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Abstract: This paper addresses a coordination problem of production and green transportation and
the effects of production and transportation coordination on supply chain sustainability in a global
supply chain environment with the consideration of important realistic characteristics, including
parallel machines, different order processing complexities, fixed delivery departure times, green
transportation and multiple transportation modes. We formulate the measurements for carbon
emissions of different transportation modes, including air, sea and land transportation. A hybrid
genetic algorithm-based optimization approach is developed to handle this problem, in which a
hybrid genetic algorithm and heuristic procedures are combined. The effectiveness of the proposed
approach is validated by means of various problem instances. We observe that the coordination of
production and green transportation has a large effect on the overall supply chain sustainability,
which can reduce the total supply chain cost by 9.60% to 21.90%.
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1. Introduction

With the increasing globalization, more and more managers are aware of the importance of
the coordination and cooperation of supply chain operations. Coordination of production and
transportation operations aims to investigate how to schedule production orders and how to deliver
the finished products to customers in a joint and integrated manner, in which production and
transportation operations are highly integrated to enhance the supply chain performance and therefore
achieve higher supply chain sustainability [1,2].

In a global make-to-order (MTO) environment, it is common that the distribution is performed by
a third-party logistics company such as UPS or DHL, which provides multiple transportation modes
such as air, sea and land transportation. Fourteen percent of 2010 global greenhouse gas emissions is
attributed to transportation [3]. Reducing energy consumption and carbon emission in transportation
is thus critical. This paper investigates the coordination of production and transportation operations
with the consideration of multiple transportation modes and carbon emissions, called the coordination
problem of production and green transportation (short for CPGT problem).

The study on the coordination problem of production and transportation operations (CPTO
problem) can be traced back to the 1980s [2]. Since then, many researchers have studied the CPTO
problems from different perspectives. Moon et al. [4] study the CPTO problem with the objective
of minimizing the maximum completion time, and establish a mixed integer linear programming
model. Considering the particularity of concrete transportation, Garcia et al. [5] deal with a CPTO
problem in a scenario of no-wait, immediate delivery to the customer site. Chen and Vairaktarakis [6]
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study two classes of CPTO problems motivated by applications in the computer and food catering
service industries.

In 2010, Chen [1] made a comprehensive survey on CPTO problems. After that, Agnetis et al. [7]
address a CPTO problem with semi-products belonging to the same manufacturer. These semi-products
need to be processed in one production location and transported to another production location by
a third-party logistics provider. Kaya et al. [8] study a CPTO problem in a deterministic inventory
system with a single supplier and a single retailer, and they investigate both integrated model and
a decentralized model. Hajiaghaei-Keshteli et al. [9] study a CPTO problem of synchronization of
production and rail transportation. The objective of this problem is to schedule production and
allocate rail transportation of orders while optimizing customer service at the minimum total cost.
Lee et al. [10] construct a CPTO model in a make-to-order producer-buyer supply chain with the
objective of minimizing the total cost including transportation cost. Koc et al. [11] investigate a CPTO
problem for the production and delivery of a set of orders with two vehicle types for outbound
shipments, and analyze the manufacturer’s planning problem under different delivery policies.

Most of previous studies on CPTO problems focused on simple realistic characteristics,
such as single transportation mode [8], the same order size [7,12], the same order processing
complexity [5,13] and flow production [14]. However, previous studies seldom considered such
more complicated realistic features as fixed vehicle departure times, multiple transportation modes
and green transportations.

These various complicated realistic features exist in practice. Most companies worldwide now
rely on third-party logistics providers for their daily distribution and transportation needs. Many
third-party service providers have daily fixed package pickup times. The CPTO problems thus have
to consider fixed vehicle departure times. In addition, multiple transportation modes usually exist
in practice, each of which corresponds to a certain combination of transportation speed and capacity.
Li et al. [15] study a CPTO problem in a global supply chain with air transportation in the consumer
electronics industry, in which the transportation departure time for each order is fixed by the airline.
Stecke et al. [16] study a CPTO problem with a commit-to-delivery mode of business, and the vehicle
from a third-party logistics company arrive at the same time, which depicts a planning horizon
that starts at a fixed time. Azadian et al. [17] study a CPTO problem of a make-to-order contract
manufacturer which considers multiple transportation modes. Memari et al. [18] study a CPTO
problem in green supply chain, and the objectives of the problem are minimizing the total cost as
well as minimizing the environmental impact of logistic network. However, CPTO problems, which
consider fixed delivery departure times, multiple transportation modes and green transportation
simultaneously, have not been investigated so far, although these problems are widespread in some
real-world supply chains such as apparel and footwear. This paper thus investigates a CPTO problem
with the consideration of these realistic features, called the CPGT problem.

Due to the consideration of these realistic features, the CPGT problem is a complex CPTO
problem. It is well known that the CPTO problem with simple realistic features is a non-deterministic
polynomial-hard problem [1]. With the increase of complexity and problem size of CPTO problems, it is
well known that traditional techniques, including mathematical programming techniques, heuristic
techniques and traditional intelligent techniques, have difficulties in handling these more complex
CPTO problems. González and Vela [19] have pointed out that the running time of traditional
optimization techniques in handling some complex CPTO instances with 60 or more jobs is prohibitive,
taking several weeks in some extreme cases. For larger instances, the computation time may
increase exponentially.

