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Abstract: Concern about the effects of climatic change on numerous aspects of human life in general
and on agricultural production in particular is growing. The utility of HadCM3 as a tool in climate
change predictions in cross cultural studies is scarce. Therefore, this study sought to investigate and
predict climate change induced temperature and precipitation in Iran. The calibration and validation
using the HadCM3 was performed during 1961–2001, using daily temperatures and precipitation.
The data on temperature and precipitation from 1961 to 1990 were used for calibration, and, for
model validation, data from 1991 to 2001 were used. Moreover, in order to downscale general
circulation models to station scales, SDSM version 4.2 was utilized. The least difference between
observed data and simulation data during calibration and validation showed that the parameter
was precisely modeled for most of the year. Simulation under the A2 scenario was performed for
three time periods (2020, 2050, and 2080). According to our simulated model, precipitation showed a
decreasing trend whereas temperature showed an increasing trend. The result of this research paper
makes a significant contribution to climate smart agriculture in Iran. For example, rural development
practitioners can devise effective policies and programs in order to reduce the vulnerability of local
communities to climate change impacts. Moreover, the result of this study can be used as an optimal
model for land allocation in agriculture. Moreover, a shortage of rainfall and decreased temperatures
also have implications for agricultural land allocation.
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1. Introduction

Iran is home to 77 million people [1], with an area of 1,648,000 km2. It has 1.1% of the global
population and is located in an arid and semi-arid region with a yearly average precipitation of
250 mm [2]. Iran is located in south-west Asia in the arid belt of the world. About 60% of the country is
mountainous and the remaining part (1/3) is deserts and arid lands. The country has a diverse climatic
condition across provinces with significant rainfall variability. The northern and western provinces
experience an average rainfall of 2000 mm per year, whereas the central and eastern provinces of
the country receive an average rainfall of 120 mm per year. Moreover, the minimum and maximum
temperatures in the southwest region reach as low as −20 ◦C and as high as 50 ◦C across the Persian
Gulf. Concern about the effects of climatic change on numerous aspects of human life in general and
on agricultural production in particular is growing. As an example, at farm level, information on
climate variability can be used for planning future crop patterns and the prediction of climate change
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can aid farmer resilience when adapting to climate variability. Moreover, the finding of this study has
implications for climate smart agriculture (CSA) in Iran. For example, predictions of climate change
induced temperature and precipitation aid rain-fed farmers to take proactive measures when selecting
cultivars and planning for water resource management.

Currently, there are several models for predicting climate change. For example, when the focus is
to predict climate under elevated CO2 concentration, General Circulation Models (GCMs) are more
appropriate to use [2]. When coarse spatial resolution is the objective of the climate change information,
General Circulation Models are considered to be the most reliable source [3]. Some of the most famous
general circulation models are HadCM3, PCMI, MPI, CGCM3, and CSIRO-MK2 [4]. HadCM3 (Hadley
Centre Coupled Model) is an Atmosphere-Ocean General Circulation Model (AOGCM) developed at
the Hadley Centre in the United Kingdom. Interestingly, the Third Assessment Report of IPCC in 2001
used an AOGCM as its major model to predict climate change [5]. Thus far, in Iran, the prediction of
climate change has been conducted using PCMI, MPI, CGCM3, and CSIRO-MK2 [2,6–8]. However,
research on predicting climate change using HadCM3 is less common in Iran.

In this research, HadCM3, under the A2 emission scenario, is used. The main advantage of using
HadCM3 over BCM2, ECHO-G, CGCM2, or ECHAM4 is its compatibility in cross-cultural studies
as well as its high resolution (Atmosphere: 2.5 × 3.75 degrees lat-lon resolution, 19 vertical levels,
30 min time step for dynamics, 3 h for radiative transfer; Ocean: 1.25 × 1.25 degrees lat-lon resolution,
20 vertical levels, 1 h time step). Moreover, due to the large scale of the models, downscaling is deemed
important. Downscaling, in general, is defined as a relationship creator factor between large-scale
cycles (predictors) and the climate variables at the local scale (predictands) [9]. Most researchers apply
several downscaling techniques when they are faced with the GCM outputs [10–15]. In this study
the Statistical Downscaling Model (SDSM) suggested by Wilby et al. [16] was used. Furthermore,
this model is based on multiple linear regression.

