time period as:

Ẑ = n1 [ p̂12 + (1− p̂12) p̂3] (A23)

= n1 ( p̂12 + p̂3 − p̂12 p̂3). (A24)

Since Equation (A24) is as the same formula as Equation (A7), the number of evacuees in the
third time period (Ẑ3) is equivalent to treating the first two time periods as one time period with
updated evacuation rates, and p̂12 and the third time period as the second time period in the previous
example. This means that no matter how many people we evacuated at time period 3, the more people
evacuated at time periods 1 and 2, the better it is.

Using induction, we can infer that in the single zone and single type of evacuee case with no
congestion, in order to maximum the total number of evacuees, we need to evacuate as many people
as we can at each time period. This is what the iterative scheme method does.

As the different population types do not share roadway capacity (Equations (6) and (7)), this can
further be extended to multiple population groups, i.

Appendix B. Counterexample for a Multiple Zone Case

Consider the case of a single evacuee type, two zones, two time periods and two kinds of warning
sources, which constitute four kinds of sending warning source types (0, 1, 2, 1 & 2). The two zones
share the same link with capacity (Ct). Then, we have:

Max Z′ = ∑
j∈J

∑
k∈K

nk1 pj1 xj1 + ∑
j∈J

∑
k∈K

nk2 pj2 xj2, (A25)

Subject to

∑
j∈J

∑
k∈K

nkt pjt xjkt ≤ Ct ∀t ∈ T, (A26)

∑
j∈J

xjkt ≤ 1 ∀t ∈ T, ∀k ∈ K, (A27)

xjkt ∈ {0, 1} ∀j ∈ J, ∀t ∈ T, ∀k ∈ K, (A28)

nk2 = nk1 −∑
j∈J

nk1 pj1 xjk1 ∀k ∈ k. (A29)
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In this numerical experiment, all the input parameters are set as follows:

• Number of people need to be evacuate at beginning (t = 1) in different zone (nkt): n11 = 100,
n12 = 200;

• Capacity of different time (Ct): C1 = 75, C2 = 80;
• Response rate of different warning source type at different time (pjt): p11 = 0, p21 = 0.15,

p31 = 0.2, p41 = 0.3, p12 = 0, p22 = 0.5, p32 = 0.6, p42 = 0.7.

By using our iterative scheme, we firstly obtain the solution of time period 1, (x211 = 1, x421 = 1),
and this strategy of time period 1 can evacuate 75 people (Z′1 = 75). Then, we solve time period 2
and obtain the solution of time period 2 (x112 = 1, x222 = 1), which can evacuate 70 people at time
period 2 (Z′2 = 70). This means that if we send the warning from source type 2 to zone 1 and from
source type 4 to zone 2 in the first time period, then send the warning from source type 1 to zone 1 and
from source type 2 to zone 2 in the second time period, there are 145 people that can be evacuated.

However, this solution is not the best solution in this situation. Sending another warning strategy
can improve the solution. If we evacuate less people in zone 2 and more people in zone 1 during the
first time period, more people could be evacuated (x411 = 1, x321 = 1, x112 = 1, x222 = 1). The total
number of evacuees in this case is 150 (Z′1 = 70, Z′2 = 80).

Appendix C. Parameter pijt Used in the Case Study

Table A1. The response rate pijt.

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11 t = 12

i1, j = 1 0.132 0.332 0.232 0.132 0 0 0.032 0.632 0.732 0.632 0.532 0.332
j = 2 0.134 0.334 0.234 0.134 0 0 0.034 0.634 0.734 0.634 0.534 0.334
j = 3 0.136 0.336 0.236 0.136 0 0 0.036 0.636 0.736 0.636 0.536 0.336
j = 4 0.138 0.338 0.238 0.138 0 0 0.038 0.638 0.738 0.638 0.538 0.338
j = 5 0.152 0.352 0.252 0.152 0 0 0.052 0.652 0.752 0.652 0.552 0.353
j = 6 0.153 0.353 0.253 0.153 0 0 0.053 0.653 0.753 0.653 0.553 0.353
j = 7 0.154 0.354 0.254 0.154 0 0 0.054 0.654 0.754 0.654 0.554 0.354
j = 8 0.155 0.355 0.255 0.155 0 0 0.055 0.655 0.755 0.655 0.555 0.355
j = 9 0.156 0.356 0.256 0.156 0 0 0.056 0.656 0.756 0.656 0.556 0.356
j = 10 0.157 0.357 0.257 0.157 0 0 0.057 0.657 0.757 0.657 0.557 0.357
j = 11 0.172 0.372 0.272 0.172 0 0 0.072 0.672 0.772 0.672 0.572 0.372
j = 12 0.174 0.374 0.274 0.174 0 0 0.074 0.674 0.774 0.674 0.574 0.374
j = 13 0.176 0.376 0.276 0.176 0 0 0.076 0.676 0.776 0.676 0.576 0.376
j = 14 0.178 0.378 0.278 0.178 0 0 0.078 0.678 0.778 0.678 0.578 0.378
j = 15 0.19 0.39 0.29 0.19 0 0 0.09 0.69 0.79 0.69 0.59 0.39

