
sustainability

Article

Technology for Production Scheduling of Jobs for
Open Innovation and Sustainability with Fixed
Processing Property on Parallel Machines

Sang-Oh Shim 1 and KyungBae Park 2,*
1 Department of Business Administration and Accounting, Hanbat National University,

16-1 Deokmyung-Dong, Yuseong-Gu, Daejeon 34158, Korea; soshim@hanbat.ac.kr
2 Department of Business Administration, Sangji University, 660 Woosan-Dong, Wonju-Si,

Kangwon 26339, Korea
* Correspondence: kbpark@sangji.ac.kr; Tel.: +82-10-2896-0745

Academic Editors: Tan Yigitcanlar and Marc A. Rosen
Received: 29 June 2016; Accepted: 30 August 2016; Published: 7 September 2016

Abstract: In this paper, a technology for production scheduling is addressed for the sustainability
and open innovation in a manufacturing business. Methodologies for scheduling jobs on parallel
machines with the fixed processing property are devised. The fixed processing property, in which
a group of specific jobs can be processed on the predetermined machine, can be found in most
manufacturing systems due to the quality issues. Usually, even though parallel machines can process
various types of jobs, the fixed processing is preferred as to not deteriorate products’ quality in real
manufacturing systems. To minimize makespan of jobs, which is defined as the final completion
time of all jobs, technology for production scheduling is developed. Several heuristic algorithms are
devised for solving the problem and to evaluate performance of the suggested algorithms, a series
of computational experiments is performed. Results show that better solutions are obtained by
the suggested algorithms in a reasonable amount of computation time. That is, if the proposed
technology is applied to the production scheduling system of a real manufacturing business, it can be
expected that quantity and quality of the product will be enhanced since they are influenced by the
production scheduling.

Keywords: technology; open innovation; manufacturing; sustainability; heuristics; production
scheduling; parallel machines

1. Introduction

Nowadays, in the field of operation management and supply value chain of manufacturing
business, open innovation and sustainability are getting more necessary [1,2]. For example, in view of
higher level hierarchy of manufacturing business, i.e., policy and strategy making, issues for using Big
data in information technology (IT) products industries are discussed [1] and the relationship between
total quality management (TQM) practices and innovative performances is addressed [2]. On the
other hand, in view of a lower level, i.e., operational level, smart factory, also called “industry 4.0”,
is currently raised for the sustainability.

It is usually defined as the automation manufacturing system composed of cyber-physical systems
(CPS), internet of things (IoT), and cloud computing [3]. Through the smart factory, it can be expected
that customization of products, mass production, manufacturing flexibility, and improvement of
products’ quality are possible. In addition to external components of the smart factory, i.e., CPS, IoT,
and cloud computing, internally, one of the most important thing is intelligent production scheduling,
i.e., how to schedule jobs effectively and efficiently to maximize production quantity and quality,

Sustainability 2016, 8, 904; doi:10.3390/su8090904 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
http://www.mdpi.com/journal/sustainability

Sustainability 2016, 8, 904 2 of 10

customer satisfaction, and so on. In this paper, a technology for production scheduling of jobs in
manufacturing systems is addressed since sustainability in manufacturing operation scheduling is
discussed lately [4,5]. In those studies, scheduling is one of the very important key factors at the
operational level for the sustainability since it influences production quantity, quality, and customer
satisfaction. Also, according to the result in scheduling, resource consumption, energy efficiency,
and emissions can be effected.

We proposed several heuristic algorithms for scheduling jobs on parallel machines with the fixed
processing property in which a group of specific jobs can be processed on the predetermined machine.
This property can be found at most manufacturing systems which produce state-of-the-art technology
goods, such as semiconductors, liquid crystal displays, and so on, due to quality issues. Usually, even
though it is known that parallel machines can process various types of jobs, this property is preferred
as to not deteriorate products’ quality in real manufacturing systems. Also, in this workstation, when
changing processes of different groups of jobs, operations for changing types of groups, called setup,
are necessary.

In semiconductor fabrication, most of the workstations, such as chemical vapor deposition (CVD)
and ion implant processing (IIP) are composed of parallel fixed processing machines, each of which
can process only a set of groups that is preferred to the predetermined machine. Also, to process jobs,
since changes of process that specify processing conditions are required for each group of jobs, a setup
occurs when changing to a different group of jobs.

