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Abstract: In Italy, urban wastewater disinfection is regulated in the third part of Legislative Decree
n. 152/2006, which states that wastewater treatment plants (WWTPs) must include a disinfection
unit, with a capacity exceeding 2000 Population Equivalent (PE). This treatment shall ensure
microbial quality and health security. The legislation provides the following limits for wastewater:
Escherichia coli (E. coli) concentration below 5000 CFU 100 mL−1 (recommended value), active chlorine
concentration below 0.2 mg L−1 and lack of acute toxicity. The compliance with these conditions
is shown by means of the study of correct disinfectant dosage, which also depends on wastewater
characteristics. An investigation at the regional level (from 2013 to 2016) shows a correlation between
acute toxicity discharge and disinfection treatment through chemical reagents (mainly with the use of
chlorine compounds and peracetic acid). The experimental work concerns two active sludge WWTPs
in northern Italy with small capacity (10,000–12,000 PE). The activities provide the assessment
of microbiological quality and toxicity of WWTPs effluents in relation to the dosage of sodium
hypochlorite and peracetic acid, by means of the use of batch tests. The results show that with
similar disinfectant dosage and comparable initial E. coli concentration, peracetic acid exhibits the
best performance in terms of microbial removal (with removal yields up to 99.99%). Moreover, the
acute toxicity was evident at higher doses and therefore with higher residuals of peracetic acid
(2.68 mg L−1) compared to the free residual chlorine (0.17 mg L−1).
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1. Introduction

Many human pathogens can be transmitted by waters contaminated by wastewater effluents,
which should be disinfected to prevent the spread of pathogenic microorganisms, particularly when
the wastewater is used for watering, drinking or bathing purposes [1].

Wastewater disinfection is applied to provide protection to humans against exposure to
waterborne pathogenic microorganisms. Microbial inactivation is achieved in these processes by
induced biochemical changes within the pathogenic microbial population. The nature of these
biochemical changes is dependent upon the microbial population and the applied disinfectant. All
disinfectants have the ability to involve changes in wastewater composition that many persist after
the disinfection process is terminated, though the nature and extent of these changes will be site-
and disinfectant-specific. One possible outcome of these chemical changes is an alteration of effluent
toxicity [2].

Chlorination is the most widely used method for disinfecting the effluents from wastewater
treatment plants (WWTPs) and from drinking water treatment plants (DWTPs), but can cause the
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formation of mutagenic/carcinogenic and toxic by-products that are potentially harmful to human
and aquatic organisms [3–10].

Recently, peracetic acid (PAA) has also been proposed as a wastewater disinfectant. Peracetic acid
(CH3CO3H) is a strong oxidant which presents several advantages, including: the treatment being
easy to implement (without the need of high investment); the large spectrum of microbial activity
even in the presence of heterogeneous organic matter; absence of residual or toxic and/or mutagenic
by-products; not requiring dechlorination; presenting low dependency on pH; and short contact
time [11]. Major disadvantages associated with PAA disinfection are the increase of organic content
in the effluent due to acetic acid, and thus the potential for microbial regrowth (acetic acid is already
present in PAA mixtures and is also formed after PAA decomposition) [12].

The disinfection efficiency of PAA in wastewater applications has been demonstrated in the
scientific literature [13–16]. The formation of disinfection by-products (DBPs) during PAA disinfection
was studied by Dell’Erba [17].

The European Community’s (EC) environmental regulations aim to reduce the pollution of
surface water caused by municipal wastewater (Council Directive 91/271/EEC 1991 as amended by
the Commission Directive 98/15/EEC of 27 February 1998) [18,19]. This requires the European Union
member states to ensure that discharge of urban wastewater and its effects are monitored [20].

In order to prevent sanitary hazards related to the uses of recipient water bodies, the current
Italian regulations prescribe WWTP effluent emission limits for a wide range of chemical compounds,
toxicity, and bacterial discharge, such as Escherichia coli [21].

