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Abstract: Due to the increasing costs of construction waste disposal, an accurate estimation of the
amount of construction waste is a key factor in a project’s success. Korea has been burdened by
increasing construction waste as a consequence of the growing number of construction projects and
a lack of construction waste management (CWM) strategies. One of the problems associated with
predicting the amount of waste is that there are no suitable estimation strategies currently available.
Therefore, we developed a hybrid estimation model to predict the quantity and cost of waste in
the early stage of construction. The proposed approach can be used to address cost overruns and
improve CWM in the subsequent stages of construction. The proposed hybrid model uses artificial
neural networks (ANNs) and ant colony optimization (ACO). It is expected to provide an accurate
waste estimate by applying historical data from multifamily residential buildings.

Keywords: ant colony optimization; artificial neural network; construction waste; multifamily house;
multifamily building

1. Introduction

The amount of construction waste has been increasing yearly and accounts for 10% to 30% of
landfill use worldwide [1]. This large volume is due to the fact that construction waste can be generated
during any building project, including apartments, detached houses, villas, studios, and infrastructure,
even during the clearance of remaining materials, demolished or defective materials, and waste from
construction sites [2,3]. Another reason for such a high volume of waste is that contractors might
exceed their equipment and labor capability for cleaning up waste and materials, which negatively
affects project performance in terms of cost overruns [4]. South Korea has also had problems linked
to the growing amount of construction waste due to an increasing number of construction projects
and the lack of a construction waste management (CWM) strategy. According to the “Nation’s
Waste Generation and Disposal, 2013” published by the Ministry of Environment (MOE) of the
government of South Korea, the amount of construction waste generated in 2013 was 186,629 tons per
day, which accounts for 48.9% of the total domestic waste [5]. As a consequence of the negative effects
of the high rate of construction waste, most stakeholders are seeking effective methods for improved
disposal cost predictions and the procurement of recyclable materials during the early project stages,
which can prevent cost overruns. In particular, concrete waste accounts for approximately 80% to
90% of all waste when some projects are constructed or demolished, which is a relatively high rate [5].
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If contractors cannot predict the quantity of waste exactly, the disposal costs are likely to increase and
affect a project’s budget considerably. The estimation of construction waste amounts is determined
using a trial and error process, thereby causing uncertainty. Skoyles [6] suggested that bills related to
the quantity of waste during the early stages of a project only provide a fundamental measure of the
construction waste which, due to the lack of a reliable estimation method, often leads to an increase of
between 15 and 20 times the original estimate during the construction process. Hence, an accurate
estimation strategy for construction waste is needed in order to address these issues. In most cases,
contractors have only a minimum amount of estimation information at the beginning of a project,
which often leads to cost overruns. An accurate estimation strategy is one way to avoid exceeding the
budget and leads to economic benefits through the minimizing and recycling of waste.

Several prediction models have been developed for estimating quantity and costs in the
construction field, including methods based on regression analysis (RA), case-based reasoning (CBR),
and support vector machines (SVMs) [7–10]. Since the 1970s, RA has improved as a method of
estimating quantity and cost, and is a very powerful model in construction projects for early stage
economic feasibility analysis [9]. However, RA has certain limitations, including the lack of a specific
approach for selecting the most suitable model of historical data when predicting construction
costs [11,12]. Furthermore, input variables that affect such estimations must be considered beforehand,
and it is difficult to manage a large number of variables [12,13]. CBR has been widely used since
the 1980s and uses past cases that are similar to the current situation, thereby attempting to modify
past cases to adapt to the current problem parameters [14]. CBR has its own inherent problems.
For example, it requires a large database to ensure the accuracy of the analysis [15]. Moreover,
CBR requires constant updates because it mainly uses the previous experience of an event, circumstance,
or simulation [16]. SVM has been used for cost estimations because of its high performance and
self-learning capabilities [10]. However, SVM requires a trial and error methodology to determine both
a proper core function and the related parameters [17].