In real manufacturing, setup operations are not preferred due to quality issues and their duration,
that is, if there are jobs of changing processes on the machines, products might be damaged due to
the previous process. Also, if setup time is relatively long, compared with the processing time of jobs,
managers want to reduce the number of setup operations. Hence, these workstations, i.e., CVD and
IIP, have fixed processing property for high utilization of the machine and quality of products even
though all machines are parallel so that they can process all product groups. Once a group of jobs is
processed on a machine, the same group of jobs is wanted to be processed on the same machine if
there is a group of jobs. In this paper, we assume that the fixed processing property is known, that is,
we know that each machine has predetermined processes.

Usually to increase the production quantity, in the manufacturing firm, makespan is used as a
performance measure. It is defined as a completion time of last completed job, in this paper, technology
for production scheduling is developed, that is, several heuristic algorithms are devised for solving
the problem considered here. The remainder of this paper is organized as follows. In the next section,
the literature review is suggested. In Section 3, several heuristics algorithms are devised and in
Section 4, to evaluate performance of the suggested algorithms, a series of computational experiments
is performed on a number of randomly generated test problems and the results are shown. In the final
section, we summarize this paper.

2. Literature Reviews

A number of studies about scheduling technology to enhance the ability of production in
manufacturing systems have been done [6–14]. On the other hand, studies for parallel machines
with fixed processing property are very rare.

Few studies on scheduling problems for parallel fixed processing property are addressed. Lee and
Kim [15] considered a scheduling technique in a flexible manufacturing system in which each job
should be assigned to one of the predetermined group of machines. Glass et al. [16] considered the
scheduling problem on m-machines with the fixed processing property, in which only one machine
must process the predetermined jobs, to minimize the makespan. On the other hand, in this study,
each group of job can be processed on several fixed machines, therefore, jobs in the same group can
be split to process them on different machines if they have the same fixed processing property. Also,
Goemans [17] deals with scheduling problem on three machines with fixed processing property to

Sustainability 2016, 8, 904 3 of 10

minimize the makespan and develop a near optimal algorithm. Several dispatching rules, considering
fixed processing property are proposed by Wu et al. [18].

For the problem of minimizing the makespan on the parallel shops—that is a general case of the
problem considered here—lots of studies are done. For the representative examples, by assigning
the longest processing time job to a machine with the earliest possible staring time, dispatching rule,
named LPT (Longest Processing Time), is introduced [19]. For the same problem, Coffman et al. [20]
developed the scheduling algorithm, i.e., the MULTIFIT algorithm, to solve the bin packing problems.
Based on the LPT and MULTIFIT rules, later studies for minimizing makespan in parallel machine
shops are developed. On the other hand, heuristic methods and a neural network are used by
Lee et al. [21] and Akyol and Bayhan [22], respectively.

Lots of scheduling problems on parallel machine shops with setup operations are studied in
previous studies. Wittrock [23] and So [24] dealt with the scheduling problem with two types of setup,
minor and major. Also, Xing and Zhang [25] developed a heuristic algorithm in which a group of
job can be split and processed on more than two parallel machines by using results of Monma and
Potts [26].

3. Technology for Production Scheduling

As described above, to minimize the completion time of the last job, i.e., makespan of jobs,
this study addresses the scheduling problem in which several groups of jobs are processed on the
predetermined parallel machine which has a fixed processing property while considering setup
operations between different groups of jobs. Jobs are already grouped according to those processes,
i.e., processing condition, and processing (and setup) time is same if they are in same group. We assume
that it is already known that process information is assigned to each machine, so that each machine
should complete jobs of the group specified to the assigned process.

Setup operation is sequence independent and note that setup time is relatively longer than
processing time. Also, we assume that all jobs to be scheduled are waiting at the time of scheduling;
preemption of job is not allowed.

In the parallel-machine shop, since it is known that the schedule in which jobs of same group are
consecutively sequenced is dominant for the regular measures including makespan [27], we do not
consider the sequence in which jobs of same group are sequenced separately on the same machine.
Also, since the makespan is defined as the completion time of the last job, sequence of jobs on each
machine is not important and only assignment of jobs should be considered. Therefore, this scheduling
problem can be transformed to the one of assigning jobs of groups to the machines where these jobs of
same group are consecutively sequenced.

In this paper, we present several heuristics to develop the technology for scheduling jobs on the
parallel machines with the fixed processing property. First, we develop the scheduling algorithm for
making the initial schedule by assigning jobs of group to the fixed processing machine.

