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Abstract: This study addresses the design of a four-stage production distribution system under
a carbon emission constraint. The first stage contains a set of established retail outlets. The second
stage consists of a set of possible distribution centers. The third stage is comprised of a set of
manufacturing units. The final and fourth stage involves a set of suppliers. We propose a bi-objective
optimization problem with a mixed-integer linear programming scheme for maximizing the total
profits while minimizing the cumulative shortages in a multi-period planning horizon with inaccurate
information on raw material resources. We also propose a two-phase approach to solve the proposed
model and obtain a Pareto-optimal solution. The effectiveness of the solution method for obtaining
the fuzzy efficient solution is demonstrated with computational experiments. Sensitivity analysis is
used for examining the effect of the carbon emission constraint on the optimal decisions.

Keywords: multi-stage and multi-time-period production distribution planning problem; carbon
constraint; two-phase approach; fuzzy-efficient solution

1. Introduction

The levels of greenhouse gases within the atmosphere have been increasing drastically since
the beginning of the industrial revolution. According to the report of the Intergovernmental Panel
on Climate Change (IPCC) in 2007, greenhouse gases and carbon dioxide emissions have increased
by 70% and 80% from 1970-2004, respectively, with freight transport responsible for approximately
one-third of global energy-related carbon emissions [1]. The United States Environmental Protection
Agency (EPA) reported that transportation accounts for approximately 27% of total U.S. greenhouse
gas emissions in 2013. Similarly, road transportation produced approximately one-fifth of total
carbon dioxide emission in the European Union (EU) where transportation is the only major sector
in the EU with continuously rising greenhouse gas emission [2]. Several nations that attended the
2009 United Nations Climate Change Conference negotiated the terms of carbon control programs
designed to protect the environment for the prevention of further damage. The policy makers of
several nations have instituted environmental regulations on carbon taxing and carbon trading, as
well as imposing carbon caps [3]. As a result of these legislative actions, a growing number of
leading firms, such as Dell, Wal-Mart, LG, Intel and IBM, have engaged in carbon emissions programs.
Furthermore, 59% of Financial Times and the London Stock Exchange companies have published
targets for reducing greenhouse gases, including proposals for carbon and energy reductions [4].
According to the operations management literature, environmental issues have been studied from
different perspectives. Dekker et al. [5] addressed decisions on technology selection under both
emissions cap-and-trade and emissions tax regulations for a profit-maximizing firm. Benjaafar et al. [6]
analyzed various classical lot-sizing models for single and multiple firms while considering carbon
emissions. Jaber et al. [7] optimized the total cost of a two-level supply chain by including an
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emission tax and penalty. Absi et al. [8] presented the extension of the lot-sizing model under different
carbon regulatory policies. Nouira et al. [9] developed an optimization model in which the demand
of a product depends on its greenness. Liotta et al. [10] introduced a carbon emission factor in a
transportation optimization model. Hammami et al. [11] developed a deterministic optimization
model that incorporates carbon emissions in a multi-echelon production-inventory model with lead
time constraints. Afandizadeh and Abdolmanafi [12] considered a case study to derive a pricing
scheme with environmental equity. We present a bi-objective optimization problem designed for a
four-stage production-distribution system with a carbon emission constraint as opening a different
perspective compared to the above citations.

The typical production-distribution system involves many stages with various processes that
create significant carbon emissions. Therefore, it is important to formulate a new model to study the
interactions between multi-stage production-distribution and carbon emissions due to the creation of an
immense amount of the chemical from the entire process. The objective of the production-distribution
system design problem is to optimize the distribution costs, inventory carrying costs and fixed
costs for opening, equipping and managing manufacturing units and distribution centers [13].
Several companies, including Elkem Silicone [14] and the Kellogg Company, have achieved substantial
cost savings through the optimization of production-distribution systems [15]. A large body of
research focused on the modeling and design of various components of production-distribution
problems. Review papers on the topic [16-20] summarized the benefits and challenges associated
with integrating the overall decision processes while emphasizing the need for practical analytic
models and efficient solution methods. One of the major challenges for manufacturers is providing
the retailer supply by retaining stockpiles. However, retaining actions for large inventory require
increased operational costs. The issue becomes an additional concern over manufacturer’s operations
when carbon emissions constraints are introduced to the system. In addition, a stockout may not
only result in order cancellations, but may also affect the probability of future customer demand [21].
Holmes and France [22] reported that late delivery resulted in enormous fees for the Boeing Company.
The company had to lose its customers to Airbus due to delivery delays. KPMG [23] identified
enormous commitments for Food, Drink and Consumer-Goods (FDCGs) companies to satisfy retailer’s
product demand. For example, Kroger, a large U.S. grocery chain, applies a flat penalty every time a
manufacturer cannot deliver a complete order on time [24]. Therefore, one of the major challenges
for a production-distribution system design problem is eliminating shortages while simultaneously
carrying the minimum inventory to reduce carbon emissions. In this study, we propose a bi-objective
optimization model that is able to provide an integrated view of strategic operational decisions for the
manufacturer to maximize total profits while minimizing shortages with inaccurate information on
raw material resources.