i2, j = 1 0.122 0.322 0.222 0.122 0 0 0.022 0.622 0.722 0.622 0.522 0.322
j = 2 0.124 0.324 0.224 0.124 0 0 0.024 0.624 0.724 0.624 0.524 0.324
j = 3 0.126 0.326 0.226 0.126 0 0 0.026 0.626 0.726 0.626 0.526 0.326
j = 4 0.128 0.328 0.228 0.128 0 0 0.028 0.628 0.728 0.628 0.528 0.328
j = 5 0.142 0.342 0.242 0.142 0 0 0.042 0.642 0.742 0.642 0.542 0.342
j = 6 0.143 0.343 0.243 0.143 0 0 0.043 0.643 0.743 0.643 0.543 0.343
j = 7 0.144 0.344 0.244 0.144 0 0 0.044 0.644 0.744 0.644 0.544 0.344
j = 8 0.145 0.345 0.245 0.145 0 0 0.045 0.645 0.745 0.645 0.545 0.345
j = 9 0.146 0.346 0.246 0.146 0 0 0.046 0.646 0.746 0.646 0.546 0.346
j = 10 0.147 0.347 0.247 0.147 0 0 0.047 0.647 0.747 0.647 0.547 0.347
j = 11 0.162 0.362 0.262 0.162 0 0 0.062 0.662 0.762 0.662 0.562 0.362
j = 12 0.164 0.364 0.264 0.164 0 0 0.064 0.664 0.764 0.664 0.564 0.364
j = 13 0.166 0.366 0.266 0.166 0 0 0.066 0.666 0.766 0.666 0.566 0.366
j = 14 0.168 0.368 0.268 0.168 0 0 0.068 0.668 0.768 0.668 0.568 0.368
j = 15 0.18 0.38 0.28 0.18 0 0 0.08 0.68 0.78 0.68 0.58 0.38
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Appendix D. Results of the Case Study

Table A2. Brooklyn evacuation warning issuance schedule.

Zone/Time T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Z1 15 15 15 15 0 0 15 15 15 15 15 15
Z2 15 15 15 15 0 0 15 15 15 15 15 15
Z3 15 15 15 15 0 0 15 15 15 15 15 15
Z4 15 15 15 15 0 0 15 15 15 15 15 15
Z5 15 15 15 15 0 0 15 15 15 15 15 15
Z6 15 15 15 15 0 0 15 15 15 15 15 15
Z7 15 15 15 15 0 0 15 15 15 15 15 15
Z8 15 15 15 15 0 0 15 15 15 15 15 15
Z9 15 15 15 15 0 0 15 15 15 15 15 15
Z10 15 15 15 15 0 0 15 15 15 15 15 15
Z11 15 15 15 15 0 0 15 15 15 15 15 15
Z12 15 15 15 15 0 0 15 15 15 15 15 15
Z13 0 0 15 15 0 0 15 15 15 15 15 15
Z14 15 0 15 15 0 0 15 15 15 15 15 15
Z15 15 10 15 15 0 0 15 15 15 15 15 15
Z16 15 15 15 15 0 0 15 15 15 15 15 15
Z17 15 15 15 15 0 0 15 15 15 15 15 15
Z18 15 15 15 15 0 0 15 15 15 15 15 15
Z19 15 15 15 15 0 0 15 15 15 15 15 15
Z20 15 15 15 15 0 0 15 15 15 15 15 15
Z21 15 15 15 15 0 0 15 15 15 15 15 15
Z22 15 15 15 15 0 0 15 15 15 15 15 15
Z23 15 15 15 15 0 0 15 15 15 15 15 15
Z24 15 15 15 15 0 0 15 15 15 15 15 15
Z25 15 15 15 15 0 0 15 15 15 15 15 15
Z26 15 15 15 15 0 0 15 15 15 15 15 15
Z27 15 15 15 15 0 0 15 15 15 15 15 15
Z28 15 15 15 15 0 0 15 15 15 15 15 15
Z29 15 15 15 15 0 0 15 15 15 15 15 15
Z30 15 15 15 15 0 0 15 15 15 15 15 15
Z31 15 15 15 15 0 0 15 15 15 15 15 15
Z32 15 15 15 15 0 0 15 15 15 15 15 15
Z33 15 15 15 15 0 0 15 15 15 15 15 15
Z34 15 15 15 15 0 0 15 15 15 15 15 15
Z35 15 15 15 15 0 0 15 15 15 15 15 15
Z36 15 15 15 15 0 0 15 15 15 15 15 15
Z37 15 15 15 15 0 0 15 15 15 15 15 15
Z38 15 0 15 15 0 0 15 15 15 15 15 15
Z39 15 15 15 15 0 0 15 15 15 15 15 15
Z40 15 15 15 15 0 0 15 15 15 15 15 15
Z41 15 15 15 15 0 0 15 15 15 15 15 15
Z42 0 0 0 15 0 0 15 0 9 15 15 15
Z43 15 15 15 15 0 0 15 15 15 15 15 15
Z44 15 15 15 15 0 0 15 15 15 15 15 15
Z45 15 15 15 15 0 0 15 15 15 15 15 15
Z46 15 15 15 15 0 0 15 15 15 15 15 15
Z47 15 15 15 15 0 0 15 15 15 15 15 15
Z48 15 15 15 15 0 0 15 15 15 15 15 15
Z49 15 15 15 15 0 0 15 15 15 15 15 15
Z50 15 15 15 15 0 0 15 15 15 15 15 15
Z51 15 15 15 15 0 0 15 15 15 15 15 15
Z52 15 15 15 15 0 0 15 15 15 15 15 15
Z53 15 0 15 15 0 0 15 15 15 15 15 15
Z54 1 0 15 15 0 0 15 0 5 15 15 15
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Table A2. Cont.