3.1. Developing the Initial Schedule by Considering Subproblems

To develop the initial schedule, we divide the original one into independent subproblems. Each
subproblem is solved independently and then we combine the results of all subproblems so that
the initial schedule is obtained. To solve each one, various rules are developed and algorithms for
combining each result are suggested.

To divide the original problem into subproblems, by assigning each group of jobs to only one
subproblem, it can be transformed to a bin packing problem with identical size. First, we figure
out which groups can be processed on only one machine. For example, if group 1 and group 2 are
processed on only machine 1 due to a fixed processing property, then a subproblem is two groups on
a single machine scheduling problem. Then, we figure out which groups can be processed on only
two machines. For example, if groups 3 and 4 can be processed on machine 1 and 2, then a second
subproblem can be a two-group scheduling problem with two machines. We repeat this procedure until

Sustainability 2016, 8, 904 4 of 10

all groups are assigned to subproblems. Therefore, the number of subproblems cannot be exceeded to
the number of group of jobs.

To solve each subproblem, i.e., n-job, m-machine scheduling problem to minimize makespan,
obtained in the above procedure, two methods are devised. In the first method based on the results of
Graham [19], a job of a group with the highest priority is assigned to the machine with the earliest
starting time, i.e., least workload. Hence, we use four priority rules for choosing a job, (i) shortest
processing time; (ii) longest processing time; (iii) number of remaining unscheduled jobs of a group;
and (iv) total processing time of remaining unscheduled jobs of a group.

Since the subproblems can be transformed to bin packing problems, in the second method based
on the results of Coffman et al. [20], one is modified from the MULTIFIT algorithm is developed. First,
we compute minimum and maximum bin size considering setup requirements. Minimum bin size
of each subproblem, named as MIN in this study, is computed with the assumption that processing
and setup operations time are assigned evenly to each machine. Therefore, in each subproblem, MIN
is obtained as ∑

j∈N
pj/E + s ×max(0, |G/E|) where pj is a processing time of a job j, N is a set of

jobs, E is a number of machine, s is a time of setup operation, and G is a number of group of jobs,
respectively. On the other hand, maximum bin size of each subproblem, named as MAX, can be
computed suppose that all jobs are assigned to only one machine. Hence, MAX is calculated as
∑

j∈N
pj + s× G. The procedure of the second method is as follows:

(i) Set initial size of each bin, i.e., machine, as (MAX + MIN)/2.
(ii) Select a job using by priority rules described in the first method. If there is no more job to be

assigned, then the current size of bin and allocation are the initial makespan and schedules,
respectively, stop.

(iii) Select a machine with the earliest possible start time among available machines of which the
workload allocated does not exceed the current size of bin. If there is no available machine,
set MIN as the current size of bin and go to step (i).

(iv) If current size of bin is less than the current workload of the machine, then assign the job to the
machine (if setup operation is required, then add the time of setup operation) and update the
machine workload. Otherwise go to step (ii).

3.2. Developing the Initial Schedule by Original Problem

In the above algorithms, the problem is decomposed into the several problems to obtain the initial
schedule. On the other hand, in this study we solve the original problem directly by suggesting two
methods. In the first method, we assign the all jobs to the fixed processing machine evenly. That is,
if there is a group of jobs to be allocated to only one machine, then all jobs of this group are assigned to
the machine. Also, if there is a group to be allocated to three machines by the fixed processing property,
then all jobs are split into three sub-jobs and are assigned to those machines. After assigning all groups
of jobs by considering setup, for the all split groups, the sub-jobs with the smallest processing time in
the machines with the maximum workload are moved into the machine with the smallest workload
among ones which has same group of sub-jobs. If there is no improvement for makespan during
moving procedure, we select the next sub-job. This moving procedure is repeated until all split groups
are checked. Then, the initial schedule is obtained.

In the second method, based on the dynamic priority rules for groups and machines developed
here we propose the modified MULTIFIT algorithm. We set Pge as priority for group of jobs, g,
and machine, e. For group g and machine e, initial Pge is set to 1 divided by the number of the fixed
processing machines, which can process group g and set to 0 for the machine, which cannot process
group g. We select the group and machine with the highest Pge and a job of the selected group is
assigned to the selected machine and update workload and dynamic priorities.

