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Abstract: Solar cars are known for their energy efficiency, and different races are designed to
measure their performance under certain conditions. For these races, in addition to an efficient
vehicle, a competition strategy is required to define the optimal speed, with the objective of finishing
the race in the shortest possible time using the energy available. Two heuristic optimization
methods are implemented to solve this problem, a convergence and performance comparison of
both methods is presented. A computational model of the race is developed, including energy
input, consumption and storage systems. Based on this model, the different optimization methods
are tested on the optimization of the World Solar Challenge 2015 race strategy under two different
environmental conditions. A suitable method for solar car racing strategy is developed with the
vehicle specifications taken as an independent input to permit the simulation of different solar or
electric vehicles.
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1. Introduction

Solar car races are well-known as universities and college competitions with the aim of of
promoting alternative energies and energy efficiency. Nevertheless, major engineering developments
are required to have a competitive vehicle and several developments that have emerged in these
races are now applied in different industrial sectors. High efficiency electric motors and drivers [1],
low consumption tires, solar panel Maximum Power Point Trackers (MPPTs), solar panel encapsulations
and telemetry systems are some of the technological products raised on racing solar cars [2].

The Bridgestone World Solar Challenge (WSC) is one of the most popular solar vehicle races
where recognized universities and industries from all over the world join forces to compete every
two years. The main objective is to cross Australia from Darwin to Adelaide (3022 km) using only
solar energy. The success on this challenge demands both an efficient vehicle and an adequate control
strategy during the entire race [3].

The vehicle must be designed, built and raced with the purpose of being energy efficient. The main
features of the car are based on two properties: reliable and autonomous. For the autonomy, the car
should capture as much as possible energy from the sun and spend the lowest possible energy when
traveling. The design and manufacture processes take into account: reliability, safety, solar panel
efficiency, aerodynamics, weight reduction, among other important considerations (see [4–8]).

With the vehicle conceived, the final step is to define the race strategy in order to obtain the
best performance and take advantage of its capabilities. The narrow gap between the energy input
from the solar panel and the consumption of the motor creates the necessity of optimizing the driver
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decisions seeking a good energy management. The race plan must define the speed on the entire
path, taking into account the vehicle properties, the road characteristics, the weather conditions,
and all the factors that can affect the vehicle or the race development. The solar car racing strategy
problem has been narrowly disclosed academically due to the competitive nature of cars racing.
Since the early 90’s, less than 10 studies about this topic have been formally published. On the contrary,
train optimal control has been widely studied and disclosed for decades. Although several differences
are remarkable, the energy efficiency operation is the main objective of both applications and different
approaches can be applied on solar cars.

In this work, the racing strategy of the EPM-EAFIT solar car for WSC 2015 is presented. A literary
revision of solar car strategy and an overview on train speed optimization is exposed in Section 2.
Section 3 describes the race model in order to simulate the vehicle performance for a given conditions.
Once the race model is complete, an optimization process is linked to this model and the best driving
parameters are found in order to minimize the objective function, i.e. racing time (See Section 4).
Three different optimization methods are tested and results are exposed on Section 5.

2. Solar Car Racing Strategy

Defining a solar car racing strategy can be treated as a control optimization problem where,
in the most general case, a velocity pattern for the vehicle must be found in order to minimize the
time to complete a defined distance considering race, energy and environmental conditions. The route
planning and selection [9] is excluded from the race strategy considering that solar car races have
a strictly defined path.

Regarding solar cars in general, the most relevant publications are “Speed of Light” [10] and
“The Leading Edge” [11], these two books include some basic information and a general description
about racing strategy. On 1998, Shimizu et al. [12] described the racing strategy of the “Honda Dream”
solar car during the 1990, 1993 and 1996 WSC races. They divided the racing strategy on three principal
topics: a “Supervision support system”, a “Cruising simulation program” and a “Power/Speed
optimizing control algorithm”.

The aim of this work is on the optimization algorithm, including by nature, the simulation program.
The supervising support system that is mainly related to telemetry hardware and software is not included.

From the point of view of the optimization problem solution, two main approaches can be
clearly defined: mathematical optimization and heuristic methods, specially evolutionary algorithms.
Mathematical optimization of solar car strategies has been mainly studied by Peter Pudney and Phil
Howlett and disclosed in a series of evolving publications [13–15]. A complete discussion of speedholding
and other racing strategies is supported on mathematical validations. Other mathematical optimization
approaches based on optimal control are done by Guerrero-Merino and Duarte-Mermoud [16] with
a power input prediction and pseudospectral methods to find an optimal velocity.