Artificial neural networks (ANNs), which imitate the learning process of the human brain,
have been applied widely to cost estimation in the construction field [13,14]. Previous studies have
described ANNs as being superior to RA, CBR, and SVM for estimating construction quantities
and costs [13–15,18–20]. One of the most common ANN algorithms is back propagation (BP),
which provides training for the parameter settings to the ANNs. BP does not have a clearly defined
theory for the search of suitable parameter settings [7]. Parameters have been determined by trial
and error, as well as empirically, which is tedious and time consuming [21]. Previously, a genetic
algorithm (GA) was incorporated with ANNs to overcome the problems inherent in BP [14]. However,
a GA requires complicated encoding and a decoding operator [22]. In addition, a GA requires a long
processing time to generate solutions when the structure of the ANN is complex and there are many
training samples [22,23]. As a result, the low convergence speed affects the accuracy of the parameters.
To overcome the limitation of previous methods, ant colony optimization (ACO) has been applied to
optimize the number of nodes in the hidden layer, the momentum, and the learning rate. ACO mimics
the behavior of real ants in a colony. The ants find the shortest way between their nest and a food
source using their swarm intelligence and abilities [24]. Ashena and Moghadasi [25] state that ACO
is better than GA for finding parameters. Consequently, ACO is the preferred means of optimizing
an ANN.

Based on the aforementioned problems, the aim of this research is to predict the exact quantity
and cost of construction waste during the early stages of a project in order to address cost overruns in
the subsequent stages, and to overcome the limitations of existing models, through the development
of a hybrid model. To apply this hybrid model, we focused on the estimation of waste concrete,
which accounts for 80% to 90% of all waste when multifamily residential buildings are demolished.
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2. Methodology

Figure 1 illustrates our strategy to optimize the ANNs to achieve the goals of the study.
The methodology includes the following: (1) an overall review of CWM, including quantity and
costs, and an assessment of the verification capabilities of ANNs and ACO; (2) a collection of historical
data on multifamily residential buildings and an investigation of the factors that affect the amount
of construction waste; (3) selection of the most suitable technical factors as input variables, and the
quantity of waste concrete as an output variable; (4) determination of training parameters such as the
number of nodes in the hidden layer, the momentum, and the learning rate of BP using ACO and
simple ANNs, wherein the weights are automatically adjusted during training; (5) the application of
input (distinguishable variables) in a developed system to obtain an output of the quantity of waste
concrete using data on actual multifamily residential building projects; (6) budget confirmation by
calculating standard costs; and (7) a comparison of the results of the proposed hybrid model with
results from simple ANNs.
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3. Literature Review

3.1. Cost Estimation of Construction Waste

Previous studies have identified cost estimation at the early stage as a key element in determining
and choosing appropriate construction waste management practices and technologies [26,27].
Flanagan and Tate [28] described the importance of estimation in the early stages for reducing costs,
as shown in Figure 2. Specifically, the cost reduction potential curve shown in the figure reveals
that significant cost savings can be achieved in the design and development stages, in contrast to
the construction and maintenance stages. Flanagan and Tate [28] proposed that decision-making has
a stronger influence on costs, and that the likelihood that contractors can remove unnecessary factors is
greater during the early stages of construction. In the opinion of Wu et al. [27], an estimation model can
prevent cost overruns by predicting the exact quantity of waste in a project. Therefore, they suggested
the use of a computer-based forecast model to estimate construction waste in Hong Kong.
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Wrap [29] stated that the accurate cost estimation of construction waste saves 66% in disposal
costs. This is because managers can generate the best waste management plan by controlling the
amount of labor and equipment, predicting the amount of recyclable materials, and reducing the
amount of material waste. Consequently, the overall purpose of accurate cost estimation in terms of
construction waste is to prevent cost overruns and reduce costs by improving CWM [26].