In Italy the legislation provides the following limits for wastewater: active chlorine concentration
below 0.2 mg L−1, lack of acute toxicity and E. coli concentration below 5000 CFU 100 mL−1

(recommended value). In order to respect this value, many WWTPs apply a wastewater disinfection
process, because sometimes the E. coli concentration in the effluent is higher than the limit established
by the local authorities.

Disinfection techniques should be analyzed case by case, because each effluent shows different
chemical and physical characteristics, and, sometimes, the reuse of wastewater (i.e., for agricultural
use) is applied [22].

In a different way, depending on the treatment adopted, there are different E. coli removal yields
for each different stage of WWTPs [23].

It is well known that some disinfectant treatments, despite promoting a reduction in pathogenic
organisms and organic contaminants, can also produce toxic and genotoxic compounds, depending on
the precursors present in the wastewater and the concentrations of disinfectant used [24].

To clarify this issue, a series of toxicity tests, using Daphnia magna, Vibrio fischeri and
Pseudokirchneriella subcapitata [25–29], were performed on wastewater effluent samples taken from
two WWTPs.

The toxicity responses were measured in disinfected and undisinfected effluent samples in order
to evaluate the changes in toxicity attributable to disinfection processes.

The determination of toxicity in wastewater was carried out using Daphnia magna. The test is
based on the observation of the number of immobile organisms after 24 h of exposure to the sample.
Immobilization is the effect on the organisms caused by the toxic substances present in the sample.

In addition to the test with Daphnia magna as indicated in D.Lgs 152/2006 and further
modifications, acute toxicity tests were carried out using bioluminescent bacteria (Vibrio fischeri)
and monocellular green algae (Pseudokirchneriella subcapitata).

The test with Vibrio fischeri was based on the observation of luminescence inhibition after 15 min
and 30 min. In the case of Pseudokirchneriella subcapitata the test was based on the observation of
inhibition of algal growth after 72 h.

The study of disinfectant agents suitable for microbial population removal without acute toxicity
is very important, especially in Italy due to the different enforcement (at a local scale) of E. coli limit
values, which, according to national legislation, are recommendations only.
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The aim of the present study was to compare two different disinfectants (sodium hypochlorite
and peracetic acid) in terms of acute toxicity on the water body and microbial inactivation. Moreover,
the aim was to find a dosage range which allows the respect of E. coli limit values, acute toxicity,
disinfectant residual and COD (Chemical Oxygen Demand).

The disinfection tests were applied to the effluent from two active sludge WWTPs in northern
Italy with small capacities (10,000 to 12,000 PE), and two disinfectant agents (sodium hypochlorite and
PAA) were used. These activities provided the assessment of microbiological quality and toxicity of
WWTPs effluents in relation to the dosage of sodium hypochlorite and peracetic acid, by means of the
use of batch tests.

2. Materials and Methods

2.1. Description of the WWTPs and Characteristics of the Influent

The experimental work were carried out on two urban WWTPs in northern Italy with small
capacities (12,000 PE and 10,000 PE respectively).

The urban WWTPs identified by number 1 and 2 are based on a conventional active sludge
(CAS) process with a pre-denitrification scheme. They treat domestic, meteoric and industrial sewage
collected in a unit drainage system. Table 1 presents the main features of each WWTP.

Table 1. Characteristics of the wastewater treatment plants (WWTPs) analyzed.

Type of Treatment
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WWTP 1 WWTP 2

Capacity (Population Equivalent) 12,000 10,000

Influent

Flow rate (m3 d−1) 2980 2000
COD (mg L−1) 260 ± 158 433 ± 508.5
BOD5 (mg L−1) 119 ± 90 199 ± 167.6

TN (mg L−1) 35 ± 25 51 ± 43.6
TP (mg L−1) 4 ± 5.7 6 ± 8.3

TSS (mg L−1) 170 ± 230.3 243 ± 468.6
E. coli (CFU 100 mL−1) 4800 ÷ 26,000 4500 ÷ 7600

Legend: PT = pretreatment (screening and grit/grease removal), DEN = biological denitrification, OX-NIT =
biological oxidation-nitrification S II = secondary sedimentation, D (NaClO) = disinfection with NaClO (emergency).
TN = Total Nitrogen; TP = Total Phosphorus.

