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Abstract: The dyeing of textile materials is the most critical process in cloth production because of
the strict technological requirements. In addition to the technical aspect, there have been increasing
concerns over how to minimize the negative environmental impact of the dyeing industry. The emissions
of pollutants are mainly caused by frequent cleaning operations which are necessary for initializing
the dyeing equipment, as well as idled production capacity which leads to discharge of unconsumed
chemicals. Motivated by these facts, we propose a methodology to reduce the pollutant emissions
by means of systematic production scheduling. Firstly, we build a three-objective scheduling
model that incorporates both the traditional tardiness objective and the environmentally-related
objectives. A mixed-integer programming formulation is also provided to accurately define the
problem. Then, we present a novel solution method for the sustainable scheduling problem,
namely, a multi-objective genetic algorithm with tabu-enhanced iterated greedy local search strategy
(MOGA-TIG). Finally, we conduct extensive computational experiments to investigate the actual
performance of the MOGA-TIG. Based on a fair comparison with two state-of-the-art multi-objective
optimizers, it is concluded that the MOGA-TIG is able to achieve satisfactory solution quality within
tight computational time budget for the studied scheduling problem.

Keywords: sustainable manufacturing; production scheduling; genetic algorithm; pollution reduction;
multi-objective optimization

1. Introduction

The increasing concerns over climate change and global warming has exerted great pressure on the
manufacturing sector because it is believed to be a considerable source of pollutant and greenhouse gas
emissions. Faced with stringent regulations and pollution taxes, manufacturing enterprises have been
actively seeking for cost-effective strategies to reduce the discharge of pollutants in their production
processes. Upgrading the relevant processing equipment, technological standards and pollutant
treatment facilities certainly constitutes a feasible option, but it requires substantial investment for the
purchasing and maintenance activities. As an alternative policy, sustainability-oriented production
scheduling has been utilized in a growing variety of process industries as a system-level methodology
for reducing pollutions and carbon emissions [1,2]. The related research on sustainable production
scheduling has attracted increasing attention since the launch of a focused special issue in 2016 [3].

The earliest effort for reducing energy consumption through production scheduling can be
attributed to [4]. The authors collected operational statistics of the CNC machines in a workshop
and found that the non-bottleneck machines consumed considerable energy during the idle periods.
To solve the issue, they proposed a turn-on/turn-off scheduling framework (which determines whether
and when to turn off a machine or to keep it idle) to reduce the overall energy consumption of the
machines. This framework has been utilized and extended in later research such as [5–8] for single
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machine scheduling or flow shop scheduling settings. Another research framework is based on machine
speed scaling [9]. In this framework, it is possible to let the machines work at different speed levels
when processing jobs, and a higher speed is associated with shortened processing time but increased
energy consumption. Therefore, a trade-off must be made between production efficiency and energy
usage. The speed scaling framework has been utilized in subsequent research such as [10–13] for
single machine or job shop production environments. The above-mentioned and many other existing
works all focus on the minimization of energy consumption for achieving sustainable manufacturing
(based on the fact that electricity generation will normally produce carbon emissions). However,
manufacturing processes can influence the environment in more direct ways, e.g., discharge of toxic
sewage and waste. The use of production scheduling to reduce these direct emissions certainly deserves
more research efforts in the near future. The work presented here reflects such an attempt.

In this paper, we focus on the production scheduling of the cloth dyeing process, which is a core
process in typical cloth-making and textile industries. It is noticed that pollutant emissions relating to
this process have originated from two major sources. Firstly, the dyeing machines need to be cleaned
thoroughly whenever they are prepared for processing jobs with a different color than that of the
preceding jobs. The chemical cleaning process is accompanied by the use of polymer detergents in
large amounts, resulting in considerable sewage discharge. Secondly, some machines may not be fully
utilized during the dyeing process, for example, in the case where a machine with maximum capacity
of 200 kg has been assigned to process a batch of jobs that weigh only 100 kg. The underutilization
of dyeing equipment can lead to waste of dyes, which further increases the risk of polluting the
environment if the unconsumed dyes have not been properly disposed of. It is crucial to realize
that the pollutions resulting from these two major sources can be effectively reduced by means of
production scheduling. In particular, scheduling could help to minimize the number of cleanings by
arranging jobs with the same color to be processed consecutively, and likewise, scheduling can help to
minimize the waste of dyeing resources by making the size of each batch close to the capacity of the
assigned machine.

Meanwhile, it should be noticed that such objectives reflecting the environmental and sustainable
goal may conflict with the traditional scheduling objectives (e.g., tardiness, which reflects the penalty on
late completion of jobs), not to mention that these sustainable objectives are often mutually conflicting
as well. Therefore, multi-objective optimization approaches are required for modeling and solving
sustainable production scheduling problems. Under the multi-objective optimization framework,
the algorithm must be able to output a set of solutions with equal quality (in the Pareto optimality
sense) and widespread distribution (representing different trade-offs among the objectives) so that
the decision maker can choose the most suitable solution according to practical conditions [14]. In the
following, we provide a quick literature review of the related publications on multi-objective parallel
machine scheduling, considering that the production system studied in this paper is basically consistent
with the parallel-machine settings, in which a number of machines are working in parallel to process
the pending jobs.

Most existing publications are focused on theoretical problems which are extended from the
standard single-objective parallel machine scheduling model. A modified NSGA-II (Non-dominated
Sorting Genetic Algorithm II) was proposed for a parallel machine scheduling problem with three
objectives including tardiness cost, deterioration cost and makespan [15], and it was found that
the modified algorithm outperforms the original NSGA-II and another universal multi-objective
optimizer SPEA2. A multi-objective multi-point simulated annealing (MOMSA) algorithm [16] and
a tabu-enhanced iterated Pareto greedy (TIPG) algorithm [17] were proposed for solving unrelated
parallel machine scheduling problem in which the makespan, total weighted completion time and
total weighted tardiness should be minimized simultaneously. It had been revealed that the proposed
algorithms markedly outperformed the existing heuristics in terms of the adopted performance
indicators. A bi-objective uniform parallel machine scheduling problem (minimizing makespan
and machine hiring cost) with consideration of learning and adapting effects was studied in [18],
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where the authors designed a highly modified particle swarm optimization (PSO) algorithm based
on Lévy flights to implement an efficient search procedure. Experimental results showed that
the proposed modifications had significantly helped the algorithm to escape from local optima,
therefore resulting in an outstanding performance even when compared to exact solution methods.
A multi-objective unrelated parallel machine scheduling problem (minimizing total completion time,
number of tardy jobs, total flow time and machine load variation) with machine-dependent and
job-sequence-dependent setup times was considered in [19], where the authors presented an artificial
immune mechanism enhanced NSGA-II called AI-NSGA-II to solve the complex scheduling problem.
Robust performance of the proposed algorithm was verified by comparison with the conventional
NSGA-II and a multi-objective particle swarm optimization (MOPSO) algorithm. A multi-phase
heuristic algorithm, which iterates over a genetic algorithm in the first phase and three hybrid
meta-heuristics (ACO, VNS and SA) in the second and third phases, was proposed for a parallel
machine scheduling problem with sequence-dependent setup times to minimize both makespan and
total earliness/tardiness in the due window [20]. Experiments had shown that the multi-phase method
approximates the Pareto front better than the global archive sub-population genetic algorithm (GSPG)
presented earlier in [21]. A bi-objective parallel machine scheduling model was built to deal with
production scheduling and maintenance planning problems simultaneously, aiming at minimizing the
total tardiness and the unavailability of the production system [22]. The proposed solution method
based on Pareto ant colony optimization was shown to outperform two universal multi-objective
genetic algorithms (NSGA-II and SPEA2).

There are also some publications dealing with practical scheduling problems or problems with
practical features. Motivated by a real-life production system with eligibility considerations (i.e., a job
from a certain quality level can be processed by a machine of the same level or a higher level but
the latter case incurs a penalty), the authors of [23] investigated a bi-objective parallel machine
scheduling problem with the aim of minimizing the final completion date (production plus delivery)
and the total penalty generated by job level mismatches. Efficient heuristic search algorithms were
proposed for the problem to obtain Pareto solutions which had been compared with the exact Pareto
fronts. Inspired by a real-world scheduling problem in the shipyard, the authors of [24] modeled an
unrelated parallel machine scheduling problem with sequence-dependent setup times, release dates,
machine eligibility and precedence constraints. Adaptive versions of the NSGA-II and a multi-objective
ant colony optimization (MOACO) algorithm were developed for solving the problem, and the results
had indicated that the improved MOACO statistically outperformed the proposed NSGA-II. To reflect
the practical situation of “project crashing” in manufacturing activities (which means expediting the
processing of certain jobs in the hope of shortening the makespan), a parallel machine scheduling
problem with controllable processing times was investigated in [25], in which the total manufacturing
cost (associated with the shortened processing times), total weighted tardiness and makespan
had been considered as objective functions. Pareto solutions were obtained by the lexicographic
weighted Tchebycheff method, and it was found that the applied method had yielded more and
better-spread non-dominated solutions than the weighted-sum method. Considering the inevitable
uncertainty of processing times and due dates in real-world systems, a non-identical parallel machine
multi-objective scheduling problem with both deterioration and learning effects was formulated
as a fuzzy chance-constrained nonlinear programming model (with objectives of minimizing total
earliness/tardiness and makespan) [26]. A multi-objective branch and bound algorithm was proposed
in order to obtain the Pareto front, and it was revealed by computational results that the algorithm had
been efficient for solving large-scale instances.