On the other hand, heuristic approaches for solar cars racing strategies propose to create
a detailed race simulation model, including complex mathematical definitions and random variables,
and then find the optimal velocity of the vehicle using any heuristic optimization. The evolutionary
algorithms are widely used on other optimization cases such as structural design [17] or multiobjective
problems [18] with outstanding results. For solar cars, on 2013, Yesil et al. [19] proposed an heuristic
optimization using Big Bang-Big Crunch for the 2013 WSC, they do not compare the results with other
methods and experimental validation is missing. Nevertheless they reported a satisfactory outcome
with their implementation.

For other electric vehicles, the optimal driving strategy and velocity profile has been widely
studied on train operation control. These optimization techniques and approaches can be extrapolated
to solar cars due to its similarity, mainly on the energy consumption calculation. The optimization
objective in these cases is to minimize the energy consumption of a train that travels between two points
and subject to a defined trip time and some other driving conditions [20]. Howlett and Pudney [21–23]
have applied optimal control techniques to mathematically find optimal driving patterns that minimize
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the energy spent. On 1997, Chang and Sim [24] firstly proposed the use of Genetic Algorithms (GA)
for the train coasting segments between two stations with a multiobjective optimization to include the
spent energy, the punctuality and the passengers comfort on the objective function. From there on,
On the last two decades, several applications of GA and other heuristic methods to minimize the train
energy consumption on different cases have reported successful results [25–27].

Using heuristic methods, it is possible to actively include variations and nonlinear functions
to the race model while the optimization algorithm will still find a solution. Besides, the growing
computational capacity, including parallel computing, opens field for the application of these methods.
In this work, a heuristic optimization approach is proposed and the optimization results are compared
with previous ones.

3. The Race Model

The first step for optimizing a solar car performance is to model the vehicle behavior on the race.
With this race model, the consequences of different strategy inputs on the race performance is obtained.

For a solar car simulation, three main models should be coupled together: battery, motion equations
(energy consumption) and solar panel (input). The environmental conditions affect the energy input via
radiation and temperature and the energy output mainly because of the wind that influence the drag
force. Then, they are considered into an independent module of the race model. Figure 1 illustrates the
interactions between modules on the model.

Battery Solar panel 

Drivetrain Climate 

Figure 1. The car model overview of the four main coupled models simulating the solar vehicle
performance on a given race.

In order to accurately estimate the vehicle performance in the race, the model should include
all the car characteristics such as weight, roll coefficient, aerodynamic properties among others.
Also external information like road slope, sun position, sun irradiation, wind and others should be
considered. This model must be tuned up and validated with experimental tests of the vehicle before
expecting valid results.

One of the main inputs of the race model is the velocity set point of the vehicle for the whole
race. This is a user (driver) input that affects the outcome on the competition. The velocity set point is
a curve that indicates the speed of the car during the race. According to the practical limitations in
the race, this velocity is defined to be an integer number in kilometers per hour (km/h) and bounded
by the speed limits of the road. Moreover, although the velocity set point can change every instant,
it is practical to keep it constant for certain periods of time, generating this way a vector containing
the velocity set point for defined segments of the race. Then, the size of this velocity vector is the same
number of divisions of the race made for the optimization process.

3.1. Drivetrain

The energy consumption of the vehicle is simulated using the drivetrain model. The main
forces that directly oppose the vehicle movement are: aerodynamic drag, tyre rolling resistance
and gravity component due to the road slope. The instantaneous power needed on the drive wheels
can be calculated as defined in Equation (1) where Pi stands for the instantaneous power, v for the
instantaneous velocity, m for the vehicle mass, a for the acceleration, Cd A is the vehicle drag area
coefficient, ρ the air density, vw the wind velocity component on the vehicle forward direction, Crr the
tyre roll coefficient, g the gravity acceleration and θ the road slope.
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Pm = v
(

ma +
1
2

Cd Aρ(v− vw)
2 + Crrmg + mg sin θ

)
(1)

For road sections with constant slope and velocity, the wheel power remains constant and the
consumed energy (Ei) can be calculated according to the time (ti) on the respective section and the
drivetrain efficiency under these conditions (ηm). Equation (2) defines the consumed energy estimation
for constant speed sections.