Both WWTPs are equipped with an emergency disinfection unit with the use of sodium
hypochlorite. The contact tanks are built with a longitudinal baffle serpentine flow basin, with a
volume of 90 m3 for WWTP 1 and 35 m3 for WWTP 2 (the contact time depends on the flow rate,
usually about 30 min for WWTP 1 and 20 min for WWTP 2). There are no flash-mixing tanks.

2.2. Experimental Tests

Laboratory scale disinfection tests were executed (in the WWTPs analyzed) using 40 L of
purified effluent taken with an automatic sampler. Each day, three disinfection tests were carried out
with different sodium hypochlorite doses, three tests with different peracetic acid doses (PAA) and
a reference sample without the dosage of disinfectant agents. pH was measured at the beginning and
end of the tests. The solutions were put into a jar test for mixing (Figure 1) with a rotation speed of
45 rpm.
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Disinfection tests were carried out on the effluent of WWTP 1 by testing different disinfectant
dosages, while for the WWTP 2 the doses were chosen on the basis of the results obtained for WWTP 1.
Table 2 presents the experimental program and the analysis/tests carried out in the work.

Table 2. Experimental program and analysis/tests carried out in the research.

Type of
Disinfectant

Agents

Dosage of
Disinfectant

(mg min L−1)

Contact
Time
(min)

Analysis/Tests

Parameters
Measured on Site

Physical-Chemical
Analysis

Microbiological
Analysis

Ecotoxicological
Tests

Respirometric
Tests

WWTP 1

NaClO 15 ÷ 135 30
Free and total

residual chlorine;
pH

COD, BOD5, TSS,
TN, N-NH4

+,
N-NO3

−,
N-NO2

−, TP

E. coli
Daphnia magna,
Vibrio fischeri,

Pseudokirchneriella
subcapitata

endogenous
OUR;

exogenous
OURCH3CO3H 10 ÷ 90 30 residual PAA; pH

WWTP 2

NaClO 15 ÷ 50 30
Free and total

residual chlorine;
pH

COD, BOD5, TSS,
TN, N-NH4

+,
N-NO3

−,
N-NO2

−, TP

E. coli
Daphnia magna,
Vibrio fischeri,

Pseudokirchneriella
subcapitata

endogenous
OUR;

exogenous
OURCH3CO3H 15 ÷ 50 30 residual PAA; pH

2.3. Analytical Methods

The concentrations of COD, BOD5, N-NH4
+, N-NO2

−, N-NO3
−, Total Nitrogen (TN), Total

Phosphorus (TP) and Total Suspended Solids (TSS) were measured according to standard methods for
water and wastewater [30–33]. BOD5 was determined at 20 ◦C by inoculation of activated sludge from
the WWTP. The pH was measured with a probe Sentix 940-3 WTW®.

The concentrations of residual chlorine and residual acid peracetic were measured by means of
colorimetric tests.

Free residual chlorine was measured with Hach Lange LCK 410 kit.
Total chlorine and peracetic acid residues were measured with the method “Hach 10070 Pillows

powder”. In case of PAA the conversion of mg Cl2 L−1 to mg PAA L−1 (by multiplying the value of
1.07) is necessary [34].

The respirometric tests of oxygen uptake rate (OUR) were carried out according to ISO
8192:2007 [35].

The E. coli concentration was measured using two methods: the number of colonies of E. coli (CFU)
(Standard Method) [30] and the most probable number of microorganisms per volume (MPN) [36].

The CFU method allows the counting of the number of E. coli colonies grown on a membrane
on agar soil supplemented with chromogenic substances. The sample is filtered through a cellulose
ester membrane of 0.45 µm nominal porosity. After an incubation period of 18–24 h at 44 ± 1 ◦C,
the results are read under ultraviolet light (366 nm). The 4-methylumbelliferyl-β-D-glucuronide
(MUG) compound, embedded in the soil, is hydrolyzed by β-glucuronidase of E. coli, releasing
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4-methylumbelliferone compound which thus produces ultraviolet light-fluorescent blue-green
colonies. The results are expressed as colony forming units per 100 mL sample.