3.2. Construction Waste Management

CWM allows contractors to estimate the total amount of construction waste. Accurate estimations
lead to improved budgets and the reuse, recycling, and reduction of waste throughout the entire
construction process [4,30]. Ndihokubwayo and Haupt [4] stated that a much higher generation of
waste than initially estimated occurs as a result of incorrect estimates, design changes, poor decision-making
of stakeholders, the site conditions, and problems related to materials. For example, in variation orders,
a change in the estimation, design, and scope of a project can result in a 9% cost overrun. Similarly,
Gbekor [31] suggested that CWM includes the exact estimation, collection, treatment, and disposal
of construction waste. It can be inferred from these research definitions that CWM is the practice
of protecting building projects from incurring cost overruns and causing environmental problems.
In addition, Mohd [32] categorized the benefits of CWM into three groups: creating environmental
benefits, saving money, and improving the economy. Thus, CWM encourages sustainability within the
economy by creating value through the recycling of construction waste materials. An excellent CWM
strategy in the early stages of a project leads to a reduction in the cost of waste disposal, as well as to
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high rates of recycling, by reducing the procurement of resources. CWM also saves construction time
by reducing the need for design changes, and augments the profits of clients [30]. Therefore, CWM has
become necessary for a project’s performance in terms of economic profit and sustainability.

To achieve CWM efficiency, it is crucial to know and improve the applied waste forecasting
method. The “waste index” is the most popular method of forecasting the amount of construction
waste is based on the waste generation rate per construction area and demolition area, and has
been used in several studies [2,3,6,33]. Poon et al. [3] measured the amounts of 37 construction
waste materials (e.g., cement, concrete, mortar, timber, and steel) based on tons (quantity) and
cubic meters (volume) to find the causes of material waste at construction sites in Hong Kong.
Bossink and Brouwers [33] weighed and classified the construction waste components at five residential
construction sites. The most important finding in each case considered in these studies was that
a maximum of 10% of the total material weight had become waste. Seo and Hwang [5] suggested
the use of waste intensity units for 11 components of a demolished building. Based on these units,
they converted these components into weights and then multiplied the results by the total floor
area of demolished buildings in South Korea. As a result, they quantified the waste generation of
buildings per square meter. Waste concrete and brick were shown to account for over 90% of CDW.
Next, a classification model was presented to forecast a more detailed quantity based on the waste index
method. Solis-Guzman et al. [30] clarified this model based on construction project budgets in Spain
through the use of a database and spreadsheet that were prepared using site observations. This model
can be used by many companies and countries, provided that they have their own classification system
when generating a budget. However, these two methods are dependent on data from previous similar
projects. Moreover, the accuracy of the results is low due to the different forecasting methods and
standards. Kim and Shim [14] mentioned the importance of a hybrid model in preliminary stages
and took notice of the necessary input data and their weight scale by verification of the developed
hybrid model.

3.3. Artificial Neural Networks

One approach recommended by several academics and practitioners is the use of ANNs.
Studies have verified that ANNs are superior to RA, CBR, and SVM for estimating waste amounts
and costs. Garza and Rouhana [11] compared ANNs with a parametric estimation model based on RA
in terms of carbon steel pipe costs. They used 110 samples with cost parameters, including elbows,
flange ratings, and pipe diameters, which were applied to the ANN and RA as inputs. They concluded
that ANNs provide better performance than RA, and show strong forecasting capabilities. ANNs do
not have a limitation in the number of cost variables they can apply because they can organize and
learn by themselves. However, RA has low accuracy (±50% to ±30%) due to its unsuitability for
controlling large numbers of variables. Bode [12] suggested that ANNs can find hidden relationships
in training data, which is helpful for a cost estimator. They verified their study using the mean
absolute relative error (MARE) to measure the performance of each model. The MARE results were
0.623 for RA, 0.352 for ANNs, and 0.362 for CBR, which indicates that ANNs outperform the other
two models. Similarly, Viharos and Mikó [15] proved that ANNs have lower error rates (12% on
average) than CBR (13%) for estimating costs, and provided the most exact approach. They also
suggest that ANNs are able to estimate costs in complex systems using a small amount of input data
at the early stage. Kim et al. [20] compared the accuracy of the three estimation models: RA, ANNs,
and SVM, for estimating costs in the early stage of a school construction project. This study obtained
MARE results indicating that ANNs have better accuracy (5.27) than RA (5.68) and SVM (7.48) for
estimating school construction projects.