Traditional deterministic optimization models are not always suitable for capturing the dynamic
behavior of most real-world applications. The production-distribution problems become more
challenging when information on raw material availability is imprecise. Fuzzy set theory offers
strong analytical support for capturing uncertainty. From the pioneering work from Zadah [25], fuzzy
logic found numerous applications due to its simplicity on implementation, flexibility and tolerant
nature for handling imprecise data. Several methods have been addressed to attain fuzzy-efficient
solutions for multiple-objective linear programming problems with fuzzy goals. The max-min operator
is usually applied because it is easy to compute. The method has been applied to numerous real-world
problems, such as market analysis, production planning, environment protection, supplier selection
and various related situations [26-31]. However, the technique does not guarantee a fuzzy-efficient
solution in the presence of multiple unique optimal solutions [32]. To produce a fuzzy-efficient solution,
several researchers have proposed a two-phase approach [33,34]. In response, Jimenez and Bilbao [35]
showed that a fuzzy-efficient solution may not be a Pareto-optimal solution when one fuzzy goal is
fully achieved. Recently, Wu et al. [36] proposed a new methodology for solving multiple-objective
linear programming problems by using a two-phase approach. They analytically proved that the
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solution methodology produces a Pareto-optimal solution with additional robust information for
decision makers.

In this paper, we propose an application of a two-phase approach to find solutions for the
proposed model. We describe a multi-period four-stage production-distribution system design problem
composed of units that manufacture products after receiving raw materials from various suppliers and
engage distribution centers for collecting and storing products to satisfy demands from retail outlets.
The objective is to determine the number of distribution centers in the network, the optimum number
of items produced by the manufacturing units, the optimum quantity of products to be dispatched
from the manufacturing units to distribution centers and from distribution centers to retail outlets, the
optimum inventory of product at distribution centers and manufacturing units, the optimum inventory
of raw materials at the manufacturing units and the optimum shortage quantity. The problem contains
two conflicting objectives for manufacturers. The first objective is maximizing the total profit, while
the second objective is minimizing the amount of the manufacturer’s cumulative shortages. The study
advances the existing literature in three important directions. First, the production-distribution
planning problem is formulated under a bi-objective framework to maximize profit and minimize
cumulative shortages to retain business opportunities, fulfill demand as much as possible and enhance
profit simultaneously for the manufacturer. Second, the optimal decision is heavily influenced by
the carbon emission constraint where the manufacturer is able to significantly reduce the shortage
amount with a bi-objective framework optimization problem. Finally, the study provides meaningful
industrial implications and improves the research on sustainability by associating the influence of a
carbon emission constraint with a production-distribution planning problem. This paper is organized
as follows: Section 2 introduces the problem description. Section 3 describes the two-phase approach
to find a fuzzy-efficient solution. Section 4 analyzes the computational results. Lastly, Section 5 outlines
the conclusions and provides suggestions for future research.