The MPN method expresses results as the most likely number of microorganisms per volume.
A dehydrated soil is added to a sample; then the mixture is transferred in boxes that are sealed and
then incubated at 36 ± 2 ◦C for 18–22 h. After the incubation, samples with a yellow color intensity
equal to or greater than that of the Quanti-Tray/2000 Comparator are considered positive for coliform
bacteria. Yellow samples, which are tested under UV light (365 nm) in a dark room, exhibiting any
degree of fluorescence are considered positive for E. coli. The most probable amount of E. coli in 100 mL
of the sample can be determined through statistical tables.

The determination of the acute toxicity of the WWTPs effluents was carried out by multispecific
ecotoxicological tests: Daphnia magna at 24 h [37], Vibrio fischeri at 15 min and 30 min [38] and
Pseudokirkneriella subcapitata at 72 h [39].

Neonates of Daphnia magna were held in a temperature-controlled room at 20 ± 2 ◦C illuminated
with fluorescent lamps for 16 h d−1. In the acute toxicity tests, daphnids were exposed to samples of
different concentrations of wastewater and the tested agent; the immobile daphnids were counted
after 24 h of exposure.

The luminescence of reconstituted liquid dried bacteria Vibrio fischeri NRRL-B-11177 was measured
on a Microtox mod. 500 luminometer according to the ISO standard. The luminescent bacteria were
exposed to wastewater samples for 15 min and 30 min. The percentage inhibition was calculated for
each concentration relative to the control.

The green, unicellular algae Pseudokirchneriella subcapitata were cultured in a nutrient solution
prepared and kept on an orbital shaker at 100 rpm at a constant room temperature of 23 ± 2 ◦C
and under continuous fluorescent illumination (6000–10,000 lx.). After 72 h the growth of algae was
determined by algal density, which was measured by counting algal cells in a Burker counting cell or
absorbance measurement with the spectrophotometer. The inhibition of specific growth rates for each
concentration was calculated in comparison to the control.

3. Results and Discussion

3.1. WWTPs Performance Evaluation

Table 3 shows the concentrations of COD, BOD5, TSS, TN, nitrogenous forms and TP measured in
each WWTP during the disinfection tests.

The analyses were carried out to evaluate the performance of WWTPs. Table 3 shows that
disinfection does not involve a significant modification in qualitative characteristics of the effluent.

It can be observed that the effluents of the WWTPs analyzed respect the limit values reported
by Italian legislation [18], for COD, BOD5 and TSS, and by the Lombardy Regulation n. 3/2006 (in
Tab. 5 and Tab. 6) [40] for TN and TP. Furthermore, the average removal efficiency of COD, BOD5 and
TSS is higher than 90% for both of WWTPs; as concerns TN and TP, the average removal yields of
WWTP 1 (65% and 77% respectively) are lower than the performance obtained in WWTP 2 (90% for
both pollutants).

Moreover, the results of respirometric tests of OUR have confirmed the good performance of
WWTPs and the good “state of health” of biomass.

3.2. Disinfectant Residual

3.2.1. Sodium Hypochlorite

The results reported in Figure 2 show the free and total residual chlorine for all disinfection tests
carried out with the use of different doses of sodium hypochlorite; moreover, the limit value of active
chlorine concentration (equal to 0.2 mg L−1) is reported.
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Table 3. Concentration of pollutants in the influent and effluent of WWTPs.