It can be concluded from the literature review that multi-objective optimization approaches
(based on Pareto optimality) have not yet been applied to parallel machine scheduling problems with
sustainable or environmental requirements (the few existing works such as [27] have treated the problem
as single-objective by adding traditional scheduling cost and environmental cost together). There are
even fewer publications that aim at sustainable scheduling of real-life parallel-machine production
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systems based on practically motivated definition of objective functions. Therefore, the work reported
in this paper reflects a novel research attempt for modeling and solving a sustainable production
scheduling problem that arises from the pollution-intensive cloth dyeing industry.

The remainder of the paper is organized as follows. Section 2 describes the sustainable scheduling
problem in detail and gives an exact mathematical programming formulation. Section 3 introduces all
aspects of the proposed solution approach, including the encoding/decoding scheme, initialization
method, modified genetic operators, multi-objective handling functions, and the tabu-enhanced
iterated greedy local search module. Section 4 presents a series of computational experiments to verify
the effectiveness of our algorithm, including DOE-based parameter test and systematic comparison
with the recently proposed multi-objective evolutionary algorithms. Finally, Section 5 concludes the
paper with discussions on future research possibilities.

2. Problem Statement

2.1. Background

In the studied production system for textile dyeing, there are n jobs (J = {1, 2, . . . , n}) waiting to
be processed by m parallel batch-processing machines (M = {1, 2, . . . , m}). Each job i ∈ J has a series
of attributes, namely, the processing time ti, the due date di, the size vi and the weight wi. In addition,
all the jobs are categorized into l families (each family represents a specific color for dyeing), and the
family index of job i is denoted as ϕ(i). It is noteworthy that the processing time of each job is only
determined by its family category but not affected by its size. Therefore, we could use pj to denote the
processing time of any job that falls under family j. Each machine k ∈ M has a maximum volume,
denoted by Vk. A number of jobs in the same family can be processed in the form of a batch on machine
k as long as the total size of the jobs does not exceed the capacity Vk. The processing time of a batch of
jobs from family j is equal to pj.

A setup operation is required whenever a machine is about to start processing the next batch with
a different family than the previously finished batch. We assume that the setup time is identical and is
denoted as s. Since the setup operation mainly concerns a thorough cleaning of the dyeing vat using
a chemical detergent, sewage emissions are often incurred. We use δk to represent the environmental
cost of a single setup operation. It is evident that the number of setup operations should be reduced,
which means it is preferable to process the batches from the same family in a consecutive manner.

Meanwhile, it should be highlighted that the use of larger dyeing vats naturally leads to increased
energy consumption in terms of electricity and excessive material consumption in terms of water and
dyes (noting that unconsumed dyes are usually discharged in dissolved form). Therefore, it is more
efficient to assign a 120 kg batch to a 150 kg machine than to a 200 kg machine. Formally speaking,
when making scheduling decisions, we should consider maximizing the utilization rate of dyeing
machines, which is equivalent to minimizing the total occupied capacity of machines.

Finally, due date performance is critical for any manufacturing company that adopts the
make-to-order strategy. Hence, the total delivery tardiness should be minimized besides the above
mentioned sustainability-oriented goals (setup reduction and utilization rate promotion). The three
objectives, however, are usually conflicting (e.g., reducing the tardiness can cause a decrease in the
machine utilization rate). Therefore, a multi-objective optimization approach is required to deal with
such a scheduling problem.

2.2. The Linear Programming Formulation

We construct a mixed-integer linear programming (MILP) model to formulate the studied
scheduling problem. Four sets of 0-1 decision variables are first defined as follows, where Bkh represents
the h-th batch to be processed on machine k.
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• xikh = 1 if job i is processed in Bkh, and xikh = 0 otherwise.
• yjkh = 1 if the jobs in Bkh belong to family j, and yjkh = 0 otherwise.
• zkh = 1 if the jobs in Bkh belong to a different family than the jobs in Bk(h−1), and zkh = 0 otherwise.
• ukh = 1 if there is at least one job assigned to Bkh, and ukh = 0 otherwise.

The MILP model is then constructed based on these decision variables. The other variables in the
model are all derived from these binary variables. fkh represents the family index of Bkh. Fkh denotes
the finishing time of Bkh. Ci and Ti indicate the completion time and the tardiness of job i, respectively.
M is a very large positive number.

Minimize TWT =
n

∑
i=1

wiTi (1)

TSC =
m

∑
k=1

n

∑
h=2

(δk · zkh) (2)

TCU =
m

∑
k=1

n

∑
h=1

(Vk · ukh) (3)

subject to:
n

∑
i=1

(vi · xikh) ≤ Vk, k = 1, . . . , m, h = 1, . . . , n (4)

m

∑
k=1

n

∑
h=1

xikh = 1, i = 1, . . . , n (5)

l

∑
j=1

yjkh = 1, k = 1, . . . , m, h = 1, . . . , n (6)

xikh ≤ yϕ(i)kh, i = 1, . . . , n, k = 1, . . . , m, h = 1, . . . , n (7)

fkh =
l

∑
j=1

(j · yjkh), k = 1, . . . , m, h = 1, . . . , n (8)

M · zkh ≥ fk(h−1) − fkh, k = 1, . . . , m, h = 2, . . . , n (9)

M · zkh ≥ fkh − fk(h−1), k = 1, . . . , m, h = 2, . . . , n (10)

Fk1 =
l

∑
j=1

(
pj · yjk1

)
, k = 1, . . . , m (11)

Fkh = Fk1 +
h

∑
h′=2

(
l

∑
j=1

(pj · yjkh′) + s · zkh′

)
, k = 1, . . . , m, h = 2, . . . , n (12)

Ci ≥ Fkh −M · (1− xikh), i = 1, . . . , n, k = 1, . . . , m, h = 1, . . . , n (13)

Ti ≥ Ci − di, i = 1, . . . , n (14)

Ti ≥ 0, i = 1, . . . , n (15)

M · ukh ≥
n

∑
i=1

xikh, k = 1, . . . , m, h = 1, . . . , n (16)

uk(h−1) ≥ ukh, k = 1, . . . , m, h = 2, . . . , n (17)

xikh, yjkh, zkh, ukh ∈ {0, 1}, i, h = 1, . . . , n, k = 1, . . . , m, j = 1, . . . , l (18)

Equations (1)–(3) define the three objective functions to be minimized, i.e., the total weighted
tardiness TWT, the total setup cost TSC (when a setup operation is performed on machine k,
an additional setup cost of δk is incurred) and the total capacity utilization TCU (the sum of the
capacity of all utilized batches). Constraint (4) requires that the total size of the jobs processed in
a batch should not exceed the volume of the corresponding machine. Constraint (5) ensures that
each job is assigned to one and only one batch. Constraint (6) guarantees that each batch must be
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associated with exactly one family (since the number of batches on each machine is unknown, h is
enumerated from 1 to n for each machine k, and Bkh will be empty as h becomes sufficiently large).
Constraint (7) indicates that job i can be assigned to Bkh only if it complies with the family of the batch.
Equation (8) is used to evaluate the family index of each batch, i.e., fkh. Constraints (9) and (10) force
zkh to take 1 if the family type of Bkh is different from that of Bk(h−1). Equation (11) calculates the
finishing time of the first batch on each machine (Fk1), and then Equation (12) calculates the finishing
time of each subsequent batch (Fkh) by adding up the batch processing times and the setup times.
Equation (13) defines the completion time (Ci) of job i, which is equal to Fkh if job i has been allocated
to Bkh. Equations (14) and (15) define the tardiness (Ti) of job i. Equation (16) forces ukh to take 1 if any
job has been allocated to Bkh. Constraint (17) requires that all empty batches should be placed after the
non-empty batches.

2.3. Illustrative Example

An example instance of the scheduling problem is provided here for easier understanding.
We have n = 12, wi = 1 (i = 1, . . . , 12); l = 4, p1 = 5, p2 = 8, p3 = 10, p4 = 13; m = 3, V1 = 50,
V2 = 80, V3 = 100; s = 3; δk = Vk (k = 1, 2, 3). The other data regarding vi, di and ϕ(i) are displayed
as Table 1.