Ei =
Pmti
ηm

(2)

In the case of Csiro motors, the instantaneous drivetrain efficiency is estimated according to the
study reported on [28].

3.2. Solar Panel

The photovoltaic solar panel energy generation is simulated taking into account the sun elevation
angle (φ), the estimated solar irradiance at ground level (Ii) (See Section 3.4), the panel+MPPTs
efficiency (ηs) and the panel effective area (Ai) that considers the instantaneous canopy shadows over
the cells. The electric power produced by the solar panel (Ps) is calculated as defined on Equation (3).

Ps = Ii Aiηs sin(φ) (3)

The solar panel efficiency is experimentally determined taking into account the forced convection
cooling of the cells due to the vehicle movement as reported in [8].

3.3. Battery

A battery model is developed according to the specific cells datasheets and duty cycle experiments.
Based on the charge and discharge data integration, the input and output energy are calculated and
the battery overall efficiency (ηb) is estimated according to Equation (4) where Eout and Ein represent
the total energy obtained from the discharge and charge test cycles. The energy stored in the battery
(Eb) is defined by Equation (5) where Ps and Pm are the instantaneous solar panel power and drivetrain
power respectively, the charge and discharge efficiencies are assumed both equal to

√
ηb.

ηb =
Eout

Ein
(4)

dEb
dt

=


√

ηb(Ps − Pm), if (Ps − Pm) > 0
1√
ηb
(Ps − Pm), otherwise

(5)

3.4. Climate

The more relevant climate factors that affect the vehicle simulation are the solar irradiance
(See Equation (3) and the wind velocity vector (See Equation (1). The stochasticity of these two
variables is removed in order to guarantee repeatability of the optimization process. Nevertheless,
a clever estimation of both parameters is included in the simulation.

The solar irradiance (Ii) is calculated according to the air mass factor and the Lambert’s law
(also known as Beer–Bouguer–Lambert’s Law) to define the atmospheric transmittance [29,30].
Cloudless sky is assumed and the model is validated experimentally. Equation (6) defines the radiation
estimation, I0 represents the extraterrestrial solar radiation, τa the total atmospheric extinction or
attenuation coefficient and AM the air mass factor (defined on Equation (7).

Ii = I0e−τa AM (6)
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AM =
1

sin(φ)
(7)

On the other hand, the wind velocity vector is estimated and included according to the monthly
averages reported online by the Australian Government Bureau of Meteorology [31].

4. Optimization Process

As stated in Section 2, a heuristic optimization approach is selected for defining the race strategy.
The main purpose is to find the best velocity in order to minimize the solar car racing time. To have
an accurate race model, the optimization step is implemented as depicted in Figure 2. Different velocity
vectors are produced by the optimization algorithm and evaluated in the race model.

Vehicle properties

User inputs

Environment data

Race model Vehicle performance

Optimization

Figure 2. The purpose of the optimization process is to find the optimal user input for the race model
in order to minimize the objective function

The number of race divisions for the velocity vector define the search space size. When the velocity
is assumed constant all over the race, the optimization variable is a 1-dimensional vector and a global
optimum solution can be found with an exhaustive search. On the other hand, with large velocity
vectors, a larger search space is created and clever optimization techniques are needed to find
a near-optimal solution. Then, different optimization techniques are used depending on the
optimization variable size.

4.1. Exhaustive Search

To be sure of finding a global optimum, the first optimization method is the well-known
Exhaustive Search (ES), also named brute-force search. The purpose is to test all the possible solutions
and choose the best one. In the case of a 1D velocity vector, it is possible to test all the integer numbers
between velocity bounds and pick the best, if the optimization variable is greatly larger it results as
non-viable to test all the possible combinations.

4.2. Genetic Algorithms

As proposed on 1975 by John Holland [32], GA is an evolutionary method based on natural
populations and genetic studies to mimic a biological evolution process. With a combination
between the natural selection process in which “most fit individuals survive” and random events
such as coupling and mutating, an evolution towards an optimal solution is guaranteed. Since the
1970s, new implementations, variations and improvements have been developed showing the large
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capabilities of this method. For the solar car race strategy problem, a GA is implemented following
recommendations given by Sastry et al. [33].