There are several research studies related to assessing and predicting climate change using the
HadCM3 model. Therefore, in this section, we will focus on studies that have used HadCM3 for
predicting climate change. Kazemi Rad and Mohammadi [7] presented two models of HadCM3 and
MPEh5 for predicting climate change in Gilan Province. The results revealed that mean precipitation
would decrease for 2011–2030. Moreover, during the model validation process, the mean monthly
precipitation, minimum and maximum temperature, and solar radiation were correlated at a 0.05 level
of confidence.

Nury and Alam [17] showed the utility of the statistical downscaling model to assess the output
of the HadCM3 in Bangladesh. They worked with temperature and rainfall data and found statistical
downscaling of GCMs to be an effective tool in minimizing the impacts of climate change. Furthermore,
they concluded that the performance of HadCM3 downscaled by SDSM is acceptable for temperature
and precipitation. They also suggested that GCMs can effectively be used when there are missing
temperature and precipitation data. Johns et al. [18] used an improved coupled model of HadCM3
and concluded that the Mid-USA and Southern Europe regions will eventually tend to become slightly
wetter while Australia becomes drier.

Tate et al. [8] applied HadCM3 to run a water balance sensitivity analysis in Lake Victoria towards
climate change under two different emission scenarios (A2 and B2). The results revealed a significant
change in annual rainfall and evaporation. They further predicted a decline in water levels during
2021–2050. However, the result of their study did not support the projected increase in water levels
later in the century (2070–2099). Taie Semiromi et al. [19] sought to investigate the impacts of climate
change on the groundwater stored above the discharge level using groundwater depletion analysis
in the Bar watershed in Iran. Results showed that, for SRES A2, the HadCM3/LARS-WG predicted
that the mean annual, maximum, and minimum temperatures will rise by 1.1, 3.2, and 4.6 ◦C and
precipitation will decrease by 16.4%, 17.6%, and 31.4% during the projected periods of 2010–2039,
2040–2069, and 2070–2099 respectively, compared to the base period of 1970–2010.
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The predictive changes in the distribution and frequency of cereal aphids in Canada using a
mechanistic mathematical model was assessed by Jonathan [20]. Although HadCM3 projections
predicted an abundance of latitudinal shifts northward with longitudinal variations, when used
with the CGCM2 projections, the summer cereal aphid population showed a declining trend in the
continental region, while the coastal region showed an increasing trend.

Valizadeh et al. [21] studied the impact of future climate change on several characteristics of
wheat production in Iran. These characteristics were the period of maturity, the Leaf Area Index
(LAI), biomass, and grain yield. They utilized two general circulation models (HadCM3 and IPCM4)
under three scenarios (A1, B1, and A2) in three different time periods (2020, 2050, and 2080). Results
demonstrated that there will be a significant decrease in wheat production in the study area. They
further recommended that more mitigation strategies such as crop rotation are required if wheat
growers are to become more resilient to the adverse effect of future climate change.

Sayari et al. [14] used historical data during 1984–2005 to assess the relationships between
evapotranspiration and crop performance in the Kashafrood Basin in Northeast Iran. They used
HadCM3 downscaled outputs to predict precipitation and temperature under the A2 scenario and an
ASD (Automated Statistical Downscaling) model. Results revealed a projected annual precipitation
increase of 4.64%, 5.41%, and 2.22% for 2010–2039, 2040–2069, and 2070–2099, respectively. De Silva [22]
determined the impact of climate change on soil moisture in Sri Lanka. He used data from the outputs
of a HadCM3 model for selected IPCC SRES scenarios for 2050. The selected data was further compared
with the baseline data from the International Water Management Institute (IWMI). The prediction
revealed a slight increase in the annual average rainfall due to an increase in rainfall during the
southwest monsoon. The study further concluded that there would be a reduction in the east monsoon
precipitation but an increase in the annual average temperature. More related studies can be found in
the literature, e.g., [16,23–26].