Table 1. Input data of the example instance.

Job No. (i) Size (vi) Due Date (di) Family (ϕ(i))

1 10 5 1
2 15 10 2
3 19 6 3
4 22 8 4
5 27 14 1
6 30 9 2
7 38 16 3
8 43 19 4
9 49 11 1
10 52 15 2
11 55 22 3
12 60 20 4

Using CPLEX to solve the model with different weighted sums of the three objectives,
we could obtain a set of Pareto non-dominated solutions. Let the aggregated objective function be
g = α1 · TWT + α2 · TSC + α3 · TCU, with α1 + α2 + α3 = 1. Three schedules, for example, have been
obtained under the settings (α1, α2, α3) = (0.8, 0.1, 0.1), (0.1, 0.8, 0.1), (0.1, 0.1, 0.8), respectively.
They are shown as Gantt charts in Figure 1. It complies with our intuition that the emphasized
objective will get more bias in the optimization process. The minimum value of TWT (31), TSC (80)
and TCU (480) is achieved respectively when each of the objectives is emphasized by the weight of 0.8.

This small instance is just used as an example to clarify the problem definition. It should
be noted that the weighted sum method cannot generate all Pareto optimal solutions, and thus
a systematic multi-objective optimization algorithm is required for solving practical-sized instances of
the scheduling problem.
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Figure 1. Schedules obtained by CPLEX with weighted sum method.

3. The Proposed MOGA-TIG Algorithm

In this section, a multi-objective genetic algorithm with tabu-enhanced iterated greedy local search
(MOGA-TIG) is presented to solve the studied scheduling problem. In the following subsections,
we will introduce the crucial components in our algorithm that have been designed to suit the features
of this specific problem.

3.1. Encoding and Decoding of Solutions

We use a permutation sequence of n jobs and m− 1 zeros to represent a possible solution to the
problem. The zeros are interpreted as separators, and each sub-sequence indicates the preferential
order of batching and processing the relevant jobs on the corresponding machine. To transform such
a sequence into a feasible schedule, we devise the following heuristic procedure for quick decoding
of solutions.

Step 1: Let k = 1. Use Jk to denote the sub-sequence of jobs related to machine k.
Step 2: Let i = 1. Use Jk[i] to denote the i-th job in Jk.
Step 3: Schedule job Jk[i], the family index and the size of which are respectively denoted as ϕk[i] and

vk[i], by the following steps:

(3.1) If vk[i] > Vk, return “infeasible” and terminate the procedure.
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(3.2) Examine all the existing batches on machine k and try to identify the first batch Bkh
which shares the same family with job Jk[i] and satisfies ṽkh + vk[i] ≤ Vk, where ṽkh
indicates the current total size of batch Bkh.

(3.3) If such a qualified batch does exist, insert job Jk[i] into this batch and accordingly update
the total size ṽkh of this batch.

(3.4) If there exists no batch satisfying the above conditions, create a new batch of family
ϕk[i] on machine k after all the existing batches. Insert job Jk[i] into the new batch and
set the value of ṽkh accordingly for this batch.

Step 4: If not all jobs in Jk have been scheduled, let i← i + 1 and repeat Step 3. Otherwise, proceed to
the next step.

Step 5: Let k← k + 1. If k ≤ m, go back to Step 2, otherwise exit the procedure.

To illustrate the decoding procedure, we continue to use the example instance described in
Section 2.3. The schedule decoded from the given solution (1, 8, 9, 5, 0, 3, 10, 2, 11, 0, 6, 12, 7, 4) is
shown in the form of a Gantt chart in Figure 2. The first sub-sequence (1, 8, 9, 5) represents the jobs to
be processed on machine 1, the second sub-sequence (3, 10, 2, 11) represents the jobs to be processed
on machine 2, and the third sub-sequence (6, 12, 7, 4) represents the jobs to be processed on machine 3.
When scheduling each machine, the jobs are scanned in the order specified by the corresponding
sub-sequence and each job is always inserted into the earliest possible batch (in order to be started as
early as possible).

1, 5 9

7

0               5         8                                           21       24             29 

0                                10      13                         21  

Machine 1

Machine 2 3, 11

0                          8        11                                          24      27                                37

Machine 3 6

8

4, 12

2, 10

Figure 2. The feasible schedule decoded from a given solution.

3.2. Generation of Initial Solutions

Utilizing problem-specific domain knowledge, we have designed a heuristic procedure for
generating a group of initial feasible solutions. The procedure consists of three critical steps,
namely, job prioritization (determining the order of considering unscheduled jobs), machine selection
(deciding which machine to use for the considered job), and batching (constructing a largest possible
batch on the selected machine).

Step 1: Sort all jobs 1, . . . , n in non-decreasing order of their due dates (di). The jobs with identical
due dates are sorted in decreasing order of their weights (wi). The sorted job sequence is
denoted as J.

Step 2: Select the first job in J, denoted as job J[1]. Determine the subset of machines which can be
used to process J[1] (i.e., with a capacity no smaller than the size of J[1]), denoted asMJ[1].

Step 3: For each machine k inMJ[1], independently perform a simulation of the following tasks:

(3.1) Create a batch with the family of J[1] and place it after all the existing batches on
machine k. Insert J[1] into the batch.

(3.2) If there is surplus capacity in the batch, scan the subsequent jobs in J sequentially and
add qualified jobs J[i] to the batch until no more job in the family can be fitted in.
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(3.3) Evaluate the incremental costs related to this new batch: the total weighted tardiness of
the jobs in the batch (g1(k)), the setup cost incurred before starting the batch (g2(k)),
and the idle capacity of the machine in the course of processing this batch (g3(k)).

Step 4: Define a weighted criterion based on the normalized values of g1, g2 and g3 as
g(k) = α1 ḡ1(k) + α2 ḡ2(k) + α3 ḡ3(k), where α1, α2 and α3 are random numbers in (0, 1)
satisfying α1 + α2 + α3 = 1.

Step 5: Select fromMJ[1] the machine associated with the minimum value of g(k), and denote the
machine as k∗.

Step 6: Construct a batch on machine k∗ after existing batches. Assign job J[1] and subsequent jobs
J[i] with the same family to the batch (subject to capacity limit Vk∗ ) in a sequential way and as
many as possible.

Step 7: Delete from the list J the jobs that have just been assigned.
Step 8: If J 6= ∅, go back to Step 2. Otherwise, terminate the procedure.

The above procedure can produce a group of different initial solutions because of the inbuilt
randomization mechanism in Step 4. To generate more diverse solutions, we exert perturbations on
the original ranking of jobs by randomly exchanging the positions of n/4 pairs of jobs in J (Step 1)
before continuing to Step 2. In the initialization stage, 50% of the required solutions are produced after
performing such a random shuffling of the due date based job sequence.

The last issue is to transform a feasible schedule produced by the above initialization procedure
to an encoded solution in order to be used by the optimization algorithm. We simply have to sort the
jobs on each machine in increasing order of their starting times (jobs with smaller due dates or larger
weights are prioritized in case of identical starting times) and use m− 1 zeros as linkages in between
to construct the encoded solution for any feasible schedule.

3.3. Pareto-Based Sorting of Solutions

In the multi-objective optimization setting, Pareto dominance is the major criterion to distinguish
the quality of different solutions. Therefore, sorting a set of solutions X in the Pareto sense means
dividing the set into P subsets X1,X2, . . . ,XP such that: (1) Any solution x ∈ Xp (2 ≤ p ≤ P) is
dominated by at least one solution x′ ∈ Xp−1; and (2) any two solutions from the same subset are
not dominated by each other. The sorting algorithm is essentially equivalent to a topological sort
procedure and has been detailed in [28].

It should be noted that, in practice, the number of solutions in each of these Pareto subsets can be
considerably large, which means there often exist a number of solutions without mutual dominance
relations. Hence, a more critical issue is to decide how the solutions within a non-dominated subset
should be sorted and prioritized. The general idea is to suppress those solutions which are crowding
around other solutions in the objective space, or equivalently, to give priority to the solutions which
are sparsely located in the objective space. The motivation is to ensure that each solution maintained is
sufficiently representative and thus the whole group of solutions can provide a wide variety of options
for the decision makers. For the purpose of recognizing the degrees of crowdedness, a crowding
distance measure must be defined. The following procedure is designed to evaluate the crowding
distance value for each solution in a set X .