COD (mg L−1) BOD5 (mg L−1) SST (mg L−1) TN (mg L−1) N-NH4
+ (mg L−1) N-NO3

− (mg L−1) N-NO2
− (mg L−1) TP (mg L−1)

WWTP 1

DAY #1

IN WWTP 381 203 196 45.7 36.0 1.2 0.75 5.6
IN test 13.4 <5 5 10.9 <0.2 11 0.04 1

OUT
NaClO 13.4 ÷ 14 <5 5 ÷ 6 10.9 ÷ 11.1 <0.2 11 ÷ 11.3 0.04 ÷ 0.05 1 ÷ 1.1

PAA 15.2 ÷ 19.9 <5 ÷ 7.6 <5 11.2 ÷11.6 <0.1 ÷ 0.1 11.4 ÷ 12.3 0.04 ÷ 0.09 1 ÷ 1.1

DAY #2

IN WWTP 270 142 150 40.9 35.0 1.0 0.67 4.8
IN test 13.9 <5 5 10.8 0.1 8.6 <0.01 1

OUT
NaClO 13.9 ÷ 14.7 <5 5 ÷ 5.2 10.8 ÷ 10.9 0.1 ÷ 0.2 8.6 ÷ 8.8 <0.01 1 ÷ 1.1

PAA 15.8 ÷ 17.5 <5 ÷ 7.6 5 ÷ 5.1 10.8 ÷ 11.2 0.1 ÷ 0.2 8.6 ÷ 9.2 <0.01 ÷ 0.01 1 ÷ 1.2

DAY #3

IN WWTP 290 117 138 21.9 11.8 1.5 0.53 21.9
IN test 15.7 11.5 <5 10.5 0.11 9.8 0.06 1.3

OUT
NaClO 15.7 ÷ 16.3 11.5 ÷ 12 <5 10.5 ÷ 10.6 0.11 ÷ 0.13 9.8 ÷ 9.9 0.06 ÷ 0.07 1.3 ÷ 1.4

PAA 17.3 ÷ 22.4 12 ÷ 15.3 <5 10.4 ÷ 10.6 0.14 ÷ 0.15 10 ÷ 10.5 0.05 ÷ 0.07 1.3 ÷ 1.4

DAY #4

IN WWTP 69 29 54 17.3 2.7 1 0.67 2.4
IN test 12 14 <5 12.7 <0.1 12.6 0.04 0.7

OUT
NaClO 12 ÷ 12.2 14 ÷ 14.6 <5 12.7 ÷ 12.9 <0.1 12.6 ÷ 12.7 0.04 ÷ 0.05 0.7 ÷ 0.8

PAA 11 ÷ 13 15 ÷ 19 <5 12.3 ÷ 13.5 <0.1 12.6 ÷ 13.1 0.03 ÷ 0.04 0.7 ÷ 0.9

DAY #5

IN WWTP 266 148 216 41.3 34 1.1 0.55 4.4
IN test 22.6 13.1 6 15 <0.1 14.9 0.03 1.2

OUT
NaClO 22.6 ÷ 22.7 13.1 ÷ 14 6 ÷ 6.1 15 ÷ 15.1 <0.1 14.9 ÷ 15.1 0.03 ÷ 0.04 1.2 ÷ 1.3

PAA 17.5 ÷ 18.1 18.6 ÷ 20.8 <5 ÷ 5 14.9 ÷ 15 <0.1 14.7 ÷ 14.9 0.02 ÷ 0.05 1.2 ÷ 1.3

DAY #6

IN WWTP 172 79 60 32 29 1.2 0.76 3.2
IN test 31.4 14.1 13 13.8 1.8 11.6 0.4 1.3

OUT
NaClO 31.4 ÷ 32 14.1 ÷ 14.7 13 ÷ 13.1 13.8 ÷ 13.9 1.8 ÷ 1.9 11.6 ÷ 11.8 0.40 ÷ 0.41 1.3 ÷ 1.5

PAA 30.4 ÷ 33 15.8 ÷ 18 12 ÷ 13 13.9 ÷ 14.7 1.8 ÷ 2.1 11.3 ÷ 11.5 0.35 ÷ 0.36 1.3 ÷ 1.6

WWTP 2

DAY #1

IN WWTP 304 153 156 33.4 32.8 0.98 0.15 3.6
IN test 9.4 <5 <5 2 <0.2 1.8 n.a. 0.3