The main purpose of this study is to assess and predict potential future climate change induced
temperature and precipitation on a regional scale for the Kermanshah synoptic station. The paper
is organized as follows. After the introduction, the study area and data collection are described.
Next, the methodology is presented, discussing the ability of HadCM3 and SDSM to simulate climate
parameters and explaining how future climate scenarios are generated. In the results and discussion
section, the performance of HadCM3 and SDSM for simulating climate parameters is evaluated and
predictions of future climate scenarios are presented and discussed. Conclusions are presented in the
last part.

2. Materials and Methods

2.1. Study Area Description and Data Collection

Figure 1 shows the study area, comprised of the Kermanshah township, which has a total
area of 5658.4 m2 and is located in the western part of Iran. It is subdivided into thirteen counties
including Sanjabi, Razavar, Jalalvand, Baladarband, Miandarband, Alayarkhani, Mahidasht, Faraman,
Firoozabad, Osmanvand, Haftashyan, Gharesoo, and Jaghanarges. The Kermanshah township is
located between latitudes 33◦37′N and 35◦17′N and longitudes 45◦20′E and 48◦1′E. The yearly average
precipitation of the Kermanshah township is about 456.8 mm, the mean annual temperature is 14 ◦C,
and the average relative humidity is over 40% [1]. Agriculture is the primary source of livelihood
and contributes significantly to the food production in Kermanshah Province. The population of the
Kermanshah township was 851,405 in 2016, with 20.6% involved in agricultural production. The main
crops grown in the township are wheat, barley, canola, corn, and sugerbeets [1].
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2.2. GCM-Downscaled Climate Change Predictions for the Study Region

Climate models are numerical tools that are used for studying global, regional, or local climate.
However, due to the changing conditions of the earth, several diverse climate models with different
forms have been developed. These models are further categorized into simple (energy balance),
intermediate (earth system), and comprehensive (global climate). The physical and mathematical
characteristics of these models account for the interrelationships between diverse sections of climate
systems in the biosphere, hydrosphere, cryosphere, atmosphere, and geosphere [9]. However, GCMs
are limited in that they are not appropriate for providing information at finer scales, thus making
them appropriate for local climate impact assessments. This, of course, is not the case for the
computational grid (typically of the order of 100–200 km) and processes. In order to overcome these
limitations, different downscaling techniques such as dynamic and statistical models are proposed [13].
The downscaling method used in this study is SDSM (Statistical Downscaling Model) [16]. The SDSM
includes multivariate analysis, a multiple stochastic weather generator, and weather classification
schemes. In the first step, the model has been calibrated and validated for simulation weather data
using observed data and data from the National Centers for Environmental Prediction (NCEP). When
the SDSM is calibrated, it is further used to downscale HadCM3 data in order to obtain 20 ensembles
of synthetic daily precipitation and temperatures for baseline and future periods. The baseline period
spans from 1961 to 1990, while the future period included 2010–2039, 2040–2069, and 2070–2099
(denoted as 2020s, 2050s, and 2080s, respectively). Among diverse emission scenarios, the A2 scenario
deals with less developed countries that seek technological advancement. Moreover, the A2 scenario
follows sustainable development with a greater emphasis on environmental issues.

In the next and final step, the influence of potential climate change on weather parameters is
measured. In this step, we attempted to compare the climate scenario simulations with the simulated
baseline period, taking into account the bias inherent in the GCM and SDSM models. We then
selected the most influential predictors by making close comparisons between the mean and the
explained variance of the simulated predictands for each month. Based on the observed reference
period (1961–1990), data for current century was downscaled for the study region under the A2
emission scenario.
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2.3. Data Set and Climate Model

Climate data from 1961 to 2001 from synoptic stations in the Kermanshah township have been
used. These daily observations of weather variables include precipitation (mm) and minimum and
maximum temperatures (◦C). The predictor in this study is HadCM3 data under the A2 scenario, which
is considered to be the most probable emission scenario. The SDSM model was used to downscale
general circulation models to station scales.