Step 1: Calculate the distance between any two solutions x1 and x2 ∈ X according

to D(x1, x2) =
√

∑Z
z=1[d̄z(x1, x2)]2, where d̄z(x1, x2) refers to the normalized

difference between the two solutions with respect to the z-th dimension, i.e.,
d̄z(x1, x2) = ( fz(x1)− fz(x2))

/
( f max

z − f min
z ), with f max

z and f min
z respectively denoting

the maximal and minimal value of the z-th objective appearing in X . Z represents the number
of objectives (Z = 3 for our problem).
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Step 2: For each solution xi ∈ X , identify the β solutions that are located most closely to xi in the
objective space, by the following steps:

(2.1) Let Di(1) = minξ

{
D(xi, xξ) : xξ ∈ X\{xi}

}
, ξ(1) = arg minξ

{
D(xi, xξ) : xξ ∈ X\{xi}

}
.

(2.2) For b = 2, . . . , β, let Di(b) = minξ

{
D(xi, xξ) : xξ ∈ X\{{xi} ∪ {xξ(1), . . . , xξ(b−1)}}

}
,

ξ(b) = arg minξ

{
D(xi, xξ) : xξ ∈ X\{{xi} ∪ {xξ(1), . . . , xξ(b−1)}}

}
.

Step 3: For each solution xi ∈ X , evaluate its crowding distance value according to εi =
1
β ∑

β
b=1 Di(b).

Based on the discussions above, when ranking the solutions within a non-dominated set, we
should sort them in a decreasing order of the εi value. The solutions in the back rank may have to be
discarded during the evolutionary optimization progress due to limited archive size. In the process of
evaluating εi, β is an input parameter that should be properly set to balance accuracy with efficiency.
It is recommended to set β = 5 for the proposed algorithm.

3.4. Maintenance of Elite Solutions

The strategy of preserving the high-quality solutions that have been visited by the search process
is known as “elitism” in the evolutionary computation field. Elitism is a critical function to guarantee
theoretical convergence of an evolutionary algorithm. In our algorithm, there is such an elitism
mechanism which helps to record the best-so-far solutions and thereby accelerate the convergence rate.
The elitism strategy designed for the MOGA-TIG works in the following way. An independent archive
A is used to store the high-quality non-dominated solutions that are found during the optimization
process. The solutions stored in A will be mixed with each generation of individuals so that they
will have chance to take part in the evolutionary operations. In addition, an enhanced local search
algorithm (to be introduced in Section 3.6) will be implemented to improve a certain part of solutions
in A in each generation.

To control the computational burden, a hard limit is set for the maximal number of solutions that
can be saved in A, expressed as a%× PS (PS represents the population size). The procedure used to
update A with a new solution set X = {x1, . . . , xN} is detailed as follows.

Step 1: Set i = 1.
Step 2: For each solution x̂ ∈ A, test whether xi is dominated by x̂.
Step 3: If xi is found to be dominated by any of the solutions in A, go to Step 6.
Step 4: For each solution x̂ ∈ A, if xi dominates x̂, remove x̂ from A.
Step 5: Let A ← A∪ {xi}.
Step 6: Let i← i + 1. If i ≤ N go back to Step 2, otherwise proceed to the next step.
Step 7: If |A| > dPS× a/100e, sort all solutions in A in a decreasing order of their crowding distance

values (ε). Keep the first dPS× a/100e solutions and delete the rest of solutions.

3.5. Genetic Operators

(1) Selection. In the proposed algorithm, selection of individuals from the current population
is required for conducting crossover and for constructing the new-generation population.
The standard roulette-wheel selection method is adopted, and the crucial issue is to assign
the probability of each solution being selected. We first divide the considered solution set X into
a series of Pareto ranks X1, . . . ,XP (c.f. Section 3.3), and then assign the selection probabilities
based on two simple principles: the solutions in Xp1 should have larger probability of being
selected than the solutions in Xp2 if p1 < p2, and the solutions within the same non-dominated
subset Xp should be equally treated in the selection stage. We therefore assign the probabilities
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in the following way (linearly decreasing style), i.e., each solution in Xp (p = 1, . . . , P) will be
selected with probability

ρp =
P− p + 1

∑P
p=1(P− p + 1)Np

, (19)

where Np denotes the number of solutions in Xp.
(2) Crossover. The crossover operation is performed with probability pc (a.k.a. the crossover

probability) for two randomly selected individuals from the current population. According to the
encoding policy (c.f. Section 3.1), the crossover operator designed for the MOGA-TIG consists of
three sequential steps, i.e., removal of zeros from the encoded solutions, LOX-based crossover on
random positions of the parent solutions, and reinsertion of zeros to recover the correct encoded
form of solutions. For illustration purpose, an example is given in Figure 3. Firstly, the zeros
(representing delimiters) are all removed from the parent solutions P1 and P2. Subsequently, two
random positions for crossover are determined, and the LOX (linear order crossover) operator [29]
is applied to perform crossover of the two intermediate solutions (the segments between the two
identified positions are exchanged while the other elements are reorganized in a linear way).
Finally, the zeros are inserted back to their original positions and thereby the two offspring
individuals Q1 and Q2 are produced (note that the positions of zeros in the two solutions are also
swapped, i.e., the positions of zeros in Q1 are identical with those in P2 and the positions of zeros
in Q2 are the same as those in P1). In this way, the characteristics of parent solutions are partially
inherited by the offspring solutions.

2 6 4 | 7 3 5 8 | 9 1

4 5 2 | 1 8 7 6 | 9 3

Delete 1,8,7,6

Delete 7,3,5,8

2 4 3 | � � � � | 5 9

4 2 1 | � � � � | 6 9

Insert 1,8,7,6

Insert 7,3,5,8

2 4 3 | 1 8 7 6 | 5 9

4 2 1 | 7 3 5 8 | 6 9

P1:  2 6 0 4 7 3 0 5 8 9 1

P2:  4 5 2 1 0 8 7 6 0 9 3
Remove zeros

Q1:  2 4 3 1 0 8 7 6 0 5 9

Q2:  4 2 0 1 7 3 0 5 8 6 9

Restore zeros

Random crossover positions

LOX

Figure 3. Illustration of the crossover operator in the MOGA-TIG.

(3) Mutation. The mutation operator designed for the MOGA-TIG is based on reinsertion of γ

consecutive jobs from the original sequence. This new operator is called γ-insertion for short.
The commonly used operators for mutation (e.g., swap of two elements, reinsertion of a single
element) only lead to small variations of the current solution, which may not be sufficient for
the implementation of an extensive search in large-scale solution space. The γ-insertion operator
is designed to overcome the limitation of traditional mutation operators. It extracts a series of
γ jobs (excluding zeros) from a certain location of the original sequence and reinsert them as a
whole into another location of the sequence, respecting the relative order of these jobs. The length
of a reinserted segment (i.e., γ) is randomly selected from {1, 2, . . . , γmax}, where γmax is an
input parameter for controlling the mutation level. For illustration purpose, an example is given
in Figure 4. Firstly, position 1 for job removal is randomly identified (π1 = 6 in this example)
and, meanwhile, the length γ is randomly selected (γ = 3 in this example). Note that zeros are
not counted into the length of extracted segments. Subsequently, position 2 for job insertion is
randomly identified subject to the constraint that the selected position does not overlap with the
segment to be extracted (π2 = 3 in this example). Finally, the segment (excluding zeros) is taken
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out and reinserted to the location immediately after position 2, and a new solution is thereby
produced.

2 6 0 4 7 3 0 5 8 9 1

Position 1Position 2  3

 -insertion

2 6 0 3 5 8 4 7 0 9 1

Figure 4. Illustration of the mutation operator in the MOGA-TIG.

(4) Feasibility check. It should be noticed that crossover and mutation can produce infeasible
solutions because of large-sized jobs being assigned to low-capacity machines. After new solutions
are produced, we check each sub-sequence (related with each machine), and if any job exceeding
the corresponding machine’s capacity is found, it is reassigned to another capable machine and
reinserted to a random position in that sub-sequence. If more than one machines are applicable,
the machine with minimum capacity will be chosen (assuming that machines are numbered in
increasing order of their volumes, then choose machine k̂ for job i such that k̂ = min{k : Vk ≥ vi}).

3.6. The Embedded Local Search Function

Previous studies in the evolutionary computation field have suggested that an embedded local
search component is usually crucial for achieving robust optimization performance. The reasons are
twofold. On the one hand, the working mechanism of local search is believed to be complementary to
that of population-based search (fine-granularity vs. coarse-granularity search). On the other hand,
local search algorithms can exploit some structural properties of the specific problem, which is often
difficult to be utilized by the evolutionary algorithm at the population level.

In this paper, we propose a tabu-enhanced iterated greedy (IG) algorithm as the local search
module to be embedded into the multi-objective genetic algorithm framework. We start with the
standard IG and then discuss how we have extended it to effectively cope with the multi-objective
optimization context.