Various optimization techniques have been used to solve these CPTO problems, which involve
mathematical programming, heuristics and traditional intelligent algorithms, and so forth. Lee and Fu [10]
use a network optimization method to solve two kinds of CPTO problems. Garcia et al. [5] propose
a heuristic algorithm to obtain the near-optimal solution to a CPTO problem. Viergutz et al. [20]
use a branch and bound method to solve a single-plant CPTO problem with the objective of
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minimizing completion time. Some researchers use evolutionary techniques to solve CPTO problems.
Moon et al. [4] develop a new evolutionary search approach based on a topological sort to solve a
CPTO problem with multiple manufacturing sites. Ullrich [21] introduce a genetic algorithm-based
approach to solve a CPTO problem consisting of two sub-problems. The first addresses the scheduling
of a set of jobs on parallel machines with machine-dependent ready times while the second focusses
on making the delivery decisions of completed jobs.

Hybrid genetic algorithms, which are also referred to as genetic local search algorithms, can obtain
good performance with faster computation time and have excellent performance in solving various
complex optimization problems [22]. Hybrid genetic algorithms have also been used to solve complex
CPTO problems effectively [23,24]. This paper thus proposes a hybrid genetic algorithm-based
optimization (HGAO) approach to solve the CPGT problem investigated.

The structure of this paper is as follows. Section 2 presents the problem investigated and elaborates
how to measure the carbon emissions in different transportation modes. Section 3 describes the
proposed HGAO approach. In Section 4, the numerical experiments are presented and experimental
results are analyzed to demonstrate the effectiveness of the HGAO approach. Section 5 discusses
the performance of the proposed approach and the effects of coordinated production and green
transportation. Finally, Section 6 summarizes this paper and provides the future research directions.

2. Problem Statement

2.1. Problem Description

At the beginning of a scheduling horizon, the plant receives a set of orders from customers all
around the world and commits a delivery date for each order. The plant needs to process these orders
on a dedicated machine of this plant and delivers the finished products to customers by a third-party
logistics company. Each order contains a set of jobs. Different orders could have different order sizes
and the complexities of different jobs could be different. The plant could produce multiple orders at
the same time. If so, the production capacity for each order in parallel is the same. The jobs within
an order must be processed continuously in turn. To respond quickly to customer orders, the plant
integrates the machine scheduling and distribution operations together, which first needs to determine
the production beginning time of each order in the plant. After the production of an order is completed,
finished products need to be delivered to customer destinations. In each order, the products with the
same destination are defined as a product batch, which may consist of products from different jobs.
Some product batches may arrive the customer destination in advance or late, which lead to earliness
or tardiness penalty, respectively. Third-party logistics companies are responsible for transporting
finished products to customer-specified destinations, which provide multiple transportation modes
including sea, land and air transportation. Different transportation modes correspond to different unit
transportation costs, time and carbon emissions. The plant needs to select a suitable transportation
mode dynamically to achieve the supply chain objective.

Without the loss of generality, the investigated problem assumes that: (1) the start time of
scheduling horizon is zero; (2) there is no shortage of raw materials; and (3) the third-party logistics
company has enough vehicles to complete given transportation tasks.

The investigated CPGT problem needs to determine the values of three decision variables,
Sik and Mikm. Rii′ is 1 if order i′ is the immediate succeeding of order i, otherwise it is 0. Sik denotes
the departure time of product batch (i, k). Mikm is 1 if the product batch (i, k) is transported via
transportation mode m otherwise it is 0. The objective is to minimize the total supply chain cost,
including holding cost, transportation cost, earliness and tardiness cost, and carbon emission cost.
We do not consider the production cost because the production cost of each order in the plant is a
constant. The objective can be formulated as follows:
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min F(Rii′ , Sik, Mikm) =
I

∑
i=1

K

∑
k=1

(HCik + TCik + EPik + TPik + ECik) (1)

where HCik, TCik, EPik, TPik and ECik denote the holding cost, the transportation cost, the earliness
penalty, the tardiness penalty and the carbon emission cost of product batch (i, k) respectively.

2.2. Measurement for Transportation Carbon Emissions

With different transportation modes, fuel consumptions are apparently different to transport
products from one place to another. This section presents how to calculate the carbon emissions under
different transportation modes in detail.

2.2.1. Carbon Emission of Sea Transportation

For sea transportation, carbon emissions are mainly from shipping fuel consumption. The amount
of fuel consumed by shipping depends on its load factor, frequency of sailing, speed, distance involved,
and fuel efficiency [25]:

C f u =
d
v
× F f u × W

SL
(2)

where C f u denotes the consumption of fuel type f u (e.g., heavy oil and diesel), d the distance from the
plant to the destination (km), v the transport speed (27.78 km/h), F f u the main engine fuel economy
of fuel type f u, W the number of containers (unit: Twenty-foot Equivalent Unit (TEU)), and SL the
containership capacity (444 TEU/trip). The amount of CO2 emissions is estimated by multiplying the
fuel consumption for heavy oil and diesel and the emission factor.

Es = C f u × ζ (3)

where Es denotes the CO2 emission (ton) for shipping, and ζ is the emission factor of CO2 for
containerships of heavy oil and diesel, which is in line with maritime fuels generally, namely, 3.11 ton
of CO2 per heavy oil ton and 3.1 ton of CO2 per diesel ton.

For simplicity, assuming that the shipping speed remains unchanged. Let W = Q
QTEU

, where Q
is the number of product batch pieces, QTEU is the container capacity (500 pieces/TEU), and there is
only one type of fuel consumed, engines with diesel F f u consuming 0.04 ton/h and emission factor ζ

is 3.1 ton. Set φ = F f u ·ζ
v·SL·QTEU

, and it is clear that φ is constant, which equals 2.01 × 10−8. Es (ton CO2)
can thus be expressed as

Es = φ · d ·Q =2.01× 10−8 · d ·Q (4)

2.2.2. Carbon Emission of Land Transportation

For land transportation, according to the definition of energy consumption given by Bektas and
Laporte [26], we have

Ev = γ · d · θ · [α× (w + f ) + βv2] (5)

where Ev is the carbon emission of vehicle, γ is the fuel emission factor, θ is the conversion factor that is
defined as liter of fuel consumed per joule of energy, α is the road-specific constant, w is the actual load
of vehicle, f is the curb weight of one vehicle, d is the distance of transportation, β is vehicle-specific
constant, v is the speed of vehicle.