4.3. Big Bang-Big Crunch

An alternative evolutionary optimization method already implemented on solar car strategy by
Yesil et al. [19] is called Big Bang-Big Crunch (BB-BC). It was first developed by Erol and Eksin on
2006 [34] reporting an efficiency improvement with respect to a general GA method. The general aim
of this method is to iteratively generate random individuals around a center of mass (big bang) and
recalculate the center of mass according to the weighted average fitness of the population (big crunch).
On every iteration, the radius for new individuals generation is reduced in order to progressively
diminish the search space. Equation (8) defines the way to calculate this value, where x̄c is the center
of mass, n is the population size, x̄i is an individual of the population and fi its fitness value.

x̄c =
∑n

i=1
1
fi

x̄i

∑n
i=1

1
fi

(8)

An implementation of the standard BB-BC algorithm is also made and tested for this project.

4.4. Algorithm Hybridization

To improve the optimization performance, a combination of different methods is proposed.
In this case, a Local Search (LS) step [35] is included after the GA and BB-BC processes as reported
on [36]. One-directional variations are made iteratively to the optimal solution given by the
evolutionary algorithm, this has the purpose of evaluating the candidate solutions in the vicinity of the
evolutionary algorithm result, if the objective function result is improved, this new solution is saved
and the process is iteratively repeated.

5. Results

To solve the problem of finding an optimal speed for the EPM-EAFIT Solar Car, for the 2015 WSC,
different approaches are implemented and compared. Two environmental cases are proposed: a fully
clear sky race (Clear sky case) and a race with one cloudy day that diminishes the entire day irradiance
to a 60% of the clear sky one (Cloudy day case). Figure 3 illustrates the solar irradiance estimation for
both cases.
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Figure 3. Solar irradiance for the first 5 days of the race. In the case of Cloudy day, the irradiance of
day 3 is reduced to the 60% of the clear sky estimation.
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Regarding the optimization method, five main approaches are analyzed for the two
environmental cases:

• Constant speed during all race (1D optimization variable) with exhaustive search optimization.
• Race length divided into halves, two different speeds (2D) and exhaustive search optimization.
• Race length divided in three parts, three different speeds (3D) and exhaustive search optimization.
• Race divided in 10 segments (10D optimization variable) according to mandatory 30 min control

stops defined by the race; GA and BB-BC evolutionary method optimization.

The ES is not implemented with more than 3D vectors due to the large number of possible
combinations, in these cases the time required to finish the calculation is considerable. The GA and
BB-BC methods are both implemented with 10D vectors and a constant population of 720 candidates.
The initial population is created with a random number generator between the minimum velocity and
the road speed limit with a uniform distribution.

Every GA iteration involves:

1. Evaluation of the fitness function (race simulation) for every candidate. The best individual
is saved.

2. Selection of the most fit individuals. The best half of the population is saved for crossover.
3. Crossover. Random pairs of individuals (parents) are selected from the saved population and four

new candidates (sons) are obtained with a linear combination of every pair.
4. Random mutations are included on the population. An aleatory number from an uniform

distribution between −10 and 10 km/h is added to a 10% of the new population.

These steps are repeated until the maximum number of iterations is reached. Also, an early
convergence criteria is defined to stop the iterations.

For the BB-BC implementation, the steps 2 and 3 from GA are replaced by the calculation of
the center of mass and random generation of new individuals around it as explained on Section 4.3.
The other steps are performed as explained for GA. For both methods 50 iterations are executed.
The hybridization proposed on Section 4.4 is evaluated with the GA+LS and BB-BC+LS algorithms.

The obtained results for a given specific solar car properties, road and the Clear sky weather
conditions are shown on Table 1, the results for the same vehicle properties and road but Cloudy day
weather conditions are shown on Table 2. The convergence graph for the two different weather cases
is presented on Figure 4. Both the race simulation and the optimization method are programmed in
C++ using Microsoft Visual C++ editor and compiler under Windows operative system, then executed
serially (not on parallel) on a laptop with Intel Core i7 @ 2.3GHz processor.

Table 1. Optimization methods results for Clear sky race.

Optimization
Method

Optimization
Vector Size

Obj. Function
Value [h]

Computing
Time [s]

Total Race
Simulations

Exhaustive search (1) 1 38.189 0.28 61
Exhaustive search (2) 2 38.189 14.85 3721
Exhaustive search (3) 3 38.077 926.46 226981

Genetic Algorithms 10 38.081 137.29 36000
GA+LS 10 38.068 145.16 36810

BigBang-BigCrunch 10 38.116 141.34 36000
BB-BC+LS 10 38.088 150.65 38430
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Table 2. Optimization methods results for Cloudy day race.