2. Model Formulation
In this section, we introduce the nomenclature required for modeling the problem and the
mathematical formulation.
2.1. Nomenclature
The following provides the indices used for the model:

index used for manufacturing units, i = 1,2,...,1
index used for distribution centers, j =1,2,...,]
index used for retail outlets, k = 1,2,...,K

index used for raw materials,s = 1,2,...,S
index used for fixed time periods, t =1,2,...,T

-~ ! R . o~

The following provides the deterministic and fuzzy parameters used for the model:

Ry unit selling price of the product in the k-th retail outlet

cj unit production cost of the product produced by the i-th manufacturing unit
At demand of the product in the k-th retail outlet in time period ¢

S¢; set up cost for the j-th distribution center

hm; unit inventory holding cost in the i-th manufacturing unit

hd,; unit inventory holding cost in the j-th distribution center

hrg; unit inventory holding cost of raw material s in the i-th manufacturing unit

By unit shortage cost of the product for the k-th retail outlet
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mcs unit cost of raw material type s

1% volume of one unit of the product

Vs volume of one unit of raw material type s

bd; storage capacity available in the j-th distribution center

bm; storage capacity of the product available in the i-th manufacturing unit

br; storage capacity of raw material available in the i-th manufacturing unit

C fixed cap on emission initially adhered by the manufacturer for the entire planning horizon

Tmj;  unit transportation cost of the product distributed from the i-th manufacturing unit to the j-th
distribution center

Tdjx unit transportation cost of the product distributed from the j-th distribution center to the k-th
retail outlet

qs requirement of raw material type s to produce one unit of the product

Cm;;  unit carbon emission to distribute the product from the i-th manufacturing unit to the j-th
distribution center

Cdjy unit carbon emission to distribute the product from the j-th distribution center to the k-th retail outlet

Dm;  unit carbon emission for producing each unit of the product in the i-th manufacturing unit

Hm; unit carbon emission for keeping each unit of the product in the i-th manufacturing unit

Hd, unit carbon emission for keeping each unit of the product in the j-th distribution center

Hrg; unit carbon emission for keeping each unit of the s-th type raw material in the i-th manufacturing unit
Sd; carbon emission due to open and operate the j-th distribution center for entire planning horizon
AC price per unit of carbon offsets

M imprecise amount of the s-th type raw material available in time period ¢

The following provides the decision variables used for the model:

xjjy  amount of product distributed from the i-th manufacturing unit to the j-th distribution
center in time period ¢
Yjxe ~ amount of product distributed from the j-th distribution center to k-th retail outlet in time period ¢
wg;  amount of raw material type s purchased for the i-th manufacturing unit in time period ¢
Qi+  amount of product produced by i-th manufacturing unit in time period ¢
Skt shortage amount in the k-th retail outlet in time period ¢
Imj;  inventory level of product in the i-th manufacturing unit at the end of time period ¢
Idj;  inventory level of product in the j-th distribution center at the end of time period ¢
Irgiy  inventory level of raw material of type s in the i-th manufacturing unit at the end of time period ¢
EC  amount of additional carbon offset to be purchased by the manufacturer in entire planning horizon
zj binary variable, one if the distribution center j is opened, zero otherwise

2.2. Multi-Objective Optimization Model

We consider a set of retail outlets (first stage), a set of possible distribution centers (second stage),
a set of manufacturing units (third stage) and a set of exclusive raw material suppliers (fourth stage)
for modeling our four-stage integrated production-distribution problem. Figure 1 provides a
demonstration of the entire production-distribution system.

The planning horizon consists of multiple time periods where each retail outlet has deterministic
and time-varying demand at each corresponding period. Deliveries from raw material suppliers to
manufacturing units, from manufacturing units to distribution centers and from distribution centers to
retail outlets are direct and instantaneous. Unit transportation costs of each item delivered from the
manufacturing units to distribution centers and from distribution centers to retail outlets are given for
each period with negligible ordering cost. To incorporate carbon emission concerns, we consider a
situation where the manufacturer must comply with a fixed cap on emission over the entire planning
horizon. We also assume that the manufacturer is allowed to invest in carbon offsets to reduce carbon
caps. We assume that the carbon emission parameters are readily available [3]. Shortages are allowed
in each retail outlet, and the manufacturer can completely backlog the shortage amount from the
previous period. Each supplier’s capacity is imprecise. We simultaneously optimize two conflicting
objective functions for the manufacturer. The first objective function represents the profit for the
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manufacturer, and the second objective function represents the cumulative shortage amount for the
entire planning horizon. Our aim is to determine:

The flow of product from manufacturing units to retail outlets

The amount of raw materials to be procured

The number of distribution centers

The shortage quantities in all retail outlets

The inventory for manufacturing units and selected distribution centers at the end of each period
The inventory of raw materials for manufacturing units at the end of each period

The amount of carbon offset to which the manufacturer adheres for the entire planning horizon

Raw Material Supplier Manufacturing Units Distribution Centres Retail Outlets
=12, ... 5 i=1,2, ... 1 j=1.2,...) k=1.2, ... K
L
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L
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Figure 1. Distribution network configuration.