Zone/Time T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Z55 15 15 15 15 0 0 15 15 15 15 15 15
Z56 15 15 15 15 0 0 15 15 15 15 15 15
Z57 0 0 0 15 0 0 15 0 0 15 15 15
Z58 0 0 0 15 0 0 15 10 12 15 15 15
Z59 0 0 0 15 0 0 15 0 0 15 15 15
Z60 0 0 0 15 0 0 15 0 12 15 15 15
Z61 0 0 0 15 0 0 15 0 10 15 15 15
Z62 0 0 0 15 0 0 15 13 15 15 15 15
Z63 0 0 1 15 0 0 15 0 12 15 15 15
Z64 1 4 0 15 0 0 15 13 0 15 15 15
Z65 5 0 0 15 0 0 15 0 0 15 15 15
Z66 15 15 15 15 0 0 15 15 15 15 15 15
Z67 15 15 15 15 0 0 15 15 15 15 15 15
Z68 15 15 15 15 0 0 15 15 15 15 15 15
Z69 15 15 15 15 0 0 15 15 15 15 15 15
Z70 0 0 1 15 0 0 15 6 7 15 15 15
Z71 15 15 15 15 0 0 15 15 15 15 15 15

Appendix E. The Updated pijt

Table A3. The adjusted response rate pijt.

t = 2 t = 8 t = 9 t = 10 t = 11 t = 12

i1, j = 1 0.432 0.732 0.632 0.432 0.332 0.132
j = 2 0.434 0.734 0.634 0.434 0.334 0.134
j = 3 0.436 0.736 0.636 0.436 0.336 0.136
j = 4 0.438 0.738 0.638 0.438 0.338 0.138
j = 5 0.452 0.752 0.652 0.452 0.352 0.152
j = 6 0.453 0.753 0.653 0.453 0.353 0.153
j = 7 0.454 0.754 0.654 0.454 0.354 0.154
j = 8 0.455 0.755 0.655 0.455 0.355 0.155
j = 9 0.456 0.756 0.656 0.456 0.356 0.156

j = 10 0.457 0.757 0.657 0.457 0.357 0.157
j = 11 0.472 0.772 0.672 0.472 0.372 0.172
j = 12 0.474 0.774 0.674 0.474 0.374 0.174
j = 13 0.476 0.776 0.676 0.476 0.376 0.176
j = 14 0.478 0.778 0.678 0.478 0.378 0.178
j = 15 0.49 0.79 0.69 0.49 0.39 0.19

i2, j = 1 0.422 0.722 0.622 0.422 0.322 0.122
j = 2 0.424 0.724 0.624 0.424 0.324 0.124
j = 3 0.426 0.726 0.626 0.426 0.326 0.126
j = 4 0.428 0.728 0.628 0.428 0.328 0.128
j = 5 0.442 0.742 0.642 0.442 0.342 0.142
j = 6 0.443 0.743 0.643 0.443 0.343 0.143
j = 7 0.444 0.744 0.644 0.444 0.344 0.144
j = 8 0.445 0.745 0.645 0.445 0.345 0.145
j = 9 0.446 0.746 0.646 0.446 0.346 0.146

j = 10 0.447 0.747 0.647 0.447 0.347 0.147
j = 11 0.462 0.762 0.662 0.462 0.362 0.162
j = 12 0.464 0.764 0.664 0.464 0.364 0.164
j = 13 0.466 0.766 0.666 0.466 0.366 0.166
j = 14 0.468 0.768 0.668 0.568 0.368 0.168
j = 15 0.48 0.78 0.68 0.48 0.38 0.18
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Appendix F. Result of pijt Adjustment