3. Results and Discussion

Since Kermanshah is located in a semi-arid region, it is significantly affected by climate change.
Therefore, among diverse SRES (Special Report on Emission Scenarios), a more pessimistic scenario
(A2) was selected for the Kermanshah synoptic station. To test the goodness of fit between the
predictor model and the predictand (local temperature and precipitation), we used the HadCM3
GCM with the aid of the SDSM. Furthermore, the residuals from the downscaled data were examined
against adequacy.

3.1. Correlation of Predictors

The SDSM was used to screen the predictors. The prediction of local climate variables was
conducted through corrolation analysis between the predictors (the GCM outputs) and predictands
(local climate variables). In downscaling techniques, selecting predictor variables is one of the most
important steps. Moreover, the predictor variables are derived from the monthly corrolation between
past weather data and local observed climate variables. In this regard, only the predictors with the
highest corrolation with predictands are selected. Tables 1–3 illustrate the highest and least corrolation
between predictors and predictands. Table 1 illustrates the lowest and the highest corrolation between
the variables (predictors andpredictands).

Table 1. Correlation between the predictors and predictands of maximum temperature at the
Kermanshah synoptic station.

NCEP Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ncepmslpaf 0.626 0.362 0.086 0.181 0.343 0.595 0.680 0.739 0.658 0.530 0.751 0.718
ncepp500af 0.827 0.746 0.528 0.149 0.249 0.576 0.655 0.671 0.490 0.480 0.745 0.830
ncepr850af 0.695 0.579 0.370 0.120 0.230 0.456 0.609 0.571 0.391 0.356 0.690 0.702

nceprhumaf 0.743 0.657 0.463 0.177 0.340 0.545 0.680 0.614 0.425 0.384 0.688 0.737
nceptempaf 0.882 0.812 0.654 0.368 0.567 0.778 0.809 0.824 0.683 0.615 0.849 0.912

ncepmslpaf = Mean sea level pressure; ncepp500af = 500 hPa geopotential height; ncepr850af = 850 hPa relative
humidity; nceprhumaf = Near surface relative humidity; nceptempaf = Mean temperature at 2 m.

Table 2 shows the correlation between the predictors and predictands for minimum temperature
for each month at the Kermanshah synoptic station. The strongest correlation in each month is shown.

Table 2. Correlation between predictors and predictands of minimum temperature at the Kermanshah
synoptic station.

NCEP Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ncepmslpaf 0.652 0.457 0.170 0.289 0.543 0.642 0.685 0.645 0.446 0.437 0.622 0.756
ncepp500af 0.630 0.497 0.310 0.154 0.177 0.429 0.566 0.554 0.370 0.283 0.520 0.605
ncepr850af 0.93 0.6 0.32 0.31 0.212 0.168 0.350 0.413 0.282 0.303 0.438 0.416

nceprhumaf 0.43 0.115 0.311 0.470 0.567 0.388 0.116 0.53 0.7 0.33 0.12 0.22
nceptempaf 0.800 0.710 0.562 0.530 0.595 0.662 0.722 0.705 0.534 0.503 0.702 0.817

ncepmslpaf = Mean sea level pressure; ncepp500af = 500 hPa geopotential height; ncepr850af = 850 hPa relative
humidity; nceprhumaf = Near surface relative humidity; nceptempaf = Mean temperature at 2 m.
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Table 3. Explained variance of each selected predictor for precipitation at the Kermanshah
synoptic station.

NCEP Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

ncepp5_faf 0.065 0.097 0.022 0.038 0.044 0.046 0.087 0.124 0.121 0.044 0.098 0.187
ncepp500af 0.062 0.090 0.039 0.030 0.063 0.109 0.195 0.191 0.167 0.044 0.117 0.163
ncepr850af 0.118 0.099 0.073 0.051 0.097 0.143 0.257 0.220 0.226 0.088 0.169 0.228

Nceprhumaf 0.116 0.110 0.075 0.058 0.121 0.146 0.253 0.219 0.223 0.082 0.171 0.231

ncepp5_faf = 850 hPa level pressure; ncepp500af = 500 hPa geopotential height; ncepr850af = 850 hPa relative
humidity; nceprhumaf = Near surface relative humidity.