Equations (1)-(14) present the objective functions, functional and operational constraints and
restrictions on the decision variables for the proposed fuzzy bi-objective optimization model.

T K J T 1 T ] I T K ]
Max fi=73 3 % Reyje— ) ) ciQi—3 ) ) Tmyxye—) 3 ) Tdyyju
t=1k=1j=1 t=1i=1 t=1j=1i=1 t=1k=1j=1
T I T I T ] S T I
— Z Z MCcsWgip — Z th,'lm,-t — Z Z hd;ld;; — Z Z hrgilrg
s=1t=1i=1 t=1i=1 t=1j=1 s=1t=1i=1
J T K
— Z SC]'Z]‘ — Z Z BkSkt —ECx AC (1)
j=1 t=1k=1
T K
Min f, = Z 2 Ski (2)
t=1k=1
subject to:
rqsQit + Irsip — Irsip—1 = wsir Vi, s, t (3)
I
Imjp = Imj_q + Qi — Y Xijt Vi, j,t (4)
i=1

1 K
Idjp = Idje 1+ ) xije— ) Yjgr Vot (5)
i=1 k=1
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J
Skt + ) Ykt — Sk—1 = ae kit (6)
=1
I ~
Y wsi < Mg Vs, t (7)
i=1
Z Vixijp < bdjzj Vjt (8)
s
Y Vslrgy < br; Vit 9)
s=1
VId]‘t < bd]Z] Vi, t (10)
Vimg < bm; Vit (11)
VQir < bm; Vi, t (12)
T K J T ] I T I T I
Y Y ) Cepyje+ ) ) Y Cmyxije+ )y DmiQie+ ) ) HimyImyy
=1k=1j=1 i=1j=1i=1 =1i=1 =1i=1

+ 2 2 Hd;ldj; + Z 2 2 HrglIrg: + 2 Sdjzj < C+ EC (13)

t=1j=1 s=1t=1i=1
zj € {0,1}, x5t > 0, Y60 > 0, wg >0, Qi >0, Sy > 0, Imyy > 0,1dj > 0 (14)
Irgiy > 0,EC >0 Vi,j,k,s,t

Equation (1), the first objective function, maximizes the total profit for the manufacturer
gained from selling the final product subtracted by the production cost, transportation cost from
manufacturing units to distribution centers and from distribution centers to retail outlets, the cost of
raw materials, inventory holding cost at manufacturing units and distribution centers for the finished
product, inventory holding cost for raw materials at manufacturing units, setup cost of each distribution
center, backorder cost at retail outlets and carbon offsets cost. Equation (2), the second objective
function, minimizes the total cumulative shortages for the entire planning horizon. Constraints (3)—(6)
represent the balance equations for the raw materials at the manufacturing units, product inventory
at manufacturing units, product inventory at potential distribution centers and shortages at retail
outlets. Constraints (7) represent the impreciseness of the raw material’s availability information.
Constraints (8) limit the volume of the product dispatched to potential distribution centers to the total
storage capacity. Constraints (9)—(11) enforce the inventory levels of raw material by ensuring the
product inventory at potential distribution centers and manufacturing units to not to exceed their
respective capacities. Constraints (12) restrict the production volume, which must be less than the
total storage capacity of the manufacturing units. Constraints (13) represent emission constraints.
Constraints (14) ensure that decision variables for the open-close status for all distribution centers are
binary, whereas other variables are non-negative. Note that the indices f and t — 1 are used respectively
to represent the present period and the previous period.

The complexity of the proposed optimization model can be expressed as a function of problem
size affected by the set of raw material suppliers, manufacturing units, distribution centers and retail
outlets. The model is composed of T(2IS + I] + JK + 2I + ] + K) + ] + 1 decision variables and
T(SI+4I+3]+ S+ K) + 1 constraints, where ST are fuzzy.