Sustainability 2016, 8, 904 5 of 10

Similarly, as described in the above MULTIFIT algorithm, minimum bin size (MIN) and
maximum bin size (MAX) for the original problem are computed as following. MIN is obtained
as ∑

j∈N
pj/E + s×max(0, |G/E|) where Pj is a processing time of a job j, N is a set of all jobs, E is the

number of all machines, s is a time of setup operation and G is a number of all groups, respectively.
Also, MAX is calculated as ∑

j∈N
pj + s× G. The procedure of the second method is as follows:

(i) Set initial size of each bin, i.e., machine, as (MAX + MIN)/2.
(ii) Select a group and a machine with the highest priority using by dynamic priority rules, Pge.

In case of ties, select the group with longest processing time and a machine with the smallest
estimated workload. The estimated workload is computed as the sum of the current workload and
workload (multiplied by Pge) obtained by assuming that remaining jobs of other groups except
for the selected group are assigned to the machine. If there is no more job to be assigned, then the
current size of bin and allocation are the initial makespan and schedules, respectively, stop.

(iii) If the allocated workload exceeds the current size of bin (if setup operation is required, then add
the time of setup operation), set MIN as the current size of bin and go to step (i). Otherwise, assign
the job to the machine and update the machine workload and Pge for all groups and machines
as follows. For selected group and non-selected machines, new Pge is set to 0, for non-selected
groups and selected machine, new Pge is computed as (1 − current workload/current bin size)
× current Pge, for non-selected groups and machines, new Pge is calculated as (1 − current
workload/(number of non-selected machines − 1) × current bin size) × current Pge. Go to
step (ii).

3.3. Construction Method for Improving the Initial Schedule

By using the four algorithms suggested in Sections 3.1 and 3.2, the initial complete schedules can
be obtained and these are improved by a construction method. The improvement is done by moving
jobs between two machines. The procedure to improve the initial schedule is as follows:

(i) From the initial schedule, make Ue as the set of machines in descending order of workload.
(ii) Select the first machine in Ue and denote the machine as FROMEQP.

(iii) Figure out the scheduled groups of jobs on the machine in descending order of their processing
time and make Ug as the set of these groups.

(iv) Select the first group in Ug and denote the group as MOVEGRP. If there is no selected group,
delete the FROMEQP in Ue and go to step (ii).

(v) Find another machine which can process the MOVEGRP by the fixed processing property.
If there is no machine, then delete MOVEGRP in Ug and go to step (iv). Otherwise, make Te as
set of them in ascending order of workload.

(vi) Select the first machine in Te and denote this machine as TOEQP.
(vii) By using property suggested in Kim [28], compare the workloads of the selected machine,

TOEQP, with the one of the machine, FROMEQP, assuming that a job of the selected group,
MOVEGRP, is moved from FROMEQP to TOEQP (if setup operation is required, then apply
setup time).

(viii) If there is an improvement for makespan measure, then move the job and repeat previous step
until no more improvement is done. Otherwise, delete TOEQP in Te and go to step (vi). If there
is no element in Te, then delete the selected group in Ug and go to step (iv).

(ix) If there is no more improvement on the machine, FROMEQP, then delete it in Ue and go to
step (ii).

(x) Repeat this procedure until there is no element in Ue.

Sustainability 2016, 8, 904 6 of 10

4. Computational Experiments

In order to evaluate the performance of the proposed heuristic algorithms, a series of
computational tests on randomly generated problem instances are performed reflecting real
manufacturing situation. All the algorithms presented in this study were coded in C programming
language, and computational tests were performed on a personal computer with an Intel Core i3-4030U
processor operating at 1.9 GHz clock speed.

Four heuristic algorithms introduced in Section 3, which are named as ALG1, ALG2, ALG3,
and ALG4, respectively, are tested for the evaluation. The ALG1, suggested in Section 3.1, is the one
which solves subproblems by using four priority rules separately and uses construction methods
(Section 3.3) for improvement. ALG2, suggested in Section 3.1, is the one which solves subproblems
by using modified MULTIFIT algorithm separately and uses construction methods (Section 3.3) for
improvement, ALG3, suggested in Section 3.2, is the one which solves original problem by moving
sub-jobs considering makespan and uses construction methods (Section 3.3) for improvement and
ALG4, suggested in Section 3.3, is the one which solves original problem by modified MULTIFIT
algorithm and uses construction methods (Section 3.3) for improvement. We compare them with an
existing method that has been used in a real manufacturing systems. In this method, when a machine
becomes available, a job in the same group is selected to avoid setup operation, that is, continuing
same group operation, and assigned to the machine (If there is no job of same group, a job is selected
randomly and setup occurs).