Table 3 presents the predictors that have been selected by comparing the mean and the
explained variance of the simulated predictands for precipitation in each month at the Kermanshah
synoptic station.

3.2. Calibration and Validation of Downscaled Temperature and Precipitation

The calibration and validation of the HadCM3 was performed using 41 years (1961–2001) of
daily temperature and precipitation. The data on temperature and precipitation from 1961 to 1990
were used for calibration, whereas the data from 1991 to 2001 were used for model validation.
Figures 2 and 3 illustrate the calibration and validation graphs of downscaled minimum temperature
at the Kermanshah station. These figures show an acceptable compliance between the observed and
simulated data. Thus, the model has sufficient power in model simulation.
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The least difference between observed data and simulation data in minimum temperature during
calibration and validation shows that the parameter was precisely modeled during most of the year.



Sustainability 2017, 9, 146 7 of 13

During the calibration period, the most significant difference between observed data and simulated
data occurred during June, when the simulated data had 0.96 ◦C more than observed data. From the
visual inspection, the downscaled data series resembles the observed series. Moreover, during the
validation period, the simulation data in July decreased by 0.85 ◦C compared to observed data (Table 4).

Table 4. Calibration and validation of the monthly average minimum temperature at the Kermanshah
synoptic station.

Parameter Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

minimum
temperature

Calibration −3.87 −2.04 1.56 5.43 9.00 12.87 15.53 14.44 10.47 5.98 1.27 −2.40
Observed −4.06 −2.76 1.34 5.40 8.55 11.906 16.406 15.10 10.26 6.22 1.67 −1.57

minimum
temperature

Validation −2.17 −1.56 1.62 5.44 9.51 13.88 17.34 16.60 11.82 6.90 2.13 −0.909
Observed −2.92 −2.03 1.40 5.95 9.50 13.84 18.19 16.68 11.51 7.17 2.41 −0.424

Figures 4 and 5 indicate calibration and validation graphs of maximum temperature at the
Kermanshah synoptic station. Interestingly, the observed and simulated data had acceptable
compliance. Therefore, it can be concluded that our model has predictive power. Moreover, the
least difference between observed data and simulation data during calibration and validation shows
that the parameter was precisely modeled for most of the year. During the calibration period, the most
significant difference between observed data and simulated data occurred during January, when the
simulated data was 1.19 ◦C higher than the observed data. Based on statistical and graphical results, it
is clear that the downscaled data series is almost close to the observed series. Moreover, during the
validation period, the simulation data in January increased by 1.33 ◦C, compared to the observed data
(Table 5).
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Table 5. Calibration and validation of the monthly average maximum temperature at the Kermanshah
synoptic station.

Parameter Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

maximum
temperature

Calibration 7.57 9.84 14.33 19.75 26.93 34.05 37.35 36.14 31.75 24.24 16.06 10.12
Observed 6.38 8.90 14.54 19.89 26.72 33.99 37.87 36.85 32.16 24.72 16.51 10.07

maximum
temperature

Validation 9.74 10.99 15.85 21.22 28.32 35.05 38.48 37.90 32.64 24.72 15.99 11.19
Observed 8.41 10.83 15.22 21.86 28.24 35.22 38.89 38.26 32.49 25.15 17.06 11.48

Figures 6 and 7 illustrate calibration and validation graphs of the precipitation at the Kermanshah
synoptic station. The model has rigor due to the strong compliance between the observed and
simulated data. According to the results for most months of the year, the differences between observed
and simulation data of precipitation during calibration and validation slight , and this shows that
the parameter was precisely modeled. During the calibration period, the most significant difference
between the observed data and the simulated data occurred during January and February, when
simulated data had 1.1 mm more than observed data. Moreover, the downscaled data series is close to
the observed series. However, during the validation period, the simulated data in October increased
by 0.62 mm compared to the observed data (Table 6).
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Table 6. Comparison of simulated and observed precipitation, estimated with the SDSM at the
Kermanshah synoptic station.