For simplicity, set w = ρ · Q, where ρ is the weight of the product (per piece). According to
formula [5], we have

Ev = (γ · α · (ρ ·Q + f ) + γ · β · v2) · θ · d (6)
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According to the data from the U.S. Energy Information Administration, 2.681 kg CO2 will be
emitted if 1 L diesel is consumed [27]. And set r1 = γ · α and r2 = γ · β · v2. It is clear that r1 and r2 are
constants. Then Ev can be expressed as

Ev = (r1 · (ρ ·Q + f ) + r2) · θ · d (7)

2.2.3. Carbon Emission of Air Transportation

For air transportation, carbon emissions are generated in two main parts: landing/take-off
cycle (LTO) and cruise of aircrafts. The analysis about these two parts has been given by Chao [28].
The related greenhouse gas is only CO2. For simplicity, assuming that the type of aircraft and fuel is the
same, and the transportation consumption is proportional to the distance. Ea can thus be expressed as:

Ea = c f × ρ · d ·Q (8)

where c f is the carbon footprint (kg/ton·km-CO2 ) of the aircraft, ρ is the weight (kg/piece) of the
product, Q is the quantity of product batch, and d is the distance (km) between destination and plant.
This paper calculates the carbon footprint of aircraft by using the medium-sized freighter A330-200F
(68 tons) for air transportation. Then we have

c f =


0.752 d < 1000

0.461 1000 ≤ d < 3000

0.410 3000 < d

(9)

On the basis of the measurement for carbon emissions of different transportation modes,
the carbon emission CEik of product batch (i, k) via a transportation mode is formulated as follows.

CEik = λ · [Mik1 × φdik ×Qik + Mik2 × (r1 · (ρQik + f ) + r2) · θ · dik + Mik3 × c f × ρdikQik] (10)

3. Methodology

The hybrid genetic algorithm-based optimization (HGAO) approach combines hybrid genetic
algorithm with some heuristic procedures, which aims to generate the best solutions to the investigated
CPGT problem.

3.1. Overview of Hybrid Genetic Algorithm-Based Optimization Approach

The investigated CPGT problem needs to determine the values of three decision variables,
Rii′ , Sik and Mikm. These values are interdependent. For instance, Sik depends on the production
completion date of product batch (i, k), which is determined by the production sequence Rii′ of orders.
To effectively solve this problem, an HGAO approach is developed by integrating a hybrid genetic
optimization process and some heuristic procedures. The hybrid genetic optimization process is
used to find the best order sequence solutions {Rii′ } to the investigated CPGT problem. The heuristic
procedures are proposed to calculate the supply chain cost (including carbon emission cost) and values
of other variables based on the candidate production sequence solution. Figure 1 shows the flow chart
of the HGAO approach. The steps involved are described as follows in detail.
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Figure 1. Flow chart of the hybrid genetic algorithm-based optimization (HGAO) approach.

The main process of the HGAO approach is shown in Figure 1a. First, the values of algorithm
parameters are initialized, including population size, mutation rate, crossover rate, tabu size, and so
on. In step 2, we randomly generate the population of initial individuals, each of which indicates the
production precedence of orders in the plant. Next, steps 3–7 constitute the iterative process for hybrid
genetic optimization, which iteratively find the best values of three decision variables. Each iteration
represents a generation of the evolutionary process of HGAO approach. In steps 3–5, the values
of decision variables Rii′ , Sik and Mikm and the corresponding objective value are calculated based
on the solution individual, the detail of which will be described in Section 3.3. If the termination
condition is satisfied in step 6, the optimization process is terminated and the best solution obtained
is returned as the best integrated optimization solution in step 8. Otherwise, the process returns to
step 7 for generating the population of next generation. As shown in Figure 1b, step 7 consists of four
sub-steps. Step 7.1–7.2 indicates that a new population is generated based on a crossover operation
and a mutation operation. Step 7.3 states that the best individual of the population is selected out and
preserved. Step 7.4 states that a tabu search-based local improvement is performed based on the best
individual. The key operations involved will be described in detail in Section 3.2.

3.2. Key Operations in Hybrid Genetic Algorithm

The hybrid genetic algorithm is a combination of genetic algorithm and a local search process [22].
In general, the key operations in hybrid genetic algorithm include: (1) the encoding operation shows
how each individual (solution) is represented; (2) the population initialization operation shows how the
initial population is created; (3) the genetic operations (e.g., crossover and mutation operations) show
how the offspring are generated during reproduction; and (4) a tabu search-based local improvement
process. The detail of these operations are described as follows.

3.2.1. Encoding

Let N denote the population size. Let xn denote the nth (n ∈ [1, N]) individual in the population,
which represents a production sequence solution of orders in the plant. Set xn = (Sn, F(Sn)),
where Sn denotes the candidate production sequence solution and F(Sn) denotes the fitness of Sn.
Set Sn = (an

1 , an
2 , . . . , an

I ) and the value of an
i denotes the order number of the ith order to be produced.