3. Solution Procedure

The developed model from Section 2 is a bi-objective optimization problem with fuzzy constraints.
A two-phase approach [36] is used to obtain a fuzzy efficient solution. The following are several useful
definitions for the context.
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Definition 1: A multiple objective optimization problem can be represented as follows:

{ opt (Ai(x), fol®), . felx))
st. xe X={x]|gj(x) <0,j=1,...,m}

where “opt” denotes minimization or maximization; x = (x1,xy,...,X,) are the decision variables;
fi(x), (i =1,...,k) are multiple objectives to be optimized; X C R" includes the system constraints.
Definition 2: A decision plan x’ € X is said to be a Pareto optimal solution to the multiple
objective optimization problem if there does not exist another y € X, such that f;(y) < fi(x?) for all k
and f;(y) < fs(x9) for at least one s.

Definition 3: A decision plan x* € X is said to be a fuzzy-efficient solution to the model if there does
not exist another y € X, such that ui(fi(y)) > e (fi(x9)) for all k and py(fs(y)) > us(fs(x9)) for at
least one s.

For multi-objective optimization problem, not all objective functions will simultaneously derive
optimal values. In order to overcome such a case, finding an optimal solution for the problem requires
Pareto optimality, which prevents the improved solution for an individual objective from worsening
one or more other objectives. However, fuzzy-efficiency may not guarantee Pareto-optimality if
the decision maker must choose a compromised solution according to each objective’s appropriate
aspiration levels for the achievable goals in the presence of several objective functions. In these
circumstances, fuzzy-efficiency does not guarantee Pareto optimality. Because the proposed
production-distribution planning problem contains imprecise raw material resources (Constraints (7)),
we use the two-phase approach proposed by Wu et al. [36]. If we assume that M has the minimum
resource M,L with tolerance t, (r = 1,2,...,5 x T), then the linear membership functions, u(x),
r=1,2,... and S x T for the fuzzy constraints can be formulated as follows:

L )
1r(Cr) = { MrHﬁtirz':lwm if Zé:l wsip < My + 1t
0 if Sjy weir > My + t

We also formulate linear membership functions featuring both the continuously increasing
property of the maximization objective function (i1 (f1)) and the continuously decreasing property of
the minimization objective function (y2(f2)). For the maximization objective function:

1 1(](]) _ flfn}u;]:lflmin if flmin < fl < flmﬂx
0 - .
0 lf f] S flmll’l

For the minimization type objective function:

B emin o omax
Ho2(f2) = ™% _ f,min 1 f2 <fr<fr
0 if f2 S fzmux

where the possible range for the i-th objective [f;"", f"*], (i = 1, 2) is defined by the decision
maker. The range is constructed from the solution of the problem by incorporating only one objective
function while ignoring the other objective function as subject to the set of functional constraints and
fuzzy constraints of M} and ML + t,, respectively. Figure 2a shows a graphical representation for a
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maximization type of a membership function, while Figure 2b shows a graphical representation for a
minimization type of a membership function.

1
Wl o)

‘f‘]lllfll \}(‘]m{l.\/ f] ‘}(‘Jlllill .f‘zm{l.\’ .f;
(a) (b)

Figure 2. (a) Membership function for a maximization-type objective function; (b) membership function
for a minimization-type objective function.

Under the two-phase approach, we need to find the optimal solution for the following problem in
Phase I:

Max Z; = A (15)
S‘t' I’lol(fl) 2 A/ Foz(fz) Z )L/ l’li’(ci‘) 2 /\/ vr/ A 2 0/ balS X

Membership functions in the two-phase approach do not have an upper bound unlike the
conventional max-min operator approach. If the value of the membership function is restricted by an
upper bound, the objective function may not attain the lowest or highest possible value because the
fuzzy goals are set by the decision maker subjectively. The two-phase approach provides the flexibility
to reach optimal goals by relaxing this constraint in Phase I. Finally, we need to find the solution for
the following problem in Phase II:

SxT
MaxZy = pp1 + po2 + Z Or (16)

r=1

s.t. ,uol(fl) — Po1 > )\*, “I/loz(fz)) — P02 > /\*, yr(C,) — Pr > )\*, Vr=1,...,SxT
Po1 =0, 2 >0, pr >0,and x € X

where A* is the optimal value of A obtained in Phase I.