As the performance measures, the number of best solution (NBS) found by each algorithm and
percentage reduction (PR), defined as 100 × (1 − Ma/Mr), where Ma is the makespan obtained by
algorithm a, Mr is the makespan obtained from the method currently used in real manufacturing
system, are used. If the performance of the suggested algorithm, i.e., Ma, is better than the one of the
current method used in real situation, i.e., Mr, PR can be expected to be close to 100%.

For the tests, we generate 900 test instances randomly, 50 problems for each of all 18 combinations
of three levels for the number of jobs (30, 60, and 90), three levels for the number of groups (3, 6, and 9),
and two levels for the number of machines (5 and 10). Processing times of a job are generated from
discrete uniform distribution with range [5,25]. Setup time is set to 30 for all groups. For the fixed
processing property, the number of groups that each machine can process is generated from uniform
distribution with range [1, X], where X is a number of group and each group are determined arbitrarily.

The overall results of the computational experiments are shown in Table 1. All of the suggested
algorithm perform better than the method used in real manufacturing system since the all average
percentage reductions are greater than zero. Additionally, all average PR values are more than 10%,
it implies that makespan in the real manufacturing system can be reduced significantly by using the
suggested algorithms. Also, all solutions are obtained in less than 0.1 s in terms of computational time.

Regardless of the various sizes of jobs, groups, and machines, the better performance of the
algorithms are shown consistently, therefore, it means that the suggested algorithms are robust so
that these are suitable for real manufacturing systems. Although the results without applying the
construction methods for improvement (Section 3.3) are not shown in the results, better performance
was found at most of the problems with the range of PR from 0% to 10%. In few problems, the PR values
without applying the construction methods for improvement were negative. However, after applying
the construction methods for improvement, solutions of all the problems were improved significantly.

Even if all the algorithms show better performance, it seems that ALG3 works better than
others, i.e., ALG1, ALG2, and ALG4 due to the number of best solution obtained by ALG3. That is,
the algorithm in which the initial schedule obtained by solving the original problem is improved by the
construction methods is good at solving this scheduling problem with the fixed processing property.
However, as it can be expected from the table, there are no significant differences on the PR values
between ALG3 and ALG1, ALG3, and ALG4 statistically (There is significant difference only between
ALG3 and ALG1).

Sustainability 2016, 8, 904 7 of 10

Table 1. Overall results of the suggested algorithms.

Number
of Jobs

Number
of Groups

Number of
Machines ALG1 ALG2 ALG3 ALG4

30

3
5 13.8 † 14 †† 12.1 11 22.3 29 20.1 25
10 15.5 12 13.2 11 20.5 25 19.8 20

6
5 20.1 16 11.5 11 19.8 15 22.3 18
10 18.1 17 10.9 10 22.3 21 18.4 19

9
5 18.3 16 13.2 12 18.5 20 19.6 21
10 19.4 20 14.5 15 19.5 20 21.7 22

60

3
5 15.4 14 17.2 16 21.4 19 22.7 25
10 22.3 25 11.4 10 20.9 23 20.5 22

6
5 14.3 15 13.4 12 23.4 20 22.1 21
10 16.4 12 14.2 12 22.5 25 25.6 30

9
5 14.1 13 13.0 14 25.1 21 24.1 28
10 19.4 20 12.9 14 22.3 26 20.7 22

90

3
5 17.5 19 14.1 16 20.8 25 18.4 20
10 17.2 18 15.8 16 27.4 29 19.4 22

6
5 18.5 19 13.2 12 25.3 22 20.1 19
10 18.2 19 14.6 11 22.2 21 15.0 16

9
5 20.2 21 16.2 10 23.0 20 18.9 13
10 22.3 28 13.9 17 25.9 34 23.5 26

† Percentage reduction of heuristic algorithm to the result of practice; †† Number of cases that heuristic algorithm
found the best solution.