Table A4. Brooklyn evacuation warning issuance schedule with updated pijt.

Zone/Time T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Z1 15 15 15 15 0 0 15 15 15 15 15 15
Z2 15 15 15 15 0 0 15 15 15 15 15 15
Z3 15 15 15 15 0 0 15 15 15 15 15 15
Z4 15 11 15 15 0 0 15 15 15 15 15 15
Z5 15 15 15 15 0 0 15 15 15 15 15 15
Z6 15 15 15 15 0 0 15 15 15 15 15 15
Z7 15 15 15 15 0 0 15 15 15 15 15 15
Z8 15 15 15 15 0 0 15 15 15 15 15 15
Z9 15 15 15 15 0 0 15 15 15 15 15 15
Z10 15 15 15 15 0 0 15 15 15 15 15 15
Z11 15 15 15 15 0 0 15 15 15 15 15 15
Z12 15 15 15 15 0 0 15 15 15 15 15 15
Z13 0 0 15 15 0 0 15 15 15 15 15 15
Z14 15 0 15 15 0 0 15 15 15 15 15 15
Z15 15 0 15 15 0 0 15 15 15 15 15 15
Z16 15 15 15 15 0 0 15 15 15 15 15 15
Z17 15 15 15 15 0 0 15 15 15 15 15 15
Z18 15 15 15 15 0 0 15 15 15 15 15 15
Z19 15 4 15 15 0 0 15 15 15 15 15 15
Z20 15 15 15 15 0 0 15 15 15 15 15 15
Z21 15 15 15 15 0 0 15 15 15 15 15 15
Z22 15 15 15 15 0 0 15 15 15 15 15 15
Z23 15 15 15 15 0 0 15 15 15 15 15 15
Z24 15 15 15 15 0 0 15 15 15 15 15 15
Z25 15 15 15 15 0 0 15 15 15 15 15 15
Z26 15 15 15 15 0 0 15 15 15 15 15 15
Z27 15 15 15 15 0 0 15 15 15 15 15 15
Z28 15 15 15 15 0 0 15 15 15 15 15 15
Z29 15 15 15 15 0 0 15 15 15 15 15 15
Z30 15 15 15 15 0 0 15 15 15 15 15 15
Z31 15 15 15 15 0 0 15 15 15 15 15 15
Z32 15 15 15 15 0 0 15 15 15 15 15 15
Z33 15 15 15 15 0 0 15 15 15 15 15 15
Z34 15 15 15 15 0 0 15 15 15 15 15 15
Z35 15 15 15 15 0 0 15 15 15 15 15 15
Z36 15 15 15 15 0 0 15 15 15 15 15 15
Z37 15 15 15 15 0 0 15 15 15 15 15 15
Z38 15 0 15 15 0 0 15 15 15 15 15 15
Z39 15 15 15 15 0 0 15 15 15 15 15 15
Z40 15 15 15 15 0 0 15 15 15 15 15 15
Z41 15 15 15 15 0 0 15 15 15 15 15 15
Z42 0 0 0 15 0 0 15 0 15 15 15 15
Z43 15 15 15 15 0 0 15 15 15 15 15 15
Z44 15 15 15 15 0 0 15 15 15 15 15 15
Z45 15 15 15 15 0 0 15 15 15 15 15 15
Z46 15 15 15 15 0 0 15 15 15 15 15 15
Z47 15 15 15 15 0 0 15 15 15 15 15 15
Z48 15 15 15 15 0 0 15 15 15 15 15 15
Z49 15 15 15 15 0 0 15 15 15 15 15 15
Z50 15 15 15 15 0 0 15 15 15 15 15 15
Z51 15 15 15 15 0 0 15 15 15 15 15 15
Z52 15 15 15 15 0 0 15 15 15 15 15 15
Z53 15 0 15 15 0 0 15 15 15 15 15 15
Z54 1 0 0 15 0 0 15 1 5 15 15 15
Z55 15 15 15 15 0 0 15 15 15 15 15 15
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Table A4. Cont.