Parameter Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Precipitation Calibration 3.3 3.3 3.0 2.1 0.9 0.2 0.1 0.1 0.2 0.7 1.6 2.7
Observed 2.2 2.2 2.8 2.3 1.0 0.0 0.0 0.0 0.0 1.0 1.7 2.3

Precipitation Validation 1.38 2.51 2.33 2.189 0.871 0.113 0.054 0.074 0.387 1.458 2.488 2.232
Observed 1.99 1.93 2.67 1.63 0.802 0.033 0.070 0.0002 0.22 0.838 2.11 1.854
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3.3. Prediction of Temperature & Precipitation Using HadCM3

HadCM3, under the A2 scenario, has been used for investigating climate change in this study.
Accordingly, precipitation and minimum and maximum daily temperature parameters were calculated
in the 2010–2099 time period. Figure 8 shows the differences between the observed (1961–1990)
and predicted (2010–2099) time periods in the monthly minimum temperature under A2 scenarios.
According to Table 7, during the 2020 period, the largest difference between observed and simulated
data occurred during October, when the simulated data was 1.87 ◦C higher than the observed data.
The monthly average of minimum temperature increased, compared to the baseline for the 2020 series,
by 0.98 ◦C. Also, during the 2050 time series, the largest difference between the observed data and
the simulated data occurred during October, when the simulated data showed 3.64 ◦C high than
the observed data. Moreover, the monthly average temperatures increased by 1.99 ◦C, compared
to baseline for the 2050 series. In addition, Table 7 shows that the largest difference between the
observed and simulated data occurred during October, when the simulated data was 4.97 ◦C higher
than observed data, and that the monthly average minimum temperature would increase by 3.3 ◦C,
compared to the baseline for 2080 series.
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Table 7. Differences of the monthly predicted (2010–2099) and observed (1961–1990) minimum
temperature under the A2 scenario.

Parameter Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean

minimum
temperature

baseline −2.93 −0.074 1.61 3.15 5.39 9.79 13.50 13.20 9.51 5.39 −0.20 −2.13 4.63
2020 −2.25 −0.08 2.51 4.00 5.97 10.5 14.58 13.95 10.56 7.26 1.45 −1.16 5.61
2050 −0.92 0.059 3.25 4.73 6.59 11.58 15.8 15.47 11.71 9.03 2.08 −0.43 6.62
2080 0.31 1.56 4.26 5.57 7.5 12.61 17.3 17.07 13.34 10.36 4.22 1.02 7.93

Table 8, compares observed and simulated monthly maximum temperatures under A2 scenarios.
The results show that the largest difference between observed and simulated data during the 2020
period happened during June, when the simulated data was 1.67 ◦C higher than the observed data.
Overall, the monthly average maximum temperature difference of 1.25 ◦C would increase compared
to the baseline for the 2020 period. On the other hand, the largest difference between the observed
and simulated calculations during the 2050 period occurred during June, when the simulated data
was 3.44 ◦C higher than the observed data, and the monthly average temperature difference of 2.58 ◦C
tended to increase compared to the baseline. During the 2080 period, the monthly average maximum
temperatures increased by 4.8 ◦C compared to the baseline, and the largest difference between the
observed and simulated data happened during June, when the simulated data was 6.15 ◦C higher than
the observed data. Figure 9 illustrates the prediction of the monthly maximum temperature under the
A2 scenario during different time periods at the Kermanshah synoptic station
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Table 8. Differences of the monthly predicted (2010–2099) and observed (1961–1990) maximum
temperature under the A2 scenario.