To evaluate the absolute performance of the suggested algorithms, the best solution among the
ones obtained from the algorithms is compared with optimal one. To obtain the optimal solution,
we formulate the problem considered here as a mixed integer programming. Here, notation used in
the mixed integer programming is suggested.

pg processing time of a job of group g
s sequence independent setup time
e index for machines
g index for groups

Jg set of jobs of group g
Eg set of machines on which jobs of group g can be processed, i.e., fixed processing property

xgje decision variable, which is equal to 1 if job j of group g is assigned to machine e, otherwise, 0,
for e ∈ Eg

yge decision variable, which is equal to 1 if jobs of group g are assigned to machine e, otherwise, 0,
for e ∈ Eg

Also, the mixed integer programming formulation is as follows:

Minimize Cmax (1)
Subject to xgje ≤ yge ∀g, ∀e, ∀j ∈ Jg (2)

∑
g

syge + ∑
g

∑
j∈∈

g

xgje pg ≤ Cmax ∀e (3)

∑
e

xgje = 1 ∀g, ∀j ∈ Jg (4)

xgje ∈ {0, 1} ∀g, ∀e, ∀j ∈ Jg (5)
yge ∈ {0, 1} ∀g, ∀e (6)

Sustainability 2016, 8, 904 8 of 10

Constraint (1) and (2) represent that the performance measure of the problem is makespan and
setup operation is needed, respectively. Also, Constraint (3) shows the workload (completion time)
on each machine, and constraint (4) introduces that a job should be assigned to only one machine.
Last two constraints, (5) and (6), describe that decision variables are binary.

Since the mixed integer programming could not solve the large-sized problem in an acceptable
amount of computation time, the best solution among the ones obtained from the algorithms is
compared with optimal one for the small sized problem. The optimal solution is obtained by using
commercial mathematical programming tool, ILOG CPLEX version 10.0. We use percentage gap as
the performance measure, which is computed as 100 × (Mb/Mo − 1) where Mb is the best makespan
obtained by the suggested algorithms and Mo is the optimal makespan obtained by solving the mixed
integer problem. We test to obtain the optimal solution in 600 s (If the optimal solution cannot be
obtained in 600 s, we stop the program and obtain the current solution). We generate 20 test instances
randomly, 10 problems for 2 combinations of 30 jobs, 5 machines and 3 and 6 for the number of groups.
Other data are generated in same way described above.

In Table 2, the test results in order to evaluate the absolute performance of the suggested
algorithms are shown. Since the percentage difference from the optimal solution is less than 4%,
it argues that the solution quality is very good, even though we test only a small-sized problem due
to the limitation of computation time. Also, it can be seen that the computation time to obtain the
solution is only around 0.04 s in the suggested algorithms as well as the solution quality is near
optimal (less than 4 %). Therefore, the proposed algorithms show very good performance in terms of
computation time and solution quality.

Table 2. Result of comparison tests over optimal solutions.

Number of Jobs Number of Groups Number of Machines APG † ACTH †† ACTO †††

30 3 5 3.85 0.03 485.1
30 6 5 3.25 0.04 452.5

† Average percentage gap between heuristic solutions and optimal solutions; †† Average computation time to
obtain the best solution among the heuristic algorithms, in seconds; ††† Average computation time to obtain the
optimal solution, in seconds.

5. Conclusions

The necessities and importance of sustainability and open innovation are growing in over the
world currently [29–31] and in the operational level of the manufacturing company, they are becoming
more important [1–5,14]. One of the efforts for sustainability is an intelligent automation system, called
a smart factory, and we considered a technology for production scheduling of jobs in manufacturing
systems for it. Since scheduling results effect the production quantity, quality, and customer satisfaction,
scheduling jobs effectively and efficiently is one key factor for sustainability.

In this research, we dealt with a scheduling problem on parallel shops with the fixed processing
property to minimize the makespan of jobs. The fixed processing property is that a group of specific
jobs should be processed on the predetermined machine. Due to the quality of products or managerial
convenience, this property can be found at the most manufacturing systems, so that it is very important
to schedule jobs while considering it. Four heuristic algorithms, which are based on the priority rules
and MULTIFIT algorithms, and construction improvement methods, are devised for solving the
problem. These methods give better results in a reasonable amount of computation time as well as in
terms of solution quality.

If the proposed technology is applied to the real production scheduling system, production
quantity and quality are enhanced, hence customer satisfaction is increased without no additional
investment. Consequently, it is necessary to develop efficient and effective scheduling methodologies
for the sustainability of the operational level in the manufacturing business.

Sustainability 2016, 8, 904 9 of 10

In further research, we can extend this study in several ways. For example, one may consider a
general case of the problem in which setup operation is not sequence independent so that setup times
are different from sequence of group of jobs. Also, it may address the problem with a case of dynamic
arrival of jobs so that all jobs are not available at the time of scheduling.

Acknowledgments: This work was supported by the National Research Foundation of Korea Grant funded by
the Korean Government (NRF-2012S1A5A8024194).