Zone/Time T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Z56 15 15 15 15 0 0 15 15 15 15 15 15
Z57 0 0 0 15 0 0 15 0 14 15 15 15
Z58 0 0 0 15 0 0 15 10 2 15 15 15
Z59 0 0 0 15 0 0 15 10 3 15 15 15
Z60 0 0 0 15 0 0 15 0 0 15 15 15
Z61 0 0 0 15 0 0 15 0 0 15 15 15
Z62 0 0 15 15 0 0 15 2 15 15 15 15
Z63 0 0 1 15 0 0 15 0 15 15 15 15
Z64 1 0 0 15 0 0 15 1 15 15 15 15
Z65 5 15 11 15 0 0 15 0 15 15 15 15
Z66 15 15 15 15 0 0 15 15 15 15 15 15
Z67 15 15 15 15 0 0 15 15 15 15 15 15
Z68 15 15 15 15 0 0 15 15 15 15 15 15
Z69 15 15 15 15 0 0 15 15 15 15 15 15
Z70 0 0 15 15 0 0 15 0 15 15 15 15
Z71 15 15 15 15 0 0 15 15 15 15 15 15

References

1. Benfield. October 2012 Global Catastrophe Recap Impact Forecasting, 2013. Available online: http://
thoughtleadership.aonbenfield.com/Documents/201211_if_monthly_cat_recap_october.pdf (accessed on
7 July 2016).

2. Sbayti, H.; Mahmassani, H. Optimal scheduling of evacuation operations. Transp. Res. Rec. 2006, 1964,
238–246.

3. Kulshrestha, A. Transit-Based Evacuation Planning under Demand Uncertainty; University of Florida:
Gainesville, FL, USA, 2011.

4. Litman, T. Lessons from Katrina and Rita: What major disasters can teach transportation planners.
J. Transp. Eng. 2006, 132, 11–18.

5. Brown, C.; White, W.; van Slyke, C.; Benson, J.D. Development of a strategic hurricane evacuation-dynamic
traffic assignment model for the Houston, Texas, Region. Transp. Res. Rec. 2010, 2137, 46–53.

6. Sherali, H.D.; Carter, T.B.; Hobeika, A.G. A location-allocation model and algorithm for evacuation
planning under hurricane/flood conditions. Transp. Res. Part B 1991, 25, 439–452.

7. Nisha de Silva, F. Providing spatial decision support for evacuation planning: A challenge in integrating
technologies. Disaster Prev. Manag. Int. J. 2001, 10, 11–20.

8. Stein, R.; Buzcu-Guven, B.; Duenas-Osorio, L.; Subramanian, D.; Kahle, D. How risk perceptions influence
evacuations from hurricanes and compliance with government directives. Policy Stud. J. 2013, 41, 319–342.

9. Pel, A. Model-based optimal evacuation planning anticipating traveler compliance behavior.
In Proceedings of the 12th International Conference on Travel Behavior Research (IATBR), Jaipur, India,
13–18 December 2009; pp. 1–22.

10. Huang, S.K.; Wu, H.C.; Lindell, M.K.; Wei, H.L.; Samuelson, C.D. Perceptions, behavioral expectations,
and implementation timing for response actions in a hurricane emergency. Nat. Hazards 2017, 88, 533–558.

11. Whitehead, J.C.; Edwards, B.; Van Willigen, M.; Maiolo, J.R.; Wilson, K.; Smith, K.T. Heading for higher
ground: Factors affecting real and hypothetical hurricane evacuation behavior. Environ. Hazards 2000,
2, 133–142.

12. Riad, J.K.; Norris, F.H.; Ruback, R.B. Predicting Evacuation in Two Major Disasters: Risk Perception, Social
Influence, and Access to Resources. J. Appl. Soc. Psychol. 1999, 25, 918–934.

13. Murray-Tuite, P.; Wolshon, B. Evacuation transportation modeling: An overview of research, development,
and practice. Transp. Res. Part C 2013, 27, 25–45.

14. Wu, H.C.; Lindell, M.K.; Prater, C.S. Logistics of hurricane evacuation in Hurricanes Katrina and Rita.
Transp. Res. Part F 2012, 15, 445–461.

http://thoughtleadership.aonbenfield.com/Documents/201211_if_monthly_cat_recap_october.pdf
http://thoughtleadership.aonbenfield.com/Documents/201211_if_monthly_cat_recap_october.pdf


Sustainability 2017, 9, 2152 27 of 29

15. Deka, D.; Carnegie, J. Analyzing evacuation behavior of transportation-disadvantaged populations
in northern New Jersey. In Proceedings of the Transportation Research Board 89th Annual Meeting,
Washington, DC, USA, 1–10 January 2010.