OUT
NaClO 9.4 ÷ 9.6 <5 <5 2 ÷ 2.3 <0.2 1.8 ÷ 2 n.a. 0.3 ÷ 0.5

PAA 9.6 ÷ 15.6 <5 <5 2.3 ÷ 3.8 <0.1 2.2 ÷ 2.3 n.a. 0.3 ÷ 0.6

DAY #2

IN WWTP 413 155 152 39.3 37.5 1.09 0.18 4.5
IN test 25.2 8.2 12 5.4 <0.1 4.2 0.08 0.7

OUT
NaClO 25.2 ÷ 25.4 8.2 ÷ 8.3 12 ÷ 12.3 5.4 ÷ 5.5 <0.1 4.2 ÷ 4.3 0.08 ÷ 0.09 0.7 ÷ 0.8

PAA 25 ÷ 35 6 ÷ 6.5 8 ÷ 10 5.3 ÷ 5.4 <0.1 ÷ 0.1 4.4 ÷ 4.5 0.08 ÷ 0.09 0.6 ÷ 0.7

DAY #3

IN WWTP 452 251 280 44.6 38.2 1.1 0.21 5.9
IN test 20.1 <5 5 3.9 <0.1 2.7 0.01 0.3

OUT
NaClO 20.1 ÷ 20.4 <5 5 ÷ 5.6 3.9 ÷ 4.1 <0.1 2.7 ÷ 2.8 0.01 ÷ 0.02 0.3 ÷ 0.4

PAA 19.5 ÷ 24 <5 5 ÷ 6 3.3 ÷ 3.8 <0.1 2.8 ÷ 2.9 0.01 ÷ 0.03 0.3 ÷ 0.4

Limit values (mg L−1) 125 25 35 15 - - - 2

IN WWTP: concentrations of pollutants measured in the influent wastewater to WWTP. IN test: concentrations of pollutants measured in the effluent of WWTP before the disinfection unit.
OUT NaClO: concentrations of pollutants measured in the samples after the disinfection tests with NaClO. OUT PAA: concentrations of pollutants measured in the samples after the
disinfection tests with PAA.
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COD concentration was monitored in the case of disinfection with peracetic acid due to the
increase in the concentration of organic matter; in the tests, this increase was approximately equal to
50% for WWTP 1 and equal to 60% for WWTP 2, but the COD concentration was always below the
limit of 125 mg L−1 (Decree Italian Law 152/2006).

In disinfection tests the decay of PAA was not evaluated, because the aim of the present study
was not to find an optimal disinfectant dosage but a range of dosages that would respect the limit
values of E. coli and toxicity. It was not considered decay because Rossi et al., 2007 [14] have shown
that it becomes significant with doses and contact times far higher than those applied.

3.3. Acute Toxicity Assessment

The results of the acute toxicity of experimental disinfection tests using both disinfectants are
shown below.

The sample is considered toxic when at least one of these three conditions occurs:

• in the case of Daphnia magna, the percentage of immobilisation is greater or equal to 50%;
• in the case of Vibrio fischeri, the inhibition of luminescence is greater or equal to 50%;
• in the case of Pseudokirchneriella subcapitata, inhibition of algal growth is greater or equal to 50%.

There is conformity when the limit on free active chlorine is 0.2 mg L−1, the E. coli limit of
5000 CFU 100 mL−1 and the absence of acute toxicity are observed at the same time.

3.3.1. Sodium Hypochlorite

In Table 4 the results of the acute toxicity assessments, using three species from different trophic
levels of aquatic ecosystems, with an active chlorine dosage are shown. Grey cells show the values of
the limits that are not observed.

Table 4. Acute toxicity assessment with active chlorine.