Author Contributions: All authors significantly contributed to the scientific study and writing. Sang-Oh Shim
contributes to the overall idea, algorithms, and writing of the manuscript; KyungBae Park contributes to
the detailed writing, ideas, and discussions on open innovation and sustainability of operation system and
manufacturing firms, as well as preparation of publishing the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Baek, H.; Park, S. Sustainable development plan for Korea through expansion of green IT: Policy issues for
the effective utilization of big data. Sustainability 2015, 7, 1308–1328. [CrossRef]

2. Yusr, M.M. Innovation capability and its role in enhancing the relationship between TQM practices and
innovation performance. J. Open Innov. Technol. Mark. Complex. 2016, 2. [CrossRef]

3. Lee, J.; Bagheri, B.; Kao, H.A. Recent advances and trends of cyber-physical systems and big data analytics
in industrial informatics. Int. Conf. Ind. Inform. 2014. [CrossRef]

4. Kleindorfer, P.R.; Singhal, K.; Wassenhove, L.N.V. Sustainable operations management. Prod. Oper. Manag.
2005, 14, 482–492. [CrossRef]

5. Giret, A.; Trentesaux, D.; Prabhu, V. Sustainability in manufacturing operations scheduling: A state of the art
review. J. Manuf. Syst. 2015, 37, 126–140. [CrossRef]

6. Wein, L.W. Scheduling semiconductor wafer fabrication. IEEE. Trans. Semicond. Manuf. 1988, 1, 115–130.
[CrossRef]

7. Lu, S.C.H.; Ramaswamy, D.; Kumar, P.R. Efficient scheduling policies to reduce mean and variance of
cycle-time in semiconductor manufacturing plant. IEEE. Trans. Semicond. Manuf. 1994, 7, 374–388. [CrossRef]

8. Uzsoy, R. Scheduling a single batch processing machine with non-identical job sizes. Int. J. Prod. Res. 1994,
32, 1615–1635. [CrossRef]

9. Kim, Y.D.; Lee, D.H.; Kim, J.U.; Roh, H.K. A simulation study on lot release control, mask scheduling,
and batch scheduling in semiconductor wafer fabrication facilities. J. Manuf. Syst. 1998, 17, 107–117.

10. Lee, Y.H.; Park, J.; Kim, S. Experimental study on input and bottleneck scheduling for a semiconductor
fabrication line. IIE Trans. 2002, 34, 179–190. [CrossRef]

11. Jain, V.; Swarnkar, R.; Tiwari, M.K. Modeling and analysis of wafer fabrication scheduling via generalized
stochastic Petri net and simulated annealing. Int. J. Prod. Res. 2003, 41, 3501–3527. [CrossRef]

12. Kim, Y.D.; Shim, S.O.; Choi, B.; Hwang, H. Simplification methods for accelerating simulation-based real-time
scheduling in a semiconductor wafer fabrication facility. IEEE. Trans. Semicond. Manuf. 2003, 16, 290–298.

13. Mason, S.J.; Jin, S.; Wessels, C.M. Rescheduling strategies for minimizing total weighted tardiness in complex
job shops. Int. J. Prod. Res. 2004, 42, 613–628. [CrossRef]

14. Tong, Y.; Li, J.; Li, S.; Li, D. Research on energy-saving production scheduling based on a clustering algorithm
for a forging enterprise. Sustainability 2016, 8, 136. [CrossRef]

15. Lee, D.H.; Kim, Y.D. Scheduling algorithms for flexible manufacturing systems with partially grouped
machines. J. Manuf. Syst. 1999, 18, 301–309. [CrossRef]

16. Glass, C.A.; Shafransky, Y.M.; Strusevich, V.A. Scheduling for parallel dedicated machines with a single
server. Nav. Res. Logist. 2000, 47, 304–328. [CrossRef]

17. Goemans, M.X. An approximation algorithm for scheduling on three dedicated machines.
Discret. Appl. Math. 1995, 61, 49–59. [CrossRef]

18. Wu, M.C.; Huang, Y.L.; Chang, Y.C.; Yang, K.F. Dispatching in semiconductor fabs with machine-dedication
features. Int. J. Adv. Manuf. Technol. 2006, 28, 978–984. [CrossRef]

19. Graham, R.L. Bounds on multiprocessor timing anomalies. SIAM J. Appl. Math. 1969, 17, 416–429. [CrossRef]
20. Coffman, E.G.; Garey, M.R.; Johnson, D.S. An application of bin-packing to multi-processor scheduling.