16. Lindell, M.K.; Prater, C.S. Critical Behavioral Assumptions in Evacuation Time Estimate Analysis for
Private Vehicles: Examples from Hurricane Research and Planning. J. Urban Plan. Dev. 2007, 133, 18–29.

17. Abdelgawad, H.; Abdulhai, B. Emergency evacuation planning as a network design problem: A critical
review. Transp. Lett. 2009, 1, 41–58.

18. Lim, G.J.; Zangeneh, S.; Reza Baharnemati, M.; Assavapokee, T. A capacitated network flow optimization
approach for short notice evacuation planning. Eur. J. Oper. Res. 2012, 223, 234–245.

19. Zheng, H.; Chiu, Y.C.; Mirchandani, P.; Hickman, M. Modeling of evacuation and background traffic for
optimal zone-based vehicle evacuation strategy. Transp. Res. Rec. 2010, 2196, 65–74.

20. Renne, J.L.; Sanchez, T.W.; Litman, T. National study on carless and special needs evacuation planning:
A literature review. In Planning and Urban Studies Reports and Presentations; University of New Orleans:
New Orleans, LA, USA, 2008.

21. Renne, J.; Sanchez, T.; Jenkins, P.; Peterson, R. Challenge of evacuating the carless in five major US cities:
Identifying the key issues. Transp. Res. Rec. 2009, 2119, 36–44.

22. Bish, D.R. Planning for a bus-based evacuation. OR Spectr. 2011, 33, 629–654.
23. Swamy, R.; Kang, J.E.; Batta, R.; Chung, Y. Hurricane evacuation planning using public transportation.

Socioecon. Plan. Sci. 2017, 59, 43–55.
24. Pengel, B.; Shirshov, G.; Krzhizhanovskaya, V.; Melnikova, N.; Koelewijn, A.; Pyayt, A.; Mokhov, I.

Flood Early Warning System: Sensors and Internet. Available online: http://www.preventionweb.net/
publications/view/32435 (accessed on 18 November 2017).

25. Lindell, M.K.; Perry, R.W. The protective action decision model: Theoretical modifications and additional
evidence. Risk Anal. 2012, 32, 616–632.

26. Lindell, M.K.; Perry, R.W. Communicating Environmental Risk in Multiethnic Communities; Sage Publications:
Thousand Oaks, CA, USA, 2004; p. 262.

27. Lindell, M.K.; Lu, J.C.; Prater, C.S. Household decision making and evacuation in response to Hurricane
Lili. Nat. Hazards Rev. 2005, 6, 171–179.

28. Cahyanto, I.; Pennington-Gray, L.; Thapa, B.; Srinivasan, S.; Villegas, J.; Matyas, C.; Kiousis, S. Predicting
information seeking regarding hurricane evacuation in the destination. Tour. Manag. 2016, 52, 264–275.

29. Dow, K.; Cutter, S.L. Crying wolf: Repeat responses to hurricane evacuation orders. Coast. Manag. 1998,
26, 237–252.

30. Prater, C.; Wenger, D.; Grady, K. Hurricane Bret Post Storm Assessment: A Review of the Utilization of
Hurricane Evacuation Studies and Information Dissemination; Hazard Reduction & Recovery Center, Texas
A&M University: College Station, TX, USA, 2000.

31. Taaffe, K.; Garrett, S.; Huang, Y.H.; Nkwocha, I. Communication’s role and technology preferences during
hurricane evacuations. Nat. Hazards Rev. 2013, 14, 182–190.

32. Burnside, R.; Miller, D.S.; Rivera, J.D. the Impact of Information and Risk Perception on the Hurricane
Evacuation Decision-Making of Greater New Orleans Residents. Sociol. Spectr. 2007, 27, 727–740.

33. Lindell, M.K.; Prater, C.S.; Peacock, W.G. Organizational communication and decision making for hurricane
emergencies. Nat. Hazards Rev. 2007, 8, 50–60.

34. Dow, K.; Cutter, S.L. Public orders and personal opinions: Household strategies for hurricane risk
assessment. Glob. Environ. Chang. Part B 2000, 2, 143–155.

35. West, D.M.; Orr, M. Race, gender, and communications in natural disasters. Policy Stud. J. 2007, 35, 569–586.
36. FEMA. How to Prepare for a Hurricane; Technical Report; Federal Emergency Management Agency:

Washington, DC, USA, 2014.
37. Durage, S.W.; Kattan, L.; Wirasinghe, S.C.; Ruwanpura, J.Y. Evacuation behaviour of households and

drivers during a tornado. Nat. Hazards 2014, 71, 1495–1517.
38. Driscoll, P.; Salwen, M.B. Riding out the storm: Public evaluations of news coverage of Hurricane Andrew.