For example, xn = ((3, 2, 1, 4, 5), 0.001) states that orders 3, 2, 1, 4 and 5 are produced in turn and the
corresponding fitness is 0.001.
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3.2.2. Population Initialization and Selection

In hybrid genetic algorithm, a set of individuals forms a population. The initial population is
generated randomly for the first generation. The individuals in the population are evaluated using
a fitness value. The value of fitness function is calculated according to the procedure described in
Section 3.3.

The selection operator used is the tournament selection. This operator takes randomly a specified
number of individuals in the population, the best individual in the selected individuals is selected as a
parent and the process is repeated to complete the parental population. In this study, the offspring
population is primarily composed of the following: best individuals obtained by genetic operator,
new individual generated by tabu search-based local improvement and the best individual reserved
from previous generations.

3.2.3. Genetic Operators

The genetic operators enhance the performance of solutions by propagating similarities and
unexpected genetic characteristics to offspring. In general, the performance of evolution techniques
strongly depends on the design of crossover operators while mutation tremendously influences the
diversity of population [29]. This research utilizes the uniform crossover operator [30] and the inversion
mutation operator [31] to generate the individuals in the offspring population.

The uniform crossover operator generates two children starting from two parents. First,
the uniform crossover operator generates a binary random-index based on uniform distribution,
the length of which is the same as the number of orders. And if the ith binary number of random-index
equals 1, the ith gene of individual will be marked. Finally the uniform crossover completes the two
children by swapping the marked genes from two parents.

The inversion mutation operator selects an operation from a single parent individual and inverts
one part of the individual. The inversion mutation operator is applied to improve the solution quality.

3.2.4. Tabu Search-Based Local Improvement

Tabu search (TS) is proposed by Glover [32], which is an optimization algorithm though a
simulation of human intelligence process [33]. Its search performance is completely dependent on the
domain structure and initial solution, especially in the local minimum and it cannot guarantee the
global optimization. By introducing a flexible storage structure and a corresponding tabu criterion,
the TS can effectively find the local optimum within a small computation time.

Figure 2 gives the pseudocode of the tabu search-based local improvement process, which is
described as follows. First, the tabu search is initialized by setting the tabu list to null and setting
the initial current solution xo (line 1). Lines 2–13 are iterative process of tabu search. Line 3
generates neighboring solutions {x1, x2, . . . , xn} (lines 2–3). Then, each neighboring solution is iterated
(lines 4–12). In detail, line 5 checks whether the value of corresponding taboo list for candidate solution
xi is 0. If so, go to line 6; otherwise go to line 12. Line 6 checks whether the candidate solution xi meets
the aspiration criterion. If so, replace the best solution xb by xi, setting xo = xi and update the tabu
list (line 7); otherwise checks whether the candidate solution xi is the optimal value in the candidate
solutions {x1, x2, . . . , xi} (line 8). If so, replace the current solution xo by the candidate solution xi and
update tabu list (line 9). The iterations of tabu search are repeated until a termination condition is met
(line 13). Finally, the best solution xb is returned in line 14.
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3.3. Calculation of Values of Sik, Mikm and Fitness Function

The individual in the evolutionary process of the HGAO approach determines the production
sequence Rii′ of orders, the completion date Ci can then be determined. This section introduces how
to decide the values of departure time Sik and transportation mode Mikm, finally getting the value of
fitness function of this individual based on the given production sequence of the individual.

According to the values of expected delivery date di and production completion date Ci, the values
of variables Sik and Mikm can be determined optimally by the following 3 rules, which can be easily
proved by contradiction.

Rule 1: If no transportation mode can transport products to the destination by the expected
delivery date di, then Mikm is set as the transportation mode with the shortest transportation time,
Sik is equal to the production completion date Ci of order i.

Rule 2: If multiple transportation modes can complete the transportation task by the expected
delivery date di, then Mikm is set as the transportation mode with the longest transportation time.
That is, the transportation mode with the minimal transportation cost is selected. Sik is determined by
Rule 3.

Rule 3: If the holding cost of product batch (I, k) is greater than the earliness penalty, set Sik = dCie;
otherwise, set Sik = di − dCie − TTikm. TTikm denotes the transportation time of transportation mode
m for product batch (I, k).

After the values of these variables are determined, the value of the objective function (the total
cost of the supply chain) can be calculated. The value of its fitness function can then be set as the
reciprocal of the objective value.

4. Numerical Experiments

This section presents the numerical experiments to validate the performance of our approach.
First, experimental data and algorithm parameters are presented in Section 4.1. The proposed HGAO
approach is evaluated by three numerical experiments in Section 4.2.

4.1. Experimental Data and Algorithm Parameters

A series of numerical experiments have been conducted to evaluate the effectiveness of the
proposed HGAO approach. This section presents three representative experiments in practice.
Experimental data were collected from a global MTO manufacturing enterprise in China. The three
experiments handle three different integrated production and transportation tasks. Similar tasks are
widespread in the global labor-intensive enterprises. In each experiment case, different production
tasks are processed:
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(1) Experiment 1: eight orders with 38 product batches;
(1) Experiment 2: 10 orders with 43 product batches;
(1) Experiment 3: 11 orders with 40 product batches.

Tables 1–3 show the information related to each order in these experiments. The values in
columns 1–3 show customer number, order number and delivery destination number, respectively.
Columns 4–7 show the product quantity (pieces), expected delivery date, daily earliness penalty
and daily tardiness penalty ($/day) of each product batch, respectively. Column 8 shows the
processing efficiency of the order. “1” “2” “3” represents the high, medium and low machining
efficiency, respectively.

Table 1. Data of orders in experiment 1.