Active Chlorine
Dosage (mg

min L−1)

Free Residual
Chlorine (mg

L−1)

Acute Toxicity E. coli (CFU 100
mL−1)

Conformity
Daphnia

magna 24 h
Vibrio fischeri P. subcapitata

72 h
IN OUT

15 min 30 min

WWTP 1

60 0.26 100/100 81/100 81/100 27/100 4800 5 NO
105 0.47 0/100 88/100 88/100 37/100 4800 <1 NO
135 0.998 0/100 87/100 87/100 59/100 4800 <1 NO
15 0.088 0/100 0/100 0/100 0/100 7000 5400 NO
30 0.175 90/100 83/100 82/100 90/100 7000 <1 NO
60 0.224 100/100 82/100 82/100 100/100 7000 <1 NO
15 0.109 0/100 0/100 1/100 5/100 26,000 21,000 NO
25 0.114 0/100 23/100 31/100 1/100 26,000 9500 NO
30 0.096 0/100 18/100 25/100 8/100 26,000 9300 NO
20 0.097 5/100 0/100 5/100 1/100 8100 3800 YES
30 0.169 0/100 0/100 5/100 3/100 8100 320 YES
40 0.129 45/100 9/100 13/100 16/100 8100 74 YES
30 0.058 0/100 11/100 16/100 2/100 6100 3700 YES
35 0.1 0/100 14/100 20/100 1/100 6100 290 YES
50 0.13 0/100 40/100 42/100 3/100 6100 17 YES

WWTP 2

35 0.057 0/100 80/100 78/100 70/100 7100 58 NO
40 0.05 0/100 86/100 88/100 47/100 7100 37 NO
50 0.203 100/100 91/100 93/100 65/100 7100 21 NO
25 n.a. 100/100 91/100 93/100 65/100 4500 38 NO
30 n.a. 100/100 0/100 5/100 8/100 4500 33 NO
35 n.a. 100/100 8/100 6/100 1/100 4500 36 NO
15 0.05 5/100 0/100 0/100 4/100 7600 5000 YES
20 0.069 0/100 31/100 25/100 0/100 7600 100 YES
25 0.07 0/100 6/100 6/100 0/100 7600 230 YES

As regards the WWTP 1, the acute toxicity was increased as the free residual chlorine value
increases. Acute toxicity has been reported for values above 0.17 mg L−1. An active chlorine dosage
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between 30 and 50 mg min L−1 allowed the contemporary respect of the E. coli limit value and
a non-toxicity of disinfected effluent.

Concerning the WWTP 2, acute toxicity has been reported for values above 0.20 mg L−1. An
active chlorine dosage between 20 and 25 mg min L−1 allowed the contemporary respect of the E. coli
limit and a non-toxicity of disinfected effluent.

The use of low dosages of active chlorine has involved a scarce disinfection efficiency, especially
in case of high E. coli concentrations, that, for WWTP 1, has reached 26,000 CFU 100 mL−1. A proper
solution for disinfection efficiency increasing could be two or three-step chlorination, also in order to
reduce the DBPs formation and the toxicity effects [45,46].

3.3.2. Peracetic Acid

In Table 5 the results of the acute toxicity assessment, using three species from different trophic
levels of aquatic ecosystems with a PAA dosage, are reported. Grey cells show the values of the limits
that are not observed.

Concerning the WWTP 1, the acute toxicity was increased as the residual PAA value increases.
Acute toxicity has been reported for values above 2.68 mg L−1. A PAA dosage between 20
and 40 mg min L−1 allowed the contemporary respect of the E. coli limit and a non-toxicity of
disinfected effluent.

The results obtained for WWTP 2 effluent is similar to WWTP 1: in fact, a PAA dosage between 20
and 35 mg min L−1 allowed the contemporary respect of the E. coli limit value and a non-toxicity of
disinfected effluent.

Table 5. Acute toxicity assessment with PAA dosage.