Int. J. Mass Emerg. Disasters 1996, 14, 293–303.
39. Bokuniewicz, H.; Tanski, J. Assessment of the Base Evacuation Plan in Nassau County; Technical Report

NYSRISE-TR-14; New York State Institute for Storms and Emergencies: New York, NY, USA, 2014.

http://www.preventionweb.net/publications/view/32435
http://www.preventionweb.net/publications/view/32435


Sustainability 2017, 9, 2152 28 of 29

40. Sutton, J.; Palen, L.; Shklovski, I. Backchannels on the front lines: Emergent uses of social media in the 2007
southern California wildfires. In Proceedings of the 5th International ISCRAM Conference, Washington,
DC, USA, 4–7 May 2008; pp. 624–632.

41. Arlikatti, S. Risk area accuracy and hurricane evacuation expectations of coastal residents. Environ. Behav.
2006, 38, 226–247.

42. Gibbs, L.; Holloway, C. Hurricane Sandy after Action: Report and Recommendations to Mayor Michael R.
Bloomberg; Technical Report; The City of New York: New York, NY, USA, 2013.

43. Post, Buckley, Schuh, and Jernigan, Inc. Mississippi Transportation Analysis Final Report; Technical Report;
Federal Emergency Management Agency: Washington, DC, USA, 2001.

44. Fothergill, A.; Maestas, E.G.; Darlington, J.D. Race, ethnicity and disasters in the United States: A review
of the literature. Disasters 1999, 23, 156–173.

45. Bateman, J.M.; Edwards, B. Gender and evacuation: A closer look at why women are more likely to
evacuate for hurricanes. Nat. Hazards Rev. 2002, 3, 107–117.

46. Fothergill, A.; Peek, L.A. Poverty and disasters in the United States: A review of recent sociological
findings. Nat. Hazards 2004, 32, 89–110.

47. Brodie, M.; Weltzien, E.; Altman, D.; Blendon, R.J.; Benson, J.M. Experiences of Hurricane Katrina evacuees
in Houston shelters: Implications for future planning. Am. J. Public Health 2006, 96, 1402–1408.

48. Phillips, B.D.; Morrow, B.H. Social science research needs: Focus on vulnerable populations, forecasting,
and warnings. Nat. Hazards Rev. 2007, 8, 61–68.

49. Gudishala, R.; Wilmot, C. Comparison of Time-Dependent Sequential Logit and Nested Logit for Modeling
Hurricane Evacuation Demand. Transp. Res. Rec. 2012, 2312, 134–140.

50. Cahyanto, I.; Pennington-Gray, L.; Thapa, B.; Srinivasan, S.; Villegas, J.; Matyas, C.; Kiousis, S. An empirical
evaluation of the determinants of tourist’s hurricane evacuation decision making. J. Destin. Mark. Manag.
2014, 2, 253–265.

51. Huang, S.K.; Lindell, M.K.; Prater, C.S.; Wu, H.C.; Siebeneck, L.K. Household evacuation decision making
in response to Hurricane Ike. Nat. Hazards Rev. 2012, 13, 283–296.

52. Sadri, A.M.; Ukkusuri, S.V.; Murray-Tuite, P.; Gladwin, H. Analysis of hurricane evacuee mode choice
behavior. Transp. Res. Part C 2014, 48, 37–46.

53. Fu, H.; Wilmot, C. A Sequential logit dynamic travel demand model for hurricane evacuation.
Transp. Res. Rec. 2004, 1882, 19–26.

54. Eisenman, D.P.; Cordasco, K.M.; Asch, S.; Golden, J.F.; Glik, D. Disaster Planning and Risk Communication
With Vulnerable Communities: Lessons From Hurricane Katrina. Am. J. Public Health 2007, 97, S109–S115.

55. Raggatt, P.; Butterworth, E.; Morrissey, S. Issues in natural disaster management: community response to the
threat of tropical cyclones in Australia. Disaster Prev. Manag. Int. J. 1993, 2, doi:10.1108/09653569310040955.

56. Pel, A.J.; Bliemer, M.C.J.; Hoogendoorn, S.P. EVAQ: A new analytical model for voluntary and mandatory
evacuation strategies on time-varying networks. In Proceedings of the IEEE Conference on Intelligent
Transportation Systems, ITSC, Beijing, China, 12–15 October 2008; pp. 528–533.

57. Gladwin, C.H.; Gladwin, H.; Peacock, W.G. Modeling hurricane evacuation decisions with ethnographic
methods. Int. J. Mass Emerg. Disasters 2001, 19, 117–143.