Customers Orders Destinations
Quantity
Delivered

(Piece)

Expected
Delivery

Date

Daily
Earliness
Penalty
($/Day)

Daily
Tardiness

Penalty
($/Day)

Complexity

C1

1 1 7500 37 1125 6000 1
1 3 7500 37 1125 6000 1
1 4 5000 37 750 4000 1
1 5 5000 37 750 4000 1
1 6 5000 37 750 4000 1

C2

2 1 7000 41 700 4900 2
2 3 6000 41 600 4200 2
2 4 6000 41 600 4200 2
2 6 5000 41 500 3500 2

C3

3 1 9000 49 1350 6300 1
3 3 9000 49 1350 6300 1
3 4 8000 49 1200 5600 1
3 8 8000 49 1200 5600 1
3 9 7000 49 1050 4900 1
3 10 7000 49 1050 4900 1

C4

4 1 12,000 54 1800 9600 1
4 3 10,000 54 1500 8000 1
4 4 9000 54 1350 7200 1
4 5 9000 54 1350 7200 1

C5
5 1 6000 58 600 4800 2
5 3 6000 58 600 4800 2
5 6 6000 58 600 4800 2

C6

6 1 7000 62 700 4550 3
6 3 6000 62 600 3900 3
6 4 6000 62 600 3900 3
6 5 6000 62 600 3900 3
6 8 5500 62 550 3575 3
6 9 5500 62 550 3575 3

C7

7 1 12,000 64 1800 9600 3
7 2 9000 64 1350 7200 3
7 9 8000 64 1200 6400 3
7 10 8000 64 1200 6400 3
7 13 8000 64 1200 6400 3

C8

8 9 1400 66 210 1120 2
8 10 1400 66 210 1120 2
8 11 1400 66 210 1120 2
8 12 1400 66 210 1120 2
8 13 1400 66 210 1120 2
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Table 2. Data of orders in experiment 2.

Customers Orders Destinations
Quantity
Delivered

(Piece)

Expected
Delivery

Date

Daily
Earliness
Penalty
($/Day)

Daily
Tardiness

Penalty
($/Day)

Complexity

C1

1 1 9000 33 1350 7200 1
1 3 7000 33 1050 5600 1
1 4 7000 33 1050 5600 1
1 5 6000 33 900 4800 1
1 13 6000 33 900 4800 1

C2
2 1 5000 38 750 4000 1
2 2 4500 38 675 3600 1
2 3 4000 38 600 3200 1

C3

3 9 6000 42 600 3600 1
3 10 5000 42 500 3500 1
3 11 5000 42 500 3500 1
3 12 4500 42 450 3150 1
3 13 4500 42 450 3150 1

C4

4 7 12,000 47 1800 10,800 2
4 8 12,000 47 2400 9600 2
4 3 6000 47 1200 4800 2
4 4 6000 47 1200 4800 2
4 5 6000 47 1200 4800 2
4 6 6000 47 1200 4800 2

C5

5 1 5000 53 750 3500 2
5 2 5000 53 750 3500 2
5 3 5000 53 750 3500 2
5 4 5000 53 750 3500 2
5 5 5000 53 750 3500 2

C6
6 9 10,500 54 1575 9450 3
6 10 9000 54 1350 8100 3
6 13 9000 54 1350 8100 3

C7

7 1 9000 55 1350 6300 1
7 7 7500 55 1125 6000 1
7 8 7500 55 1125 6000 1
7 4 6000 55 900 4800 1

C8

8 1 5000 58 500 4000 1
8 2 5000 58 500 4000 1
8 4 5000 58 500 4000 1
8 5 5000 58 500 4000 1
8 8 5000 58 500 4000 1

C9

9 1 2000 59 200 1600 1
9 3 2000 59 200 1300 1
9 4 2000 59 200 1300 1
9 5 2000 59 200 1300 1

C10
10 1 8000 64 800 4800 1
10 3 8000 64 800 4800 1
10 5 8000 64 800 5600 1

The plant-related parameters used are given as follows: the plant production capacity (pieces/day)
is 6000, the daily holding cost ($/piece·day) is 0.12, and the plant production efficiencies for different
order complexities are 120%, 100% and 95%, respectively.

Table 4 shows the transportation time, cost and distance from plant to each destination in each
transportation mode. Three transportation modes are included in total, and each combination of a
transportation mode (rows 2–7) with a delivery place (columns 3–15) corresponds to a transportation
time and a transportation cost. In addition, row 8 gives the distance from the plant to destinations.
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Table 3. Data of orders in experiment 3.

Customers Orders Destinations
Quantity
Delivered

(Piece)

Expected
Delivery

Date

Daily
Earliness
Penalty
($/Day)

Daily
Tardiness

Penalty
($/Day)

Complexity

OG1

1 3 15,000 33 1500 9000 3
1 4 10,000 33 1000 6000 3
1 5 8000 33 800 5600 3
1 6 7000 33 700 4900 3

OG2

2 9 9000 36 1350 6300 1
2 11 9000 36 1350 6300 1
2 12 8000 36 1200 5600 1
2 13 8000 36 1200 5600 1
2 10 8000 36 1200 5600 1

OG3
3 1 3500 37 350 2100 1
3 2 3500 37 350 2100 1
3 4 3500 37 350 2100 1

OG4

4 2 8000 38 1600 6400 2
4 4 5000 38 1000 4000 2
4 8 4000 38 800 3200 2
4 9 3000 38 600 2400 2

OG5
5 2 6000 41 600 4200 2
5 4 6000 41 600 4200 2
5 6 6000 41 600 4200 2

OG6

6 3 7500 53 750 4875 1
6 4 7500 53 750 4875 1
6 5 7500 53 750 4875 1
6 6 7500 53 750 4875 1

OG7
7 1 8000 57 1200 6400 3
7 2 5000 57 750 4000 3
7 5 5000 57 750 4000 3

OG8

8 3 9000 62 1350 8100 3
8 4 7500 62 1125 6750 3
8 5 7000 62 1050 6300 3
8 6 6500 62 975 5850 3

OG9

9 1 7500 66 750 5250 2
9 2 7500 66 750 5250 2
9 7 5500 66 550 3850 2
9 8 5500 66 550 3850 2
9 9 5000 66 500 3500 2
9 10 5000 66 500 3500 2

OG10
10 7 8000 69 800 5200 3
10 8 7000 69 700 4550 3

OG11
11 6 3000 72 300 1950 2
11 7 3000 72 300 1950 2
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Table 4. Transportation time, cost and distance from plant to each destination in each transportation mode.