In addition to the cost estimation of ANNs, some researchers have examined the quantity
estimation capability of ANNs [18,19]. Jaliliet et al. [18] and Noori et al. [19] proposed a method
for accurately predicting the amount of municipal solid waste, which is important for improving waste
management. They compared ANNs to multivariable linear regression (MLR) using a correlation
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coefficient and the average absolute relative error (AARE). The results show that the ANN coefficient
and AARE are 0.837 and 4.4%, respectively, and that the MLR model achieved values of 0.445 and 6.6%.
This indicates that ANNs obtain better prediction results for an amount of municipal solid waste
than traditional MLR. This research shows that ANNs are simple to use in the case of developing
a model when significant information is lacking regarding the cause and effect relationships between
the system variables [18,19]. Thus, ANNs are suitable and superior to the other models for quantity
and cost estimations.

3.4. Ant Colony Optimization

Ant colony optimization (ACO) is one of the best new computational models for parameter
optimization, and overcomes several disadvantages of ANNs [25]. ACO is quite effective and useful
when the search space is large and complex, and requires a short computation time [25,34–37].
These studies show that ACO finds parameters (such as the weight, the number of nodes in a hidden
layer, bias, and threshold) in less time. Previous studies have explained the need in various industries
to optimize the performance of the ANNs by applying ACO. Li and Chung [34] developed computing
software that is an improvement on previous algorithmic models for solving the specific optimization
problems inherent in BP training. They compared a combination of ANNs and ACO with simple
ANNs to verify their performance. The results show that the generalization errors in the learned and
unlearned data of ACO-based ANNs (0.09, 0.11) are lower than those for simple ANNs (0.21, 0.36).
Subsequently, Ashena and Moghadasi [25] used ACO to optimize the thresholds and weights of
ANNs for bottom hole pressure estimations. They compared ACO with GA-based ANNs to examine
the performance of ACO. The results show that ACO achieves better results; i.e., the mean square
errors (MSEs) of ACO and GA are 0.0014 and 0.0018, respectively, and their efficiency coefficients are
0.9896 and 0.9109, respectively. The results of Hatampour et al. [37] also supported the aforementioned
research, showing that the capability of optimized ANNs is greater than that of simple ANNs.
They used ACO to optimize the numbers of hidden layers, weights, and biases in the proposed
ANNs for predicting the permeability of petroleum reservoir rocks. These results demonstrate that
ANNs optimized using ACO perform better than simple ANNs. Wang and Guo [36] verified that
ACO, unlike other research approaches, can optimize the numbers of nodes in ANN hidden layers for
a macroscopic water distribution system. They also compared ACO-based ANNs to an RA model,
and showed that the hybrid model reduces the MSE by over 40% compared with RA.

The advantages of ACO in the aforementioned studies are contributed computations, heuristic
techniques, and positive feedback [35]. Contributed computations can efficiently avoid premature
convergence, heuristic techniques can be used to find better potential solutions at the early stage,
and positive feedback ensures the fast detection of better solutions [38]. Therefore, ANNs with ACO
provide a good approach for solving several types of optimization problems.

4. Model Development

4.1. Artificial Neural Networks

ANNs imitate the learning process of the human brain. They are attracting the interest of
researchers due to their good performance in the modeling of nonlinear relationships, and have been
widely applied in the construction field to estimate costs [13,14]. Figure 3 shows a neural network
structure in which X1, X2, . . . , Xn are input layers that accept information from the outside; Wij and Wjk
are weights of the connection strength between neurons; θ is the threshold; ƒ is a nonlinear activation
function; and Y is an output layer in which output information is processed in the neural network,
which is represented by Equation (1) [39]. Basically, ANNs comprise more than one layer between the
input and output layers; i.e., the connected input, hidden, and output layer directions.

Y = ∑n
i=0 Wi·Xi − θi (1)



Sustainability 2016, 8, 870 7 of 14
Sustainability 2016, 8, 870  7 of 14 

∑

∑

∑

∑

∑

i (1 to n) j (1 to m) k (Y)

X1

X
2

X
n

Y

1

2

n

1

2

3

m

f ( . )

W
jk

Wij

Input Layer Hidden Layer Output Layer

 
Figure 3. The structure of a neural network. 