3.6.1. The Basic IG algorithm

The standard iterated greedy (IG) algorithm [30] was intended for single-objective combinatorial
optimization problems. The IG algorithm consists of two iterative phases, i.e., destruction and
construction. In the destruction phase, some solution elements are removed from a complete solution,
and in the subsequent construction phase, a greedy heuristic is applied to restore the removed elements
so that a new candidate solution is constructed. The two phases are implemented iteratively until
a predefined termination condition is met.

Step 1: Produce an initial solution x0.
Step 2: Conduct (optional) local search for improving the initial solution. The improved solution is

denoted as x.
Step 3: [Destruction] Randomly remove d elements from x. The removed elements are stored in xr in

the order they are picked out. The resulting partial solution is denoted as xp.
Step 4: [Construction] Insert the elements of xr back into xp in a sequential manner. For each

element, first examine all the possible locations for insertion and then choose the best location.
The newly constructed solution is denoted as xc.
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Step 5: Conduct (optional) local search for improving xc. The improved solution is denoted as x′c.
Step 6: Update x∗, which records the best solution found so far, i.e., let x∗ = x′c only if x′c turns out to

be better than the original x∗.
Step 7: Update the incumbent solution x using an acceptance criterion which decides whether to

replace x with x′c.
Step 8: If the termination criterion is not satisfied, go back to Step 3. Otherwise, output the best-so-far

solution x∗.

3.6.2. The Proposed Tabu-Enhanced Multi-Objective IG Algorithm

Since the basic IG algorithm can only handle single-objective optimization problems, the key issue
of applying IG principles to our problem lies in effective maintenance of non-dominated solutions
during the search process. Another limitation of the standard IG is the lack of a mechanism to prevent
repeated search (it may so happen that the same jobs are being extracted repetitively by the destruction
operator in consecutive iterations). Therefore, a tabu mechanism is designed to prohibit the same jobs
being removed again in a certain number of subsequent iterations.

The proposed tabu-enhanced IG local search algorithm takes a set of solutions (Xini) as input, and
conducts an in-depth exploitation based on these initial solutions with the aim of finding solutions
that dominate the original ones. The complete local search algorithm is described as pseudo code in
Algorithm 1 and is hereinafter abbreviated as TIG.

Algorithm 1 Tabu-enhanced IG local search algorithm

Input: A solution set denoted as Xini together with parameters d, Imax and Tmax
1: Let Xcur = Xini;
2: for each xi ∈ Xcur do
3: Let TL[0]

i = ∅;
4: Record σ(xi) = i;
5: end for
6: for I = 1 to Imax do
7: Let Xnew = ∅;
8: for each xi ∈ Xcur do
9: Let TL[I]

i = TL[I−1]
σ(xi)

;
10: Randomly select and remove d unrepeated jobs from xi (subject to the tabu list TL[I]

i ).
Denote the resulting partial solution as xp

i and the sequence of removed jobs as xr
i .

11: TL[I]
i ← UpdateTL(TL[I]

i , xr
i , Tmax); // Update the tabu list using Procedure 1

12: Let Π0 = {xp
i };

13: for q = 1 to d do
14: Let Πq = ∅;
15: for each x̃j ∈ Πq−1 do
16: Try inserting the q-th job from xr

i into the partial solution x̃j at every possible location.
The obtained set of non-dominated partial solutions is denoted as Πq,j.

17: Πq ← P(Πq ∪Πq,j);
18: end for
19: end for
20: for each xk ∈ Πd do
21: Record σ(xk) = i;
22: end for
23: Xnew ← P(Xnew ∪Πd);
24: end for
25: Let Xcur = Xnew;
26: end for
Output: The non-dominated solution set Xcur

We provide the following remarks to further explain Algorithm 1.

(1) The proposed TIG differs from the basic IG mainly because the construction phase of TIG would
produce more than one solutions at a time (Lines 13–19) based on the Pareto optimality criterion.
As a result, the search pattern of the TIG is comparable to that of a breadth-first search. In each
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iteration I = 1, . . . , Imax, the nodes of level I are completely exploited and the nodes of the next
level are generated. The maximum depth of the search trees is equal to Imax (i.e., the number
of iterations).

(2) Under the tree search framework, implementation of the tabu mechanism requires the use of
a backtracking technique. In the TIG, we introduce a new attribute σ(·) for each solution to
record the index of the tabu list which has been used for the destruction of its parent solution
(thus leading to the current solution itself). In Lines 20–22, the σ attribute of the new solutions
produced based on the destruction of xi are all pointed at i. In Line 9, before solution xi in
the present iteration I is randomly destructed, we build the corresponding tabu list TL[I]

i by
inheriting the tabu list that has been updated after the destruction of its parent solution in the
previous iteration I − 1. Figure 5 illustrates the inheriting of tabu lists between adjacent levels in
the search tree, where TL with a bar indicates updated tabu lists (c.f. Line 11).

(3) The tabu mechanism in the TIG relies on a short-term memory TL, which records the recently
removed jobs and prevents these jobs from being removed again in a certain number of offspring
generations. The number of subsequent generations in which removal of the same jobs are
prohibited is defined as the tabu tenure. We use Tmax to represent this parameter. In Line 11,
the tabu list gets updated after some jobs (different from those in the list) have been removed
from the current solution. Procedure 1 provides details of this step. The jobs which have just been
removed are added to the TL, and meanwhile the “age” of the existing jobs in the TL is increased
by one, and finally if any jobs have grown to the upper limit age Tmax they will be eliminated
from the TL (and can be freely considered for removal again). According to the definition of Tmax,
we must ensure (Tmax + 1) · d ≤ n for the algorithm to work properly.

(4) The process of construction after removal of d jobs from solution xi starts from Line 12. The
series of sets Πq are used to store the non-dominated partial solutions obtained after q jobs
have been reinserted (q = 0, 1, . . . , d). In the process of reinserting the q-th job, all the partial
solutions in Πq−1 should be tried one after another for possible insertions (Lines 15–18) and
the resulting non-dominated partial solutions are assigned to Πq. Obviously, Πd consists of the
non-dominated complete solutions constructed based on the previously destructed xi and thus it
should be incorporated into the next generation of solutions (Line 23). The operator P(·) returns
all the Pareto non-dominated (partial) solutions in a set.

Procedure 1 UpdateTL (TL, xr, Tmax)

1: for each j ∈ xr do
2: TL← TL ∪ {j};
3: Set a(j) = −1; // the age of j in TL
4: end for
5: for each j ∈ TL do
6: a(j)← a(j) + 1;
7: if a(j) = Tmax then
8: TL← TL\{j};
9: end if

10: end for
Output: the updated tabu list TL
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Figure 5. Illustration of the inheriting mechanism for tabu list initialization.

3.7. Overall Structure of the MOGA-TIG Algorithm

We now provide a comprehensive summary of the proposed MOGA-TIG algorithm. Meanwhile,
a flowchart is given in Figure 6 to facilitate the perception of the algorithm framework.

Initialization

Crossover

Mutation

Pareto sorting

Selection

Local search Update elite archive



iO

iO

iO

iO

Top 

s%

i

Elite archive 
(   )



1iG 

1G

End

Y

Termination 
condition met?

N i i  1

Figure 6. Flowchart of the proposed MOGA-TIG algorithm.

Step 1: [Initialization] Apply the procedure described in Section 3.2 to generate a total of PS initial
solutions, which are then filled into the initial population G1. Initialize the generation index
i = 0, and the elite archive A = ∅.
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Step 2: [Crossover] Conduct the crossover operation for PS times. For each time, two individuals
are randomly selected from the current population Gi and then the crossover operator as
described in Section 3.5 (part 2) is executed with probability pc. The obtained offspring
individuals are denoted by the set Oi.

Step 3: [Mutation] Execute the mutation operator as described in Section 3.5 (part 3) for each
individual in Oi with probability pm. The modified solution set is denoted by O′i .

Step 4: [Pareto sorting] Sort all the solutions in O′i using the procedure presented in Section 3.3.
Step 5: [Local search] Conduct a local search for each solution that ranks in the top s% of all solutions

in O′i by using the TIG algorithm introduced in Section 3.6. The solution set output by the
local search is denoted by Li.

Step 6: [Elitism] Update the elite archive A with Li using the procedure detailed in Section 3.4.
Step 7: [Selection] Using the selection method described in Section 3.5 (part 1), randomly select

(PS− |A|) solutions from O′i . Denote the subset of selected solutions as O′′i .
Step 8: [New generation] Let Gi+1 = O′′i ∪A.
Step 9: [Loop/Termination] Let i ← i + 1. If i ≤ GN, return to Step 2. Otherwise, terminate the

algorithm with P(Gi) (i.e., non-dominated solutions in Gi) as output solutions.

4. Computational Results

4.1. Experimental Setup

The instances for testing the proposed algorithm have been generated according to the specifications
given below.