Transportation Mode Time & Cost D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

1
Time (day) 32 33 30 31 31 31 30 30 20 20 10 10 21

Cost ($/piece) 0.37 0.39 0.35 0.36 0.36 0.36 0.35 0.35 0.23 0.23 0.12 0.12 0.25

2
Time (day) 26 27 25 26 26 26 25 25 15 15 6 6 16

Cost ($/piece) 0.45 0.46 0.43 0.45 0.45 0.45 0.43 0.43 0.26 0.26 0.20 0.20 0.40

3
Time (day) 7 7 7 7 7 7 7 7 6 6 2 2 7

Cost ($/piece) 4.00 4.43 4.00 4.00 4.00 4.00 4.00 4 3.80 3.80 3.00 3.00 4.00

Distance to plant (km) 3500 3800 2800 3100 3100 3100 2800 2800 1500 1500 800 800 1600
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In the numerical experiments of solving the three CPGT cases described above, the algorithm
parameters are set as follows: the population size N is 100; the number of iterations is 100; the crossover
and mutation rates are 0.9 and 0.05, respectively; the number of candidate solutions in tabu search is 12;
the number of neighboring solutions is 5; the length of the tabu list is 8, and; the number of iterations is
12 in tabu search. The HGAO approach is implemented in MATLAB version R2013a. The experiments
were carried out on a laptop with Intel Core i5-5200U CPU @ 2.2 GHz and 4 GB of RAM, running on
Windows 7 Professional.

4.2. Numerical Results

Tables 5–7 show the best solutions generated by the proposed HGAO approach for the three
experiments. Rows 2–4 show production beginning date, and completion date, respectively. Rows 6–12
show the relevant information for each product batch of each order, including departure time,
transportation mode, carbon emission cost, earliness penalty, tardiness penalty, holding cost and
transportation cost, respectively.
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Table 5. Optimal result generated by the HGAO approach (experiment 1).

Order 1 2 3 4

Production beginning date 0.0 5.0 9.0 21.2
Completion date 5.0 9.0 17.0 27.8

Product batch 1 2 3 4 5 1 2 3 4 1 2 3 4 5 6 1 2 3 4
Departure time 5 7 6 6 6 9 9 9 9 17 19 18 19 29 29 28 29 28 28

Transportation mode 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
Carbon emission cost 5276 4221 3116 3116 3116 4925 3377 3739 3116 6332 5065 4985 4502 2111 2111 6716 4908 5176 5176

Earliness penalty 0 0 0 0 0 0 1200 600 500 0 0 0 0 0 0 0 0 0 0
Tardiness penalty 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Holding cost 0 1800 600 600 600 0 1200 600 500 0 2160 960 1920 10,080 10,080 0 1200 0
Transportation cost 2775 2625 1800 1800 1800 2590 2100 2160 1800 3330 3150 2880 2800 1610 1610 5400 4300 4050

Order 5 6 7 8

Production beginning date 18.2 27.8 33.8 17.0
Completion date 21.2 33.8 41.3 18.2

Product batch 1 2 3 1 2 3 4 5 6 1 2 3 4 5 1 2 3
Departure time 22 22 22 34 34 34 34 34 34 57 26

Transportation mode 1 1 1 2 2 2 2 2 1 3 1
Carbon emission cost 4221 3377 3739 5263 3978 4404 4404 3862 1658 172,200 140,200 2412 1286 1286 985 1069 422

Earliness penalty 2400 3600 3000 1400 1800 1200 1200 1650 4400 0 0 0 0 0 0 0 0
Tardiness penalty 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Holding cost 2400 3600 3000 1400 1800 1200 1200 1650 4400 21,600 16,200 1920 11,520 11,520 2520 2352 4356
Transportation cost 2220 2100 2160 3150 2580 2700 2700 2365 1265 48,000 39,870 1840 960 960 518 546 322
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Table 6. Optimal result generated by the HGAO approach (experiment 2).

Order 1 2 3 4 5

Production beginning date 0.0 5.8 8.1 12.3 20.3
Completion date 5.8 8.1 12.3 20.3 24.4

Product batch 1 2 3 4 5 1 2 3 1 2 3 4 5 1 2 3 4 5 6 1 2 3
Departure time 7 8 7 7 12 12 11 13 13 13 13 13 13 37 37 22 21 21 21 27 26 28

Transportation mode 2 2 2 2 1 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2
Carbon emission cost 5844 4211 4662 4404 1930 4682 4926 3513 4937 1508 804 724 1447 1930 1930 3978 4404 4404 4404 4682 5083 3746

Earliness penalty 0 0 0 0 0 0 0 0 1800 4500 9500 8550 3600 0 0 0 0 0 0 0 0 0
Tardiness penalty 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Holding cost 1080 1680 840 720 4320 1800 1080 1920 1800 4500 9500 8550 3600 23.040 23,040 720 0 0 0 1200 600 1800
Transportation cost 4050 3010 3150 2700 1500 2250 2070 1720 2700 1150 600 540 1125 1440 1440 2580 2700 2700 2700 2250 2150 2250