Parameter Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean

maximum
temperature

baseline 8.79 10.31 14.08 18.07 25.3 33.11 36.64 35.79 31.86 25.21 17.09 10.7 22.25
2020 9.63 11.54 15.4 19.26 26.57 34.78 38.03 36.9 33.07 26.5 18.36 11.91 23.50
2050 11.46 12.21 15.89 20.18 27.64 36.55 39.26 39.02 34.54 28.27 19.85 13.05 24.83
2080 13.37 14.43 18.23 22.64 30.11 39.26 41.23 41.52 37.01 30.97 21.48 14.76 27.05
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Differences in the monthly predicted (2010–2099) and observed (1961–1990) precipitation under
A2 scenarios are shown in Table 9. According to this table, the monthly average precipitation decreased
compared to the baseline in most of the months for the 2020 series. Interestingly, the largest difference
between the observed data and the simulated data for the 2020 period, happened during February,
October, November, and December, when the simulated data were 0.05, 0.02, 0.09, and 0.4 mm,
respectively, higher than the observed data. Also, the largest difference between the observed and
simulated data occurred during January, February, March, and December, in which simulated data
had 0.38, 0.36, 0.17, and 0.25 mm, respectively, more than the observed data during the 2050 series, and
the monthly average precipitation decreased compared to the baseline during this eight month period.
Also, during the 2080 series, the monthly average precipitation decreased compared to the baseline for
most of the year. However, the largest difference between the observed data and the simulated data
occurred during January, February, and December, in which simulated data was higher by 0.55, 0.34
and 0.67 mm, respectively, than the observed data. Figure 10 illustrates the prediction of the monthly
precipitation under the A2 scenario during different time periods at the Kermanshah synoptic station.

Table 9. Differences of the monthly predicted (2010–2099) and observed (1961–1990) precipitation
under the A2 scenario.

Parameter Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean

Precipitation

baseline 1.93 2.53 1.79 1.61 0.67 0.50 0.22 0.15 0.41 0.44 3.16 2.84 1.35
2020 1.88 2.58 1.72 1.59 0.42 0.43 0.18 0.15 0.35 0.46 3.25 3.24 1.35
2050 2.31 2.89 1.96 1.55 0.41 0.41 0.17 0.12 0.34 0.42 2.92 3.09 1.38
2080 2.48 2.87 1.67 1.01 0.11 0.34 0.13 0.14 0.29 0.36 2.77 3.51 1.31
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4. Conclusions

Crop production is the major agricultural activity in the Kermanshah township. This study has
established that precipitation and temperature in the study area have been decreasing and increasing,
respectively. In other words, under scenario A2, three time periods (2020, 2050, and 2080) were
simulated. According to our simulated model, precipitation showed a decreasing trend, whereas
temperature showed an increasing trend. This, in turn, negatively affects the sustainable production
and management of water resources in the western part of Iran. The question is what impact this
climate prediction has for the region. First, the findings of this study have great implications for
devising climate change impact adaptation policies, as well as for managing and mitigating the
impacts and reducing the vulnerabilities of local communities. This may come as an early warning
to producers engaged in agricultural production. In this case, farmers must take adaptive measures
to offset the negative impacts of climate variability. For example, a combination of strategies to
adapt, such as proper timing of agricultural operations, crop diversification, the use of different crop
varieties, changing planting dates, the increased use of water and soil conservation techniques, and
diversifying from farm to non–farm activities, may be required. Although Iranian farmers are using
certain coping strategies to mitigate the impact of climate variability, they need to take proactive
measures in their adaptations to climate change. Currently, farmers use contour ridges as a strategy
to maximize penetration and enhance moisture conservation. In this case, minimum tillage tends to
conserve available water and thus improve germination rates and control pest and diseases. More
research needs to be done on tillage practices in response to climate change impacts.

The result of this study can be used as an optimal model for land allocation in agriculture.
A shortage of rainfall and decreased temperatures have implications for land allocation as well.
For example, drought resistant crops with minimum water requirements are suggested. We also
suggest that a better approach to continued research in this field, at the very least, should include both
climate change and land allocation. Moreover, giving priority to the prediction of climate change and its
role in agricultural and non-agricultural land allocation would greatly assist climate change research.
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