ANNs are divided into two work processes: training and testing. The network training process 
sets the training samples in the input and output models for training the network parameters. The 
most typical method applied in multilayer neural networks is BP, which manages the training 
algorithm [39]. BP usually contains a nonlinear sigmoid transfer function to compute the output. 
Equations (2) and (3) describe the output of each hidden neuron and the output of each output neuron, 
respectively. (Each variable is defined above.) ( ) = 1	/ ( 1 + exp( −( ∑ . − )))  (2) = 1	/ ( 1 + exp( −( ∑ . − )))  (3) 

In contrast, the test run process can calculate the equivalent output from a new input [40]. 
Therefore, ANNs that actually simulate the mechanism of the human brain can automatically detect 
the regulations and output of the given environment. 

( ) = [ ( )] ∙[ŋ ]∑ [ ( )]∈ ∙[ŋ ]0 , i f ∈ i Jk (4) 

where 	ŋ 		 is a heuristic approach for selecting task i that is needed for high performance, and Jk is 
the set of possible characteristics. Two parameters (α and β) decide an ant’s pheromone value and 
empirical information, and τl(t) is the amount of virtual pheromone for task i. The pheromones are 
updated as shown by Equation (5): ( + 1) = (1 − ) ∙ ( ) + ∑ ∆ ( )  (5) 

In addition, ρ simulates the evaporation of pheromones to indicate decay. According to Equation 
(5), every ant can update its pheromone trail. There are many routes from the nest to the feeding area, 
but as time passes, the pheromones evaporate and their concentration is weakened. Consequently, 
the concentration of pheromones in a short path remains strong. Therefore, among the many paths 
possible, ants tend to choose a short path where the pheromones remain strong. 

4.2. Description of Data 

The data collected for the development of the proposed model are based on the minimum 1st 
floor and maximum 17th floor of 118 multifamily residential building projects built by general 
contractors between 1959 and 1986 in South Korea. These projects were demolished between 1998 
and 2010. Skitmore [41] stated that the accuracy of estimation for a building project is generally 
associated with the amount of available project information such as the year, location, gross floor 
area, and number of stories. As shown in Table 1, data on the quantity estimation of waste concrete, 

Figure 3. The structure of a neural network.

ANNs are divided into two work processes: training and testing. The network training process
sets the training samples in the input and output models for training the network parameters. The most
typical method applied in multilayer neural networks is BP, which manages the training algorithm [39].
BP usually contains a nonlinear sigmoid transfer function to compute the output. Equations (2) and (3)
describe the output of each hidden neuron and the output of each output neuron, respectively.
(Each variable is defined above.)

f (xi) = 1 / ( 1 + exp( −( ∑n
1 xi·wij − θij))) (2)

f
(

xj
)
= 1 / ( 1 + exp( −( ∑n

1 xj·wij − θij))) (3)

In contrast, the test run process can calculate the equivalent output from a new input [40].
Therefore, ANNs that actually simulate the mechanism of the human brain can automatically detect
the regulations and output of the given environment.

Pk
i (t) =


[τi(t)]α ·[ ηi ]

β

∑l∈Jk [τl(t)]
α ·[ηl ]

β

0
, i f ∈ i Jk (4)

where ηi is a heuristic approach for selecting task i that is needed for high performance, and Jk is
the set of possible characteristics. Two parameters (α and β) decide an ant’s pheromone value and
empirical information, and τl(t) is the amount of virtual pheromone for task i. The pheromones are
updated as shown by Equation (5):

τi (t + 1) = (1− ρ) ·τi (t) + ∑m
k=1 ∆k

i (t) (5)

In addition, ρ simulates the evaporation of pheromones to indicate decay. According to Equation (5),
every ant can update its pheromone trail. There are many routes from the nest to the feeding area,
but as time passes, the pheromones evaporate and their concentration is weakened. Consequently,
the concentration of pheromones in a short path remains strong. Therefore, among the many paths
possible, ants tend to choose a short path where the pheromones remain strong.