PAA Dosage
(mg min

L−1)

Residual
PAA (mg

L−1)

Acute toxicity E. coli (CFU 100
mL−1)

ConformityDaphnia
magna 24 h

Vibrio fischeri P. subcapitata
72 h

IN OUT
15 min 30 min

WWTP 1

30 1.50 0/100 13/100 5/100 5/100 4800 1 YES
60 3.32 100/100 100/100 96/100 100/100 4800 <1 NO
90 5.67 100/100 100/100 100/100 54/100 4800 <1 NO
40 4.49 100/100 99/100 99/100 100/100 7000 <1 NO
50 2.68 20/100 71/100 37/100 20/100 7000 <1 NO
60 3.53 100/100 100/100 96/100 100/100 7000 <1 NO
30 1.61 0/100 13/100 20/100 6/100 26,000 38 YES
40 2.14 0/100 5/100 10/100 4/100 26,000 29 YES
50 6.42 100/100 86/100 51/100 73/100 26,000 8 NO
20 0.43 0/100 0/100 0/100 0/100 8100 5000 YES
30 0.96 0/100 0/100 3/100 0/100 8100 180 YES
40 1.39 0/100 23/100 16/100 3/100 8100 15 YES
30 1.30 0/100 19/100 13/100 0/100 6100 16 YES
35 1.50 0/100 33/100 22/100 1/100 6100 45 YES
40 1.80 0/100 45/100 32/100 3/100 6100 110 YES

WWTP 2

35 1.71 5/100 82/100 44/100 1/100 7100 50 NO
40 2.25 5/100 100/100 80/100 1/100 7100 22 NO
50 2.57 0/100 100/100 94/100 1/100 7100 37 NO
25 4.00 0/100 0/100 0/100 0/100 4500 75 YES
30 4.00 0/100 0/100 0/100 0/100 4500 54 YES
35 4.00 0/100 0/100 0/100 0/100 4500 21 YES
15 0.64 0/100 0/100 0/100 0/100 7600 7500 NO
20 0.07 0/100 0/100 0/100 0/100 7600 3800 YES
25 0.08 0/100 3/100 0/100 1/100 7600 2600 YES

3.4. OUR Tests

The OUR values shown in Figure 4 consider only the part of oxygen demand to degrade the
organic matter (the values reported are obtained by the difference between the OUR of each effluent
and the endogenous values). When the free residual chlorine limit value is higher than 0.2 mg L−1,
a slowing down of oxygen consumption, to degrade the organic matter present in the effluent,
is observed. The effect of chlorination is generally a reduction in carbonaceous oxygen uptake rate
(OUR) [47].
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Moreover, Figure 4 shows that there is a correlation between the reduction of OUR and the
presence of toxicity (especially for Vibrio fischeri) in case of sodium hypochlorite use. Concerning
disinfection with PAA there is not a correlation with toxicity; indeed an increase in organic content,
due to acetic acid that is readily biodegradable, and OUR enhancement were observed.

4. Conclusions

The aim of the present study was to evaluate the ecotoxicological behavior of secondary effluents
disinfected with sodium hypochlorite and PAA using three species from different trophic levels of
aquatic ecosystems. Moreover, the work is aimed to find a dosage range, which allows the respect of
E. coli limit values, acute toxicity, disinfectant residual and COD.

The experimental activities provided assessment of microbiological quality and toxicity of WWTPs
effluents in relation to the dosage of sodium hypochlorite and peracetic acid, by means of the use of
batch tests.

The results showed that the acute toxicity was increased as the disinfectant residual value increases.
Moreover, residual acute toxicity of peracetic acid was higher (2.68 mg L−1) than residual chlorine
(0.17 mg L−1). As concerns the chlorination, a good correlation between the content of chloramines
and the acute toxicity was observed.

As concerns the WWTP 1, an active chlorine dosage between 30 and 50 mg min L−1 allowed
the contemporary respect of the limit of E. coli and a non-toxicity of disinfected effluent and a PAA
dosage between 20 and 40 mg min L−1 allowed the contemporary respect of the E. coli limit and a
non-toxicity of disinfected effluent. Concerning the WWTP 2, an active chlorine dosage between 20 and
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25 mg min L−1 allowed the contemporary respect of the E. coli limit and a non-toxicity of disinfected
effluent and a PAA dosage between 20 and 35 mg min L−1 allowed the contemporary respect of the
E. coli limit value and a non-toxicity of disinfected effluent.

The results show that with similar disinfectant dosage and comparable initial E. coli concentration,
peracetic acid displayed the best performance in terms of microbial removal (with removal yields up
to 99.99%).
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