SIAM J. Comput. 1978, 7, 1–17. [CrossRef]

http://dx.doi.org/10.3390/su7021308
http://dx.doi.org/10.1186/s40852-016-0031-2
http://dx.doi.org/10.13140/2.1.1464.1920
http://dx.doi.org/10.1111/j.1937-5956.2005.tb00235.x
http://dx.doi.org/10.1016/j.jmsy.2015.08.002
http://dx.doi.org/10.1109/66.4384
http://dx.doi.org/10.1109/66.311341
http://dx.doi.org/10.1080/00207549408957026
http://dx.doi.org/10.1080/07408170208928860
http://dx.doi.org/10.1080/0020754031000118152
http://dx.doi.org/10.1081/00207540310001614132
http://dx.doi.org/10.3390/su8020136
http://dx.doi.org/10.1016/S0278-6125(00)86632-7
http://dx.doi.org/10.1002/(SICI)1520-6750(200006)47:4<304::AID-NAV3>3.0.CO;2-1
http://dx.doi.org/10.1016/0166-218X(94)00160-F
http://dx.doi.org/10.1007/s00170-004-2431-x
http://dx.doi.org/10.1137/0117039
http://dx.doi.org/10.1137/0207001

Sustainability 2016, 8, 904 10 of 10

21. Lee, W.C.; Wu, C.C.; Chen, P. A simulated annealing approach to makespan minimization on identical
parallel machines. Int. J. Adv. Manuf. Technol. 2006, 31, 328–334. [CrossRef]

22. Akyol, D.E.; Bayhan, G.M. Minimizing makespan on identical parallel machines using neural networks.
In Neural Information Processing, Proceedings of the 13th International Conference, ICONIP 2006, Hong Kong,
China, 3–6 October 2006.

23. Wittrock, R.J. Scheduling parallel machines with major and minor setups. Int. J. Flex. Manuf. Syst. 1990,
2, 329–341. [CrossRef]

24. So, K.C. Some heuristics for scheduling jobs on parallel machines with setups. Manag. Sci. 1990, 36, 467–475.
[CrossRef]

25. Xing, W.; Zhang, J. Parallel machine scheduling with splitting jobs. Discret. Appl. Math. 2000, 103, 259–269.
[CrossRef]

26. Monma, C.L.; Potts, C.N. Analysis of heuristics for preemptive parallel machine scheduling with job setup
times. Oper. Res. 1993, 41, 981–993. [CrossRef]

27. Shim, S.O.; Kim, Y.D. A branch and bound algorithm for an identical parallel machine scheduling problem
with a job splitting property. Comput. Oper. Res. 2008, 35, 863–875. [CrossRef]

28. Kim, K.Y. Heuristics for Minimizing Makespan on Parallel Dedicated Machines with Family Setups.
Master’s Thesis, Department of Industrial Engineering, Korea Advanced Institute of Science and Technology,
Daejeon, Korea, 2007.

29. Yun, J.J. How do we conquer the growth limits of capitalism? Schumpeterian Dynamics of Open Innovation.
J. Open Innov. Technol. Mark. Complex. 2015, 1. [CrossRef]

30. Prado, A.L.; da Costa, E.M.; Furlani, T.Z.; Yigitcanlar, T. Smartness that matters: Towards a comprehensive
and human-centred characterisation of smart cities. J. Open Innov. Technol. Mark. Complex. 2016, 2. [CrossRef]

31. Yun, J.J.; Won, D.K.; Park, K.B. Dynamics from open innovation to evolutionary change. J. Open Innov.
Technol. Mark. Complex. 2016, 2. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00170-005-0188-5
http://dx.doi.org/10.1007/BF00186472
http://dx.doi.org/10.1287/mnsc.36.4.467
http://dx.doi.org/10.1016/S0166-218X(00)00176-1
http://dx.doi.org/10.1287/opre.41.5.981
http://dx.doi.org/10.1016/j.cor.2006.04.006
http://dx.doi.org/10.1186/s40852-015-0019-3
http://dx.doi.org/10.1186/s40852-016-0034-z
http://dx.doi.org/10.1186/s40852-016-0033-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Reviews
	Technology for Production Scheduling
	Developing the Initial Schedule by Considering Subproblems
	Developing the Initial Schedule by Original Problem
	Construction Method for Improving the Initial Schedule

	Computational Experiments
	Conclusions