58. Wilmot, C.G.; Mei, B. Comparison of alternative trip generation models for hurricane evacuation.
Nat. Hazards Rev. 2004, 5, 170–178.

59. Zhang, Y.; Prater, C.S.; Lindell, M.K. Risk Area Accuracy and Evacuation from Hurricane Bret.
Nat. Hazards Rev. 2004, 5, 115–120.

60. Whitehead, J.C. Environmental risk and averting behavior: Predictive validity of jointly estimated revealed
and stated behavior data. Environ. Resour. Econ. 2005, 32, 301–316.

61. Lindell, M.; Prater, C. Behavioral Analysis: Texas Hurricane Evacuation Study; Hazard Reduction & Recovery
Center, Texas A&M University: College Station, TX, USA, 2008.

62. Hasan, S.; Ukkusuri, S.; Gladwin, H.; Murray-Tuite, P. Behavioral model to understand household-level
hurricane evacuation decision making. J. Transp. Eng. 2010, 137, 341–348.

63. Baker, E.J. Hurricane evacuation behavior. Int. J. Mass Emerg. Disasters 1991, 9, 287–310.
64. Drabek, T.E. Understanding disaster warning responses. Soc. Sci. J. 1999, 36, 515–523.
65. Dash, N.; Gladwin, H. Evacuation Decision Making and Behavioral Responses: Individual and Household.

Nat. Hazards Rev. 2007, 8, 69–77.



Sustainability 2017, 9, 2152 29 of 29

66. De Jong, M.; Helsloot, I. The effects of information and evacuation plans on civilian response during the
National Dutch flooding exercise ‘Waterproef’. Procedia Eng. 2010, 3, 153–162.

67. Carnegie, J.; Deka, D. Using hypothetical disaster scenarios to predict evacuation behavioral response.
In Proceedings of the Transportation Research Board 89th Annual Meeting, Washington, DC, USA,
10–14 January 2010.

68. Hasan, S.; Mesa-Arango, R.; Ukkusuri, S. A random-parameter hazard-based model to understand
household evacuation timing behavior. Transp. Res. Part C 2013, 27, 108–116.

69. Kalafatas, G.; Peeta, S. Planning for evacuation: insights from an efficient network design model.
J. Infrastruct. Syst. 2009, 15, 21–30.

70. Xie, C.; Lin, D.Y.; Waller, S.T. A dynamic evacuation network optimization problem with lane reversal and
crossing elimination strategies. Transp. Res. Part E 2010, 46, 295–316.

71. Edara, P.; Sharma, S.; McGhee, C. Development of a large-Scale traffic simulation model for hurricane
evacuation—Methodology and lessons learned. Nat. Hazards Rev. 2010, 11, 127–139.

72. Pel, A.J.; Hoogendoorn, S.P.; Bliemer, M.C.J. Impact of variations in travel demand and network supply
factors for evacuation studies. Transp. Res. Rec. 2011, 2196, 45–55.

73. Mileti, D.S.; Sorensen, J.H.; O’Brien, P.W. Toward an explanation of mass care shelter use in evacuations.
Int. J. Mass Emerg. Disasters 1992, 10, 25–42.

74. Chen, B. Modeling Destination Choice in Hurricane Evacuation with an Intervening Opportunity Model.
Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 2005.

75. Transportation Research Board. Highway Capacity Manual; Transportation Research Board: Washington,
DC, USA, 2000.

76. Ewing, R. Monroe County Hurricane Evacuation Clearance Time—Final Report; Technical Report; University
of Utah, Department of City & Metropolitan Planning: Salt Lake City, UT, USA, 2010.

77. Van Delden, P.; Penton, S.; Haniff, A. Typical hourly traffic distribution for noise modelling. Can. Acoust.
2008, 36, 60–61.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Hurricane Evacuation Planning
	Hurricane Evacuation Warning
	Hurricane Evacuation Response Rate

	Research Methodology
	Notation
	Objective and Process
	Mathematical Models
	Shelter Allocation
	Hurricane Evacuation Warning

	Discussion

	Case Study
	Data Collection
	Traffic Evacuation Zones and Shelter Locations
	Other Parameters and Assumptions

	Analysis of Results
	Computational Results
	Adjustment of Response Rate
	Result Comparison
	Evacuate by Public Transit


	Conclusions
	Optimality of Iterative Procedure for a Single Zone Case
	Counterexample for a Multiple Zone Case
	Parameter pijt Used in the Case Study
	Results of the Case Study
	The Updated pijt 
	Result of pijt Adjustment
	References