4.2. Description of Data

The data collected for the development of the proposed model are based on the minimum 1st floor
and maximum 17th floor of 118 multifamily residential building projects built by general contractors
between 1959 and 1986 in South Korea. These projects were demolished between 1998 and 2010.
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Skitmore [41] stated that the accuracy of estimation for a building project is generally associated with
the amount of available project information such as the year, location, gross floor area, and number of
stories. As shown in Table 1, data on the quantity estimation of waste concrete, which is one of the
CDWs used in this study, were collected. Eight input variables and one output variable were easily
obtained during an early project stage.

Table 1. Input and output variables.

Description Min. Max. Average Remark

Input

Location Seoul, Gyeonggi, Incheon, Daegu, Busan, Gwangju Categorical
Stories 2 17 5

Numerical

No. of buildings 1 56 7.1
Completion year 1959 1986 1976
Demolition year 1998 2010 2006

No. of houses 20 2260 254
Gross floor area 730 104,434.6 14,212

Lot area (m2) 1015 934,597 23,638

Output Total quantity of construction waste

Historical data are based on past information, and these values need to be revised. Thus, the years
of completion and demolition were not used as input variables, but were used as a standard for
converting extracted variables based on an index of average yearly fluctuation. The data collected
from 118 projects were randomly divided into 15 test cases and 103 training cases. Moreover, the data
collected for training were classified randomly into 85 training datasets and 18 cross-validation
datasets. These were used for testing the ANNs during the training process. Specifically, BP requires
cross-validation data to avoid over-training [42]. Over-training means that all new data are considered
equal to the training data, making it difficult to explicitly describe the new data. Thus, ANNs require
generalization by applying cross-validation to improve the description of new data, although such
a generalization could lead to lower accuracy of the description of the training data.

4.3. Parameter Set-up

Setting the parameters of the ANNs and ACO is crucial for designing the model itself.
The parameter values of the ANNs and ACO are used to determine the best architecture for some
specific problems in order to generate the best prediction or pattern recognition results. For achieving
optimized value, ACO is available to assist in conducting ANN computations. The parameters that
affect the performance of the ACO are the number of ants, a pheromone decay parameter, an updated
strength parameter of the local pheromone, and the generations. For the exploration of ants in this
study, we used 5 to 20 ants to test the performance. A larger number of ants leads to an increase in the
time consumed to reach a solution and decreases the error rate for testing the ANNs. Sivagaminathan
and Ramakrishnan [43] suggested that a pheromone decay parameter of 0.9 and an updated strength
parameter of 0.8 are suitable for future generation ants, which influenced how we determined the
proper direction. The number of generations is crucial for the algorithm’s performance in terms of
time and error. This study used 5 to 20 generations. Consequently, eight ants and eight generations
have the lowest error rates of 3% and 2%, respectively. Through the training of the ANNs using ACO,
we optimized three parameters: the number of nodes in the hidden layer, the momentum, and the
learning rate. The weights were automatically adjusted during the training session using MATLAB 7.0.
ANNs were trained from 88 cases through the BP training processes using ACO. The training results
of the developed model based on cross-validation data showed the smallest MSE with six hidden
layer nodes, a learning rate of 0.8, and a momentum of 0.8. For a comparison with the hybrid model,
simple ANNs were set to three hidden layer nodes, a learning rate of 0.6, and a momentum of 0.9.
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5. Model Application

5.1. Evaluation

Although a considerable number of statistical parameters are used for performance comparisons,
the MSE, mean absolute error rate (MAER), and standard deviation are the most appropriate according
to Ashena and Moghadasi [25]. Thus, the training and testing performances were evaluated using
MSE and MAER, respectively, as follows:

MSE =
∑n

i=1 (Oi − Ti)
2

n
(6)

MAER =
∑
∣∣∣Qe−Qa

Qa
100
∣∣∣

n
(7)

where Qi is the historical value of the output for the ith sample, Ti is the expected value of Qi, and n
is the number of training cases in Equation (6). In addition, in Equation (7), Qe is the quantity to be
estimated when applying the model and Qa is the historical amount of data collected. The performance
of the simple ANNs and the developed model using 15 test datasets was evaluated using the MAER
and standard accuracy, which is summarized in Table 2. The standard deviation of each model is
shown in Table 3. Coulibaly and Baldwin [44] suggested that an efficiency coefficient of 0.9 shows the
most suitable model performance, a range of 0.8 to 0.9 indicates good performance, and a value lower
than 0.8 indicates inadequate model performance.