• The number of jobs and the number of job families are to be considered in a coordinated
manner at eight different levels, i.e., (n, l) ∈ {(50, 3), (50, 6), (100, 6), (100, 10), (150, 9), (150, 12),
(200, 10), (200, 15)}.

• The family index ϕ(i) for each job i is randomly selected from {1, 2, . . . , l}with uniform probability
distribution. The size vi of job i is generated from the discrete uniform distribution U [5, 50].
The due date di of job i is set as ζi · n/m, where ζi follows the uniform distribution U [3, 12].
The weight wi of job i is generated from the discrete uniform distribution U [1, 10].

• The processing time pj required for any job in family j is produced from the discrete uniform
distribution U [20, 50].

• The number of machines m is to be considered at three levels, i.e., m ∈ {10, 15, 20}.
• The volume of machine k is given as Vk = 40 + 8k (k = 1, . . . , m). The setup cost related with

machine k is given as δk = ζk ·Vk, where ζk follows the uniform distribution U [0.8, 1.2]. The setup
time s required for a machine to switch between different families is drawn from the discrete
uniform distribution U [3, 10].

We have generated a total of 120 test instances based on the above standards (there are 8 levels for
(n, l) and 3 levels for m, and 5 instances are generated for each combination (n, l, m)).

Following the standards for multi-objective optimization, we adopt four performance indicators
for assessing the quality of obtained solutions. Given non-dominated solution sets X and Y , which are
achieved by different optimization algorithms respectively, the relevant performance indicators are
formally defined as follows.

• The first indicator reflects the number of solutions in the non-dominated solution set, which is also
known as the overall non-dominated vector generation (ONVG) metric [31]. Formally, we define
ONVG(X ) = |X |. Larger ONVG suggests a wider range of choices for the decision makers and
therefore represents a more desirable situation.

• The second indicator reflects the mutual dominance relations between the two sets of solutions,
which is called the coverage metric (CM) [32]. Formally, CM is defined as
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C(X ,Y) = |{y ∈ Y : ∃x ∈ X s.t. x � y}|
|Y| , (20)

where x � y denotes the case where x either dominates or turns out identical to y. Hence, C(X ,Y)
characterizes the proportion of solutions in Y that are dominated by (or equal to) some solutions
in X . Note that C(X ,Y) + C(Y ,X ) is usually less than 1 because there can exist a portion of
solutions in X and Y which are not mutually dominated.

• The third indicator reflects the distance between the set of obtained solutions and a high-quality
reference set (estimated Pareto frontier of the problem) in the objective space. Specifically, the distance
metrics Dav and Dmax [33] are defined as:

Dav(X , R) =
1
|R| ∑

x′∈R
min
x∈X
{d(x, x′)}, (21)

Dmax(X , R) = max
x′∈R

{
min
x∈X
{d(x, x′)}

}
, (22)

where R denotes the reference set, which is obtained by selecting all the non-dominated
solutions found by the compared algorithms so as to approximate the Pareto frontier.
Meanwhile, d(x, x′) = maxZ

z=1{( fz(x)− fz(x′))/∆z} where ∆z = f max
z − f min

z refers to the value
range of the z-th objective function. For each solution in R, there is an associated solution in X
with the minimum distance to that solution. Clearly, Dav captures the average of such distances,
while Dmax records the maximum of such distances. Therefore, small values of Dav and Dmax

are preferable.
• The fourth indicator measures the evenness of solution distribution. It is known as Tan’s Spacing

(TS) metric [34] and is defined as

TS(X ) =
1
D̄

√√√√ 1
|X |

|X |

∑
i=1

(Di − D̄)2, (23)

where D̄ = 1
|X | ∑

|X |
i=1 Di and Di stands for the Euclidean distance between xi ∈ X and its nearest

neighboring solution in X (in the objective space). Since decision makers always prefer that the
candidate solutions should be evenly distributed, smaller values of TS indicate higher quality of
the obtained solutions.

4.2. Experiment on Parameter Influence

To study the influence of the major parameters involved in the proposed algorithm, we adopt
a DOE (design of experiments) approach based on the Taguchi design method [35] which significantly
reduces the number of scenarios to be tested. In the DOE stage, we focus on the distance metric Dav as
the exclusive indicator of solution quality because Dav reflects the optimality of solutions in the most
accurate way. The reference set R is constructed by a combination of all the non-dominated solutions
found by the compared algorithms after 20 independent runs with 1000 generations allowed for each
run. The proposed MOGA-TIG algorithm is executed 20 times based on each set of parameter values
required to be tested, and then the average value of Dav is used as the input of DOE analysis.

A randomly generated instance which involves 150 jobs (9 families) and 15 machines is used for
the parameter experiments. The maximum execution time of the algorithm is set as 450 s per run.

(1) Central algorithm parameters

In the first experiment, we study the influence of the key parameters related to the MOGA
(PS, pc, pm, a%, γmax) and temporarily neglect the local search module (by forcing the TIG to output
the same solutions as what it receives as input). Each parameter has been tested at 4 different levels
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(PS ∈ {40, 50, 60, 70}, pc ∈ {0.6, 0.7, 0.8, 0.9}, pm ∈ {0.1, 0.2, 0.3, 0.4}, a% ∈ {10%, 20%, 30%, 40%},
γmax ∈ {4, 6, 8, 10}). The Taguchi design with an orthogonal array of L16(45) is adopted, which suggests
that 16 scenarios need to be tested by experiments. The resulting main effects plot is shown in Figure 7.

According to the results, the following comments can be made. It is observed that PS has
a remarkable impact on the solution quality. When the population does not reach a sufficient size,
the diversity of solutions is limited and the genetic operators including crossover and selection cannot
function properly. On the other hand, a too large PS can also be unfavorable because in this case the
number of generations evolved will be reduced (recalling that the computational time available is fixed)
and consequently the solutions tend to be underdeveloped. The two parameters pm and γmax are both
related with the intensity of applying the mutation operator in the evolutionary process. The general
trend is clear, i.e., the solution quality will improve as the frequency or the depth of mutation is
increased (in the reasonable range). This validates the effectiveness of the proposed mutation strategy
based on multiple insertions. Meanwhile, it is worth pointing out that the mutation rate pm cannot be
set too large, otherwise the inheritance of solution characteristics between successive generations will
be adversely affected. The parameter a% is used to control the maximum size of the elite archive. It is
revealed that the preservation and reuse of elite solutions during the evolutionary process has clearly
helped to accelerate the convergence and find higher quality solutions. However, the elite archive
size should not exceed a certain limit because otherwise more diverse solutions will be crowded out,
hindering the inherent optimization mechanisms of genetic algorithm. Finally, the crossover rate pc

has not produced a high level of influence on the solution quality as long as it has been assigned
a sufficiently large value. Crossover is the most essential form of genetic operations, and thus a high
crossover rate ensures proper function of the evolutionary mechanism.
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Figure 7. Influence of the central MOGA parameters on solution quality (Dav).

(2) Local search parameters

In the second experiment, we study the influence of the local search related parameters
(s%, d, Tmax, Imax) on the final solution quality. Each parameter has been tested at 4 different levels
(s% ∈ {10%, 20%, 30%, 40%}, d ∈ {2, 4, 6, 8}, Tmax ∈ {2, 3, 4, 5}, Imax ∈ {3, 5, 7, 9}). The Taguchi design
with an orthogonal array of L16(44) is adopted, which suggests that 16 scenarios need to be tested
by experiments. The other parameters of the MOGA-TIG are all fixed at their recommended values
which will be summarized before the end of this subsection. The resulting main effects plot is shown
in Figure 8.
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Figure 8. Influence of the local search parameters on solution quality (Dav).

Based on the results, the following remarks can be made. It is clearly seen that d produces
a significant impact on the solution quality. Generally, a larger value is preferred for d because in
such cases the solutions have greater opportunity to be improved (after an in-depth reconstruction) by
the TIG algorithm. However, local search may lead to loss of diversity besides its notable ability of
enhancing certain individual solutions. That’s probably why we observe a slight retracement when d is
set to 8 (the anti-diversification effect has become dominant). The influence of the maximum iteration
number Imax is also noteworthy. Although increasing Imax can bring about a more intensive local search,
the resulting increase in computational burden should not be neglected. Because Imax actually reflects
the depth of the search tree, the complexity of the search process grows in an exponential manner with
the increase of Imax. Therefore, setting Imax too large will inevitably occupy excessive computational
time that could have been utilized by the evolutionary process and consequently deteriorate the
solution quality. Meanwhile, the noticeable impact of the tabu tenure Tmax on the solution quality
shows that the proposed tabu mechanism does help to avoid repeated search and contribute to effective
exploitation of the neighborhood. Finally, the percentage of solutions participating local search (s%)
should represent an appropriate balance between exploration and exploitation. Considering the
complexity and the effectiveness of the TIG algorithm, it is not recommended to set the frequency of
calling local search at a level higher than 30%.