Optimization
Method

Optimization
Vector Size

Obj. Function
Value [h]

Computing
Time [s]

Total Race
Simulations

Exhaustive search (1) 1 40.176 0.39 61
Exhaustive search (2) 2 39.929 21.13 3721
Exhaustive search (3) 3 39.792 1284.1 226981

Genetic Algorithms 10 39.771 116.44 28800
GA+LS 10 39.781 120.89 29610

BigBang-BigCrunch 10 39.851 197.96 36000
BB-BC+LS 10 39.810 209.01 38025
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Figure 4. Race optimization using Big Bang-Big Crunch and Genetic Algorithms methods for Clear sky
and Cloudy day cases. After 50 iterations, the local search step is included for both methods.

6. Case Study

The optimal speed found is only valid for the vehicle properties defined on the race model input.
This optimal speed produces a curve that indicates the optimal State Of Charge (SOC) of the battery
during the entire race. Figure 5 illustrates the SOC behavior according to the best solution found using
GA+LS and considering the two environmental cases. The optimal velocity vectors are also depicted.
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0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

100
WSC 2015 EPM−EAFIT Strategy Program

Race distance [km]

O
p

ti
m

a
l 
V

e
lo

c
it
y
 [

k
m

/h
]

 

 

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

100

B
a

te
ry

 S
ta

te
 O

f 
C

h
a

rg
e

 [
%

]

Optimal velocity
Battery SOC
Control stop
Day end

(b) Cloudy day conditions

Figure 5. Optimal State of charge of the battery and velocity vector for different environmental
conditions. The control stops (dotted lines) indicate 30 min mandatory stops, the discontinuous lines
indicate the km where the night is spent.

7. Conclusions

The solar car racing strategy planning is the activity to define the best user inputs in order
to optimize the energy management and, therefore, minimize an objective function. In this case,
the objective function was the time to arrive to the finish line, namely race time, subject to limited
energy and other vehicle, road and environmental constraints.

The selected optimization algorithm depended on the size of the search space and the time required
to run one single simulation. In this case, one race simulation needed between 4 and 6 milliseconds
(ms) of computing time. Then, it was possible to estimate the time needed to execute a defined number
of simulations. When an exhaustive search was not practical due to the expensive running time,
an evolutionary method was recommended.

In the two cases of study, the GA showed faster convergence and better result than the
BB-BC, moreover a monotonic decreasing tendency over the iterations was observed in the graph.
Both evolutionary methods tested did not find a global optimum solution, this was verified with the
LS step added after, given the small improvements obtained with this hybridization in all the cases.

Enlarging the search space by increasing the number of race divisions produced better solutions
than 1, 2 or 3D optimization variables, taking into account that in the case of 10D velocity vectors
finding the global optimum solution was not guaranteed with the methods used. No difference was
obtained with the change of 1D to 2D, but a 3% (equivalent to 7 min on race) reduction was reached
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with the 10D vector. The ES method with 3D vectors remarkably exceeded the total race simulations
executed (with respect to the other test cases) and, therefore, the total computing time.

The optimal velocity found, was the one that makes the battery SOC end near empty. A 30 min
recharging stop was considered if the battery is drained before the finish line but this was evaded in
the optimal strategies found. Although a non constant velocity was proved to be better, the 10 optimal
velocities for the race kept between 78 and 83 km/h on the Clear sky case and between 75 and 84 km/h
on the Cloudy day one. In practical terms if the speed control of the car is manual, this can lead to the
same speed all the race.

The 40% solar irradiance reduction on a complete day represented an increase in the race time of
almost 2 h, going from a racing time of 38.068 to 39.771 h according to the GA+LS optimization results.
The consequences of different environmental cases can also be estimated using this process.

The time efficiency of this optimization method makes it a feasible option to recalculate the
strategy during the race after deviations from the predicted behavior or climate prediction changes,
a new optimal strategy is obtained in less than 3 min of computing time. This method can be applied to
other objective functions and any type of electric vehicle with a given characterization. Other interests
can maximize the distance with limited energy or limited time, minimize the external energy used on
a given path or optimize the recharging times for a given route.
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