Table 2. Results of estimating quantity of each test set.

No.
Historical
Quantity

(m3)

Simple ANNs ANNs + ACO

Expect
Quantity

Error Rate
(%)

Accuracy
(%)

Expect
Quantity

Error Rate
(%)

Accuracy
(%)

1 9975 13,535 26.3 73.7 11,572 13.8 86.2
2 24,775 27,035 8.36 91.64 23,114 6.7 93.3
3 6300 7374 14.56 85.44 6304 0.06 99.94
4 8190 14,459 43.36 56.64 11,712 30.07 69.93
5 57,461 41,828 27.2 72.79 43,880 23.64 76.36
6 18,276 19,071 4.17 95.83 17,447 4.53 95.46
7 4725 6657 29.02 70.98 5392 12.37 87.63
8 12,650 11,278 10.85 89.15 9135 27.78 72.21
9 6310 4583 27.37 72.63 5331 15.52 84.48

10 55,666 59,786 6.89 93.11 56,498 1.47 98.53
11 145,432 125,760 13.52 86.47 128,843 11.41 88.59
12 89,373 86,029 3.74 96.26 92,137 2.99 97
13 63,517 55,578 12.49 87.5 59,524 6.29 93.71
14 10,334 12,877 19.75 80.25 13,791 25.06 74.93
15 30,415 38,620 21.25 78.75 41,362 26.47 73.53

MAERs 17.92 13.88
Accuracy 82.08 86.12

Table 3. Descriptive analysis value of statistical parameters.

Mean Std. Deviation Std. Error Accuracy Efficiency Coefficient

Simple ANNs 17.9231 10.7816 2.8815 82.0768 0.988757
ANNs + ACO 13.8788 10.0168 2.6771 86.1212 0.988914
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5.2. Standardization of Cost Data

Before the standardization of cost data can be applied, the unit of output (m3) needs to be
converted into tons. One cubic meter can be converted into 1.65 tons according to standardized
specifications in South Korea. We used the standard costs of the Korea Resource Association (KORAS)
guidelines to build a budget, and compared the final results of the two models using 15 test cases,
as shown in Table 4. The average disposal cost of waste concrete in South Korea is £9.22 (15,935 KRW)
per ton, which includes indirect material costs including the use of equipment, direct and indirect
labor costs, overhead costs, general management expenses (profit), and additional taxes (10% of the
total cost) based on standardized specifications. Table 5 shows the disposal costs for waste concrete
from 1998 to 2010.

Table 4. Results of estimating the cost of each test set.

No.
Historical

Cost
(1000 KRW)

Simple ANNs ANNs + ACO

Quantity
(Ton) Unit Cost Expect Cost Quantity

(Ton) Unit Cost Expect Cost

1 262,270 22,332.75 15,935 355,872 19,093.8 15,935 304,260
2 651,403 44,607.75 15,935 710,824 38,138.1 15,935 607,731
3 165,644 12,167.1 15,935 193,883 10,401.6 15,935 165,749
4 215,338 23,857.35 15,935 380,167 19,324.8 15,935 307,941
5 1,510,808 69,016.2 15,935 1,099,773 72,402 15,935 1,153,726
6 480,526 31,467.15 15,935 501,429 28,787.55 15,935 458,730
7 124,233 10,984.05 15,935 175,031 8896.8 15,935 141,771
8 332,603 18,608.7 15,935 296,530 15,072.75 15,935 240,184
9 165,907 7561.95 15,935 120,500 8796.15 15,935 140,167
10 1,463,612 98,646.9 15,935 1,571,938 9,3221.7 15,935 1,485,488
11 3,823,807 207,504 15,935 3,306,576 212,590.95 15,935 3,387,637
12 2,349,862 141,947.85 15,935 2,261,939 152,026.05 15,935 2,422,535
13 1,670,037 91,703.7 15,935 1,461,298 98,214.6 15,935 1,565,050
14 271,709 21,247.05 15,935 338,572 22,755.15 15,935 362,603
15 799,694 63,723 15,935 1,015,426 68,247.3 15,935 1,087,521

The unit cost focuses only on pure waste concrete when apartments, commercial buildings, roads,
or bridges are constructed or demolished. To obtain the expected cost, the quantity of each test set (tons)
is multiplied by the unit cost, which is based on the average yearly demolition cost. These average
results were then compared with the historical costs.