To further examine the effect of the local search module, we have conducted control experiments
in which the local search function is completely removed, i.e., by setting s% = 0. The resulting MOGA
and the original MOGA-TIG have been executed for 20 times, respectively, using the recommended
parameter settings (except the difference in s%). We report the average value of Dav obtained from
each scenario in Figure 9, with the error bars indicating standard deviations. It is clear that the local
search component not only helps to achieve higher solution quality in the average sense, but also
improves the robustness of the obtained results (narrowing the standard deviation).

Now, we summarize the recommended parameter settings for the proposed algorithm in Table 2
based on the above results and discussions.
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Table 2. The recommended settings for the algorithm parameters.

Parameter Explanation Recommended Range Selected Value

PS Population size [50, 70] 60
pc Crossover probability [0.7, 0.9] 0.9
pm Mutation probability [0.2, 0.4] 0.3
a% Maximum size of elite archive as a percentage of PS [20%, 30%] 30%

γmax Maximum number of jobs being reinserted in mutation stage [8, 10] 8
s% Percentage of solutions for local search [20%, 30%] 20%
d Number of jobs removed for destruction [6, 8] 6

Tmax Tabu tenure [4, 5] 4
Imax Maximum number of iterations

for local search
[5, 7] 5

4.3. Optimality Test on Small-Sized Instances

To examine the optimization ability of the proposed algorithm, we compare the results from
MOGA-TIG with the solutions obtained by the CPLEX solver based on the weighted sum approach
(the weighting vector is enumerated according to (α1, α2, 1− α1 − α2) with a step size of 0.01, i.e.,
from (0.01, 0.01, 0.98), (0.01, 0.02, 0.97), · · · , to (0.98, 0.01, 0.01)). Since the exact algorithm can only
handle small instances within acceptable time, the group of instances with (n, l, m) = (50, 3, 10)
is utilized for this experiment. The proposed algorithm has been executed for 20 times (150 s
per run) independently on each instance and the performance indicator values have been averaged.
The resulting data are displayed in Table 3.

Table 3. Comparison of MOGA-TIG with CPLEX (using weighted sum approach) on the test instances
with (n, l, m) = (50, 3, 10).

No.
ONVG Dav Dmax TS CM

A1 A2 A1 A2 A1 A2 A1 A2 C(A1, A2) C(A2, A1)

1 14.67 16.00 0.012 0.000 0.022 0.000 1.67 1.46 0.35 1.00
2 15.50 19.00 0.023 0.000 0.039 0.007 1.89 1.62 0.32 0.98
3 15.97 17.00 0.018 0.002 0.034 0.014 1.53 1.67 0.44 0.95
4 16.41 21.00 0.010 0.000 0.041 0.000 1.27 1.61 0.38 1.00
5 15.57 18.00 0.021 0.001 0.045 0.009 1.68 1.53 0.49 0.98

Average 15.62 18.20 0.017 0.001 0.036 0.006 1.61 1.58 0.40 0.98

Note: A1 = MOGA-TIG; A2 = CPLEX.

According to the results, it can be judged that the proposed algorithm has achieved satisfactory
solution quality. On average, the solutions found by the MOGA-TIG is able to match 40% of the
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solutions output by CPLEX (i.e., having equal objective values). Meanwhile, the MOGA-TIG has
maintained relatively low values for the Dav and Dmax indicators (0.017 and 0.036, respectively),
showing that the obtained solutions are situated closely to the CPLEX-based solutions. Although the
number of solutions from the MOGA-TIG is a bit smaller than that of the CPLEX approach, the degree
of solution distribution evenness is comparable. It is noteworthy that the weighted sum approach can
miss some Pareto optimal solutions if the Pareto frontier is concave in certain parts. For this reason,
C(A2, A1) is slightly less than 1 for three instances. Overall, it is evident that the proposed algorithm
has performed well, especially when considering that it consumes much shorter computational time
than the exact approach (which consumes more than two hours for each instance on average).

4.4. Comparison with MOEAs in the Literature

To evaluate the performance of the MOGA-TIG algorithm, we compare it with the well-known and
state-of-the-art multi-objective evolutionary algorithms (MOEAs) in the literature. Considering that
there are three objectives to be optimized in our problem, we adopt the latest MOEAs that are able to
handle problems with “many” objectives (Z ≥ 3). The compared algorithms include the NSGA-III [36],
which is an upgraded version of the famous NSGA-II, and the MOEA/DD [37], which can be regarded
as an enhanced version of the renowned MOEA/D.

To adapt the real-coded NSGA-III and MOEA/DD to our problem, we design a dedicated
procedure for transforming a vector of real values x = {x1, . . . , xn} (0 ≤ xi ≤ 1) to a feasible schedule
for our problem.

Step 1: Sort the n values {x1, . . . , xn} in non-decreasing order, and then record the sequence of their
subscripts as a permutation of 1, . . . , n, which is denoted as J = {J[1], . . . , J[n]}. Let i = 1.

Step 2: Denote the family index and the size of job J[i] as ϕ[i] and v[i], respectively.
Step 3: For k = 1 to m, if Vk > v[i], examine existing batches on machine k and find the earliest

batch Bkh which complies with family ϕ[i] and meets ṽkh + v[i] ≤ Vk, where ṽkh represents
the current total size of batch Bkh. If such a qualified batch is found, stop the scan and
immediately insert job J[i] into this batch (with the relevant ṽ item updated accordingly).

Step 4: If no qualified batch is found, identify the machine k̂ such that k̂ = min{k : Vk ≥ v[i]}.
Place a new batch of family ϕ[i] on machine k̂ immediately after the existing batches, and insert
job J[i] into this new batch (with the relevant ṽ item created).

Step 5: Let i← i + 1. If i ≤ n go back to Step 2, otherwise terminate the procedure.

The proposed algorithm MOGA-TIG together with the two compared algorithms NSGA-III and
MOEA/DD have been implemented under Visual C++ 2015 based on a PC with Intel Core i7-4790
3.60 GHz CPU and 16 GB RAM. To ensure that the subsequent comparisons are fair, the computational
time that is allowed for a single run of each algorithm is confined to a common level: at most 3× n
seconds could be used to solve an instance with n jobs. Specifically, we will allocate

• 150 s for each attempt to solve a 50-job instance;
• 300 s for each attempt to solve a 100-job instance;
• 450 s for each attempt to solve a 150-job instance;
• 600 s for each attempt to solve a 200-job instance.

As soon as the time budget is consumed, the algorithm must stop and output the currently
available non-dominated solutions. Under such a computational setting, the number of generations
(GN) finished by each algorithm is no longer a pre-determined constant but is affected by the relative
efficiency of the algorithm.

The parameters of the two compared algorithms are determined by considering the suggestions
from their developers, and then fine-tuned on the basis of problem-specific preliminary experiments so
that they can achieve the best performance on our problem. The parameter settings for the NSGA-III
and MOEA/DD are listed as follows.
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• The crossover probability: pc = 1.0 (distribution index ηc = 30).
• The mutation probability: pm = 0.05 (distribution index ηm = 20).
• The number of reference points (for NSGA-III) or the number of weight vectors (for MOEA/DD):

(3−1+12
12 ) = 91.

• The population size: N = 92 for NSGA-III (smallest multiple of 4 above 91) and N = 91 for
MOEA/DD.

• The penalty parameter in PBI (penalty-based boundary intersection [38]): θ = 5.0.
• The neighborhood size: T = 20.
• The probability to choose mating partner in the neighborhood: δ = 0.8.

Computational experiments have been conducted based on the specified settings. Each algorithm,
including MOGA-TIG, NSGA-III and MOEA/DD, has been run for 20 independent times on each
test instance. Average values of the performance indicators collected from the 20 runs are reported in
groups of n (the number of jobs) and are shown in Tables S1–S8 (see the Supplementary Materials).
To verify the statistical significance of the resulting data, we have performed paired-sample t-tests on
the obtained indicator values (MOGA-TIG vs. NSGA-III and MOGA-TIG vs. MOEA/DD). The p-values
from the t-tests are shown in Tables 4 and 5.

Table 4. p-values obtained from the t-tests for MOGA-TIG and NSGA-III.

Size (n) ONVG Dav Dmax TS

50 1.22 × 10−1 3.58 × 10−9 2.98 × 10−9 1.60 × 10−8

100 2.46 × 10−3 7.45 × 10−8 1.9 3 × 10−8 1 .9 6 × 10−6

150 1.36 × 10−7 1.36 × 10−8 2.64 × 10−8 7.08 × 10−11

200 2.30 × 10−12 4.93 × 10−7 2.67 × 10−6 6.06 × 10−12

Table 5. p-Values obtained from the t-tests for MOGA-TIG and MOEA/DD.