Order 5 6 7 8 9 10

Production beginning date 20.3 33.9 38.7 25.8 24.4 29.9
Completion date 24.4 38.7 43.7 29.9 25.8 33.9

Product batch 4 5 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3
Departure time 27 27 39 39 47 48 48 48 49 30 30 30 30 30 26 26 26 26 34 34 34

Transportation mode 2 2 2 2 3 3 3 3 3 2 2 2 2 1 1 1 1 1 2 1 2
Carbon emission cost 4147 4147 2692 2505 66,384 129,150 96,810 96,810 41,490 4682 5083 4147 4147 804 1407 1126 1246 1246 5554 4502 4919

Earliness penalty 0 0 0 0 0 0 0 0 0 1000 500 1000 1000 9000 200 600 400 400 3200 0 3200
Tardiness penalty 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Holding cost 1200 1200 0 0 8640 4320 3600 3600 3600 1000 500 1000 1000 9000 200 600 400 400 3200 0 3200
Transportation cost 2250 2250 2730 2340 36,000 36,000 30,000 30,000 22,800 2250 2300 2250 2250 600 740 700 720 720 3600 2800 3600
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Table 7. Optimal result generated by the HGAO approach (experiment 3).

Order 1 2 3 4 5

Production beginning date 0.0 13.0 42.5 21.2 10.0
Completion date 6.7 20.0 44.3 27.8 13.0

Product batch 1 2 3 4 1 2 3 4 5 1 2 3 1 2 3 4 1 2
Departure time 7 7 7 7 21 26 26 20 21 45 45 45 11 12 13 18 13 13

Transportation mode 2 2 2 2 2 1 1 2 2 3 3 3 2 2 2 1 22
Carbon emission cost 6070 5434 4949 4662 2505 1447 1286 2539 2380 50,225 54,530 44,485 6030 4147 3513 905 5399 4404

Earliness penalty 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 600 1200
Tardiness penalty 0 0 0 0 0 0 0 0 0 31,500 31,500 31,500 0 0 0 0 0

Holding cost 1500 0 0 0 1080 6480 5760 0 960 0 0 0 960 1200 1440 2880 600 1200
Transportation cost 6450 4500 3600 3150 2340 1080 960 3200 2080 14,000 15,505 14,000 3680 2250 1720 690 2760 2700

Order 6 7 8 8 9 10

Production beginning date 18.2 27.8 33.8 17.0 40.0 39.0
Completion date 21.2 33.8 41.3 18.2 42.5 40.0

Product batch 1 2 3 4 1 2 3 1 2 3 4 1 2 3 4 5 6 1 2 1 2
Departure time 25 25 25 25 31 34 34 34 57 36 36 39 39 39 39 39 40 40

Transportation mode 2 2 2 2 2 2 2 1 3 2 2 2 2 1 1 1 1 1
Carbon emission cost 4327 4790 4790 4790 5554 5083 4147 4676 4790 4662 4533 5409 5872 3862 3862 1508 1508 4443 4211 1869 1688

Earliness penalty 2250 1500 1500 1500 0 0 0 0 0 0 0 750 0 1100 1100 3500 3500 800 700 300 600
Tardiness penalty 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Holding cost 2250 1500 1500 1500 2880 1200 1800 4320 2700 2520 2340 750 0 1100 1100 3500 3500 800 700 300 600
Transportation cost 3225 3375 3375 3375 3600 2300 2250 3870 3375 3150 2925 3375 3450 2365 2365 1150 1150 3440 3010 1080 1050
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As shown in Tables 5–7, the best production sequence of orders for processing in experiment
1 is (1, 2, 3, 8, 5, 4, 6, 7). In experiment 2, the best production sequence of orders is (1, 2, 3, 4, 5, 9,
8, 10, 7, 6). In experiment 3, the best production sequence of orders is (1, 4, 5, 2, 6, 7, 8, 9, 11, 10, 3).
The optimal total supply chain costs, generated by the HGAO approach, are 721,091, 933,362, and
502,399, respectively, in the experiment 1–3. Moreover, each product batch of an order is transported
via one transportation mode at its departure time. For example, product batch (5,1) in experiment
1 is transported via transportation mode 1 (shipping) on the 22nd day, it generates 4421 carbon
emission cost, and arrived at destination isn advance, so it generates 2400 earliness penalty, 2400
holding cost, as well as 2220 transportation cost. There are also several product batches incur delivery
delay, such as product batches (3,1)–(3,3) in experiment 3, each of which generates 31,500 tardiness
penalty. The proposed HGAO approach can easily eliminate the tardiness penalty with objective of
minimizing tardiness penalty, but the total cost of the supply chain is not optimal. The reason why
the earliness penalty occurs is that the unit earliness penalty of the product batch is lower than the
average daily holding cost, so more product batches are transported in advance to reduce the total
cost, and vice versa.

5. Discussions

5.1. Performance Comparison

To validate the optimum-seeking performance of the proposed HGAO approach, we compare
this approach with the enumeration method. The enumeration method is a method that checks all the
solutions in solution space one by one and outputs the optimal solution.

In the enumeration method, all the production sequence solutions are obtained firstly. Then,
for each production sequence, the values of departure time Sik and transportation mode Mm

ik can be
generated by using rules described in Section 3.3. Next, the total supply chain cost is calculated for
each production sequence. Finally, the solution with the minimal total supply chain cost is the optimal
solution. The enumeration method is able to find the optimal solution.