Table 5. Disposal cost of waste concrete from 1998 to 2010.

Year Unit Cost (KRW)

1998

Per ton

13,854
1999 14,524

2000–2001 15,066
2002–2003 15,767
2004–2007 15,896
2008–2009 17,921

2010 16,239
Average 15,935

6. Results

The results of the two estimation models were obtained by trial and error and through ACO
using the 15 cases from testing. The average accuracy of the simple ANNs was 82.08%, and that of
the developed model was 86.12%. The simple ANNs and the developed model with 15 test datasets
provided average MAERs of 17.92 and 13.88, standard deviations of 10.78 and 10.02, and standard
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errors of 2.88 and 2.68, respectively. In terms of the efficiency coefficient, the two models showed similar
results. Two values, 0.988757 and 0.988914, were evaluated as the most suitable model performances
by Coulibaly and Baldwin [44]. Thus, the developed model had a higher accuracy, smaller MAER,
and better standard deviation and error than the simple ANNs. In terms of performance, an ANN
with ACO is the most reliable and exact model for estimating waste quantities.

7. Discussion

A total of 9 out of 15 (60%) of the test datasets are in the range of the normal distribution of errors
in this result. Although the average deviation and error rates are verified within a statistical range,
more than normal 60% data are recommended in order to expect a more reliable result. When we
applied cost data to the converted output variables, ANNs incorporating ACO outperformed the
simple ANNs in terms of budget accuracy. Notably, Table 4 shows that the costs of the six test sets (2, 3,
6, 10, 12, and 13) are almost similar to the historical cost data. Although the results of the simple ANNs
in terms of quantity and cost for waste concrete also show a higher accuracy and efficiency coefficient,
the results of the developed model are better than those of the simple ANNs. Therefore, we suggest
that the developed model is a suitable estimation tool for solving the aforementioned problems.
To summarize the advantages of this model, the difficulty in determining the ANN parameter is solved,
and the time and effort required to obtain the ANN parameter are reduced.

8. Conclusions

Accurate quantity predictions and cost estimations of construction waste during the early stages
of construction are key factors in securing a project’s success. However, the increasing amount of
construction waste and the lack of estimation strategies have complicated attempts to accurately
estimate these quantities and costs. To address this problem, a new model is proposed that applies
ANNs incorporated with an ACO. ANNs have a problem in finding the BP parameters. Therefore,
ACO is employed to optimize the parameters (i.e., the number of hidden layer nodes, the momentum,
and the learning rate). In this study, simple ANNs were compared with ANNs optimized using ACO.
Our results show that the proposed hybrid model estimates more efficiently and accurately the amount
of waste concrete during the early stages of a project because its error rates are lower and its accuracy
is higher than in the case of simple ANNs. Thus, the hybrid model reduces the training time and
calculation complexity, and improves the estimation accuracy. Having obtained ideal performance
in terms of ANN optimization, we suggest that the proposed approach can facilitate the solution of
similar problems associated with the use of ANNs. We suggest that our research results will help in the
decision-making process for budget estimations by modeling the nonlinear relationships of technical
factors, and by providing more convenient estimation models that are easier for the construction
industry to use.

Further detailed study is necessary for practical applications, such as sensitivity analysis for
investigating the effects of different ranges of model parameters on waste estimates. Also, in further
research, three limitations should be considered in achieving higher performance. First, the use of
waste concrete estimates to represent total construction waste should be considered because practical
application of the ANNs + ACO model is necessary in order to determine the exact rate of considered
materials. Second, the results from the proposed model were only compared to Korean residential
projects. Therefore, more model validation with recent projects is recommended because the reliability
of the developed model is generally high with a varied case set. Finally, additional input parameters
should be used for total construction waste estimates—for example, the architectural style and the
construction technology.
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