Size (n) ONVG Dav Dmax TS

50 3.77 × 10−14 1.32 × 10−7 3.06 × 10−7 2.34 × 10−8

100 1.70× 10−13 8.76× 10−6 4.15× 10−6 3.52× 10−9

150 1.04× 10−11 6.37× 10−6 5.05× 10−6 1.04× 10−10

200 1.19 × 10−12 5.98 × 10−8 2.30× 10−8 3.56× 10−5

When presenting the coverage metric (CM) data in Tables S5–S8, we assume that X represents
the solutions found by the MOGA-TIG, Y represents the solutions obtained by the NSGA-III, and Z
represents the solutions output by the MOEA/DD. Meanwhile, Y ∪ Z denotes the combined set of
non-dominated solutions achieved by NSGA-III and MOEA/DD together.

Based on the presented computational results, the following remarks can be made.

• Focusing on the ONVG metric, it is clearly observed that the number of Pareto solutions obtained
by each algorithm grows steadily with the size of the test instances. This is because, as n and
l increases, there will be more opportunities of making trade-offs between the three objectives
by means of batching and sequencing. The number of solutions obtained by the MOGA-TIG
exceeds the number of solutions from both compared algorithms on 81 out of the 120 instances.
By a closer observation, it is found that most of the 81 cases have occurred on large-sized instances
(e.g., covering 25 of the 30 instances with 150 jobs and all of the 30 instances with 200 jobs).
Meanwhile, the NSGA-III is able to find more Pareto solutions than the MOEA/DD for smaller
instances but becomes slightly weaker than the MOEA/DD when faced with larger instances.

• Focusing on the distance metrics Dav and Dmax, it is observed that the proposed MOGA-TIG
has clearly outperformed the compared algorithms in the average sense. In fact, the MOGA-TIG
achieves a smaller Dav than both compared algorithms on 94 out of the 120 instances, and achieves
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a smaller Dmax than both compared algorithms on 96 out of the 120 instances. It is worth noting
that, when calculating Dav and Dmax according to Equations (21) and (22), the reference set
which is used to approximate the true Pareto frontier has been given by the compared algorithms
(NSGA-III and MOEA/DD) based on 1000 iterations per run, which means there has been a slight
bias towards the NSGA-III and MOEA/DD in terms of the distance metrics. The performance of
the proposed algorithm under such a circumstance is therefore quite satisfactory and convincing.

• Focusing on the TS metric, it is found that the MOGA-TIG has achieved the smallest indicator
value on 107 out of the 120 instances. This advantage can be attributed to the in-built sorting
mechanism based on accurately defined crowding distances. In particular, we have adopted a
normalized distance measure which is similar to the definition of Euclidean distance, while the
compared algorithms employ a distance measure which is comparable to the taxicab distance
(`1 norm). The fact that the TS indicator is defined on the basis of Euclidean distances clearly
suggests that our distance measure is more suitable and pertinent for describing the distribution of
solutions in the objective space. Meanwhile, it can be observed that the TS values tend to increase
as the size of instances grows (most apparently for NSGA-III). The degradation is inevitably due
to the exponential expansion of discrete solution spaces which aggravates the difficulty of finding
equally spaced Pareto solutions.

• Focusing on the CM metric, we can see that the average value of C(X ,Y) remains above 0.95 and
the average value of C(X ,Z) remains above 0.90 for all the test instances, which clearly shows
that the great majority of the solutions from NSGA-III (Y) and MOEA/DD (Z) are dominated by
or at most identical (in terms of objective vector) to the solutions found by the MOGA-TIG (X ).
On the other side, the relatively small average values of C(Y ,X ) and C(Z ,X ) (below 0.05 for all
instances) again verify the superior quality of the solutions obtained by the proposed algorithm.
In addition, we have also reported the CM values with respect to the integrated solution set
(Y ∪ Z). In this case, we observe a slight drop in the average value of C(X ,Y ∪ Z) (compared to
C(X ,Y) and C(X ,Z)) and a marginal increase in the average value of C(Y ∪ Z ,X ) (compared
to C(Y ,X ) and C(Z ,X )), which shows that the combination of solutions does lead to noticeable
improvement of quality. Another interesting fact to notice is that the averaged C(X ,Y ∪ Z) tends
to increase with the instance sizes (from 0.89 to 0.93) while the averaged C(Y ∪ Z ,X ) seems to
decrease (from 0.05 to 0.03) with the instance sizes. Such a trend suggests that the proposed
algorithm exhibits a degree of comparative advantage in handling large-scale instances with
limited computational time.

• According to the statistical results (one-tailed p-values) shown in Tables 4 and 5, 31 of the
32 paired samples tested are statistically different if we adopt a significance level of 0.01. The only
insignificant case occurs on the group of 50-job instances when comparing the ONVG values
between MOGA-TIG with NSGA-III. In summary, the overall statistical results have revealed
that the proposed algorithm significantly outperforms the state-of-the-art MOEAs for solving the
complex scheduling problem studied in this paper.

5. Conclusions

In this paper, we focus on modeling and solution of a production scheduling problem with
explicit consideration of pollution-reduction objectives that are critical to the long-term goal of
sustainable manufacturing. Two environmentally-related objective functions have been defined to
capture the pollutant emissions during setup operations as well as the potential pollution caused
by underutilized production equipment. These sustainable objectives are considered alongside with
the conventional scheduling objective (i.e., total weighted tardiness, which reflects the penalty for
delayed delivery of products) under a three-objective optimization framework. We have derived
an exact mixed-integer programming formulation for the problem and verified the model by applying
a commercial solver to small-sized instances based on weighted sum approximations. Due to the
high complexity of the problem, a systematic multi-objective optimization algorithm is required to
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be able to solve practical-sized instances in the Pareto optimality sense. For this purpose, we have
proposed a multi-objective genetic algorithm integrated with tabu-enhanced iterated greedy local
search (abbreviated as MOGA-TIG) specifically for solving the studied scheduling problem.

The proposed MOGA-TIG algorithm features a sequence-based encoding/decoding scheme,
a dedicated initialization procedure utilizing problem-specific information, a set of redesigned
genetic operators to suit the search space of the problem, a number of novel functions to deal with
Pareto optimality, and most importantly, an effective local search strategy for conducting in-depth
exploitations around selected promising solutions in each generation. Using fine-tuned parameter
settings, we have carried out extensive computational experiments with 120 different-sized test
instances. The performance of the MOGA-TIG is compared with that of two state-of-the-art MOEAs
under the same levels of computational time budget. According to the four adopted performance
indicators, our approach is able to outperform the compared algorithms on a dominant number of
instances and in a statistically significant sense.

The results have revealed the remarkable role that production scheduling could play in reducing
the emissions of chemical pollutants from manufacturing processes. Our research has highlighted two
major causes of pollution in the cloth-dyeing industry, i.e., avoidable setup activities and underutilized
production capacity, which are, in fact, commonly observed issues in many other manufacturing
industries (e.g., glass production, wafer fabrication and steel making) as well. Therefore, this work can
shed a light on the definition of environmentally-oriented performance indicators and multi-objective
formulation of sustainable production scheduling models for a variety of real-world manufacturing
systems, with implicit goals of reducing the frequency of setup operations and improving the utilization
rate of machines.

Future research will be focused on two aspects. First, it is interesting to investigate sustainable
aspects in manufacturing from other perspectives such as electricity consumption and carbon footprint
and then characterize these factors into the objective functions or constraints of relevant production
scheduling models. Second, considering the fact that sustainable scheduling problems are often complex
in nature (multi-objective or heavily constrained), it is of great importance to devise computationally
efficient local search algorithms, especially the local improvement strategies that are built on the
structural properties of the integer programming model of the problem.

Supplementary Materials: The following are available online at www.mdpi.com/2071-1050/9/10/1754/s1,
Table S1: Comparison of MOGA-TIG with NSGA-III and MOEA/DD on the test instances with 50 jobs, Table
S2: Comparison of MOGA-TIG with NSGA-III and MOEA/DD on the test instances with 100 jobs, Table
S3: Comparison of MOGA-TIG with NSGA-III and MOEA/DD on the test instances with 150 jobs, Table S4:
Comparison of MOGA-TIG with NSGA-III and MOEA/DD on the test instances with 200 jobs, Table S5: Coverage
metrics for evaluating MOGA-TIG on the test instances with 50 jobs, Table S6: Coverage metrics for evaluating
MOGA-TIG on the test instances with 100 jobs, Table S7: Coverage metrics for evaluating MOGA-TIG on the test
instances with 150 jobs, Table S8: Coverage metrics for evaluating MOGA-TIG on the test instances with 200 jobs.
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