Table 8 shows the comparison results between the enumeration method and the HGAO
approach. Columns 2–3 represent the optimal results, and computation time by enumeration method.
Columns 4–7 represent the optimal result, computation time, average running generations, and the
optimization error by the HGAO approach. The solutions obtained by the HGAO approach are the
same as the optimal solutions obtained by enumeration method. In addition, the average computation
times of the HGAO approach are 5.39, 11.25, 13.87, respectively, which are much less than the
computation times of the enumeration method. The comparison results show that, in terms of
computation time, the performance of HGAO approach is far better than the enumeration method
without losing solution quality.

Table 8. Comparison results generated by the enumeration method and the HGAO approach.

Enumeration Method HGAO (10 Runs)
Gens A-Err (%)

Optimal Value Time (s) Result Time (s)

Experiment 1 3,221,091 68.85 3,221,091 5.39 10 0
Experiment 2 3,553,362 6296 3,553,362 11.25 15 0
Experiment 3 3,157,399 72,381 3,157,399 13.87 20 0

5.2. Effects of Coordination of Production and Green Transportation

To evaluate the effects of collaboration of production and green transportation on supply chain
sustainability in a global supply chain, we compare its performance differences with the following two
sequential optimization problems of production and transportation operations in the supply chain.
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(1) Sequential production and transportation optimization (SPTO for short): production and
transportation are performed in production and shipping departments separately and
sequentially. Carbon emission costs are not considered.

(2) Sequential production and green transportation optimization (SPGTO for short): production
and green transportation are performed in production and shipping departments separately and
sequentially. Carbon emission costs are considered.

The approach for handling the two sequential problems is developed based on the coordinated
optimization approach. Compared to the proposed model, this approach has the following
three differences.

(1) Production due date of order i in sequential optimization is not equal to the due date in
coordinated optimization.

If sequential scheduling is adopted, to push the production plants to complete the production as
early as possible for meeting customer due dates, the production due date δS

i of order i is usually
set to δS

i = min
k

(dik −max
m

(TTikm)), where dik is the due date of product batch (i, k).

(2) The optimum-seeking process in sequential optimization aims at determining the best production
sequence solution of orders to plants so as to meet the production due date of each order and
minimize the summation of production earliness/tardiness penalties. This process does not
consider the effects of transportation process. The hybrid genetic optimization process, described
in Section 3, is utilized to find the best processing sequence solution {Rii′ } of production orders.

(3) Based on the best processing sequence solution {Rii′ }, the heuristic procedure described in
Section 3.3 is then used to determine the values of other decision variables.

We used the approach described above to obtain the best solutions to the above 2 sequential
problems, and then used the best solutions to calculate the total supply chain cost formulated in
Formula (1). Table 9 shows the performance comparison results based on the best solutions to the 3
problems in terms of experimental data in experiments 1–3. The results show that solving the SPTO
problem and the SPGTO problem resulted in a much higher total cost in 3 experiments. There is a much
larger cost reduction in case 3 due to its tighter delivery dates. Comparing to the SPTO problem and
the SPGTO problem, the investigated CPGT problem can reduce the total supply chain cost (including
carbon emission cost) by 9.60% to 21.90%.

Table 9. Performance comparison of scheduling solutions generated by different approaches.
Coordination problem of production and green transportation (CPGT); sequential production and
transportation optimization (SPTO); sequential production and green transportation optimization
(SPGTO).

Experiment 1 Experiment 2 Experiment 3

CPGT SPTO SPGTO CPGT SPTO SPGTO CPGT SPTO SPGTO

Total
cost 721,091 852,330 790,316 933,362 1,076,166 1,035,098 502,399 717,928 680,751

Difference / 18.20% 9.60% / 15.30% 10.90% / 21.90% 12.50%

It justifies the merits and necessity of using the coordinated optimization of production and green
transportation operations, especially when delivery dates are tight.

6. Conclusions

This paper addressed the coordination problem of production and green transportation operations
with a variety of realistic features. These features include mainly fixed delivery departure times,
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multiple transportation modes and green transportation. The objective of this problem is to minimize
the total cost of supply chain, including transportation costs, earliness penalties, tardiness penalties in
delivery and carbon emission penalties.

A HGAO approach was proposed to handle this problem, in which the optimal production
sequence of orders is obtained by a hybrid genetic algorithm, and the values of other variables
are then determined by some heuristic rules. In order to verify the effectiveness of the HGAO
approach, various numerical experiments have been carried out by some problem instances. The
optimization performance of the HGAO approaches were compared with the enumeration method.
The experimental results showed that the proposed HGAO approach had a good optimum-seeking
ability and is capable of solving the CPGT problem effectively.

Through the study for global MTO supply chain enterprises, this paper has the following
managerial implications. First, the research on the CPGT problem with the objective of optimizing the
total cost consisting of holding cost, transportation cost, earliness and tardiness penalty, and carbon
emission cost, which is the core of the supply chain sustainability, provides a scientific and objective
reference for enterprise decision makers of the supply chain. Second, the coordination of production
and green transportation is helpful in improving supply chain sustainability. Third, this paper measures
the carbon emissions from different transportation modes for supply chain transportation, including
air, sea and land transportation, which is ubiquitous in reality. Therefore, this study makes a useful
exploration for the relevant low-carbon research in integrated optimization of green supply chain.

The real-world supply chain environment is uncertain. Various uncertainties may have large
effects on the supply chain performance. However, these uncertainties have not been considered.
It is the main limitation of this research. Future study may consider the integrated optimization and
collaboration problems with multiple plants under uncertain environments. It is also worthwhile to
study how green production affects the supply chain sustainability.
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