Note that if o = 0 Vr and p,1 = po2 = 0, then there are no solutions with better efficiency for
the model under Phase I. If p, > 0 for some r, the solution obtained from Phase II is more efficient
compared to the solution obtained from Phase I, and the decision maker would be able to obtain
information for achieving subjective goals.

Proposition 1: If x** is an optimal solution of problem defined for Phase II, then x** is a Pareto-optimal
solution [36].

4. Computational Experiments

To illustrate the proposed model and the effectiveness of the solution procedure, we consider
a production-distribution network with two manufacturing units [M;, M;], three potential distribution
centers [D1, Dy, D3] and six retail outlets [R1, Rp, R3, R4, Rs, Rg]. Additionally, each product requires
three different raw materials that are provided by three different suppliers [S1, Sz, S3]. We use a time
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horizon consisting of three periods. The manufacturer sells the product to retail outlets at a price of
$25 and with a corresponding shortage cost of $1. We further assume that the initial inventory levels at
various stages are: Im;y = 0, Vi; Id i0o=0, Vj; Irsig = 100, Vs, i; and sgy = 0, Vk. All other parameters are
defined in Tables 1-3. The optimal solutions are obtained from a computer with an Intel core i5 2.5 GHz
CPU and a Windows 7 operating system. We solve the problems using IBM ILOG CPLEX Optimizer.

Table 1. Parameter values for the demand, raw material resources and transportation cost.

ag (M[, t,) Tdjy
Ri R2 Rs Ry Rs Re S1 S2 S3 Ri Rz R3 Ry Rs Re
T, 45 45 55 55 45 65 (300,350) (300,350) (650,700) 0.3 04 02 01 04 03
T, 40 50 80 70 50 55 (250,300) (300,350) (650,700) 0.6 02 04 05 05 06
T, 40 45 60 55 80 65 (300,350) (250,300) (600,700) 05 0.6 02 0.6 05 0.1
Table 2. Parameter values for the cost, capacity and raw material requirements.
rqs mcs br; v hyi bm; ¢ hrs; Tm;; Scj  hd; bd;
$1 S2 S3 D1 D, D;
S1 1 1.5 400 2 M; 012 700 25 01 009 0.12 1 1.2 1 Dy 700 015 180
Sy 1 2 400 15 M, 015 700 22 011 01 0.12 1 1.2 1 D, 800 0.15 280
S3 2 1 600 0.8 D; 600 0.12 250
Table 3. Parameter values related to emissions.
Hmi Hrs,- Dm,- Cm,-]- Hd]' Sd] Cd]k
S1 S S3 Dy Dy Dj Ry R, R3 Ry Rs Rg
M; 012 003 005 006 02 02 01 015 Dy 01 30 011 0.14 0.09 0.08 0.07 0.09
M, 015 004 005 004 022 015 01 015 D, 015 40 012 008 0.04 005 0.08 0.06
D; 012 28 0.09 0.08 0.07 0.06 0.06 0.14

Tables 4 and 5 show the ideal solutions for the objective functions (1) and (2), respectively, subject

to the set of functional and operational constraints at M% + t,.
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Table 4. Ideal solution of the optimization model when the objective function is the total profit maximization at M, 4 t,.
Wsit Irit Qit Im;y Xijt Idj Yjkt Skt
Mi M My M, My My M M Dy D D3 D1 D Ds Ri R R3 R4 Rs R¢ Ri R» R3 Ry Rs Re
51 80 0 0 0 180 100 O 0o M 0 180 O 0 0 0 D O 0 0 0 0 0 30 0 0 0 0 0
Ty S, 80 0 0 0 M, 0 100 O D, 15 45 55 55 45 65
S3 260 100 O 0 Dy 0 0 0 0 0 0
S 280 O 0 0 280 O 0 o M 0 280 0 0 0 0 D O 0 0 0 0 0 70 0 0 0 0 25
T, S, 280 0 0 0 My 0 0 0 D, 0 5 8 70 50 30
S3 560 0 0 0 D3 0 0 0 0 0 0
S1 280 0 0 0 280 0 0 0 M; 0 280 O 0 0 0 Dy O 0 0 0 0 0 110 O 0 0 50 0
T, S, 280 0 0 0 M, 0 0 0 D, 0 45 60 55 30 90
Sz 560 0 0 0 Dy 0 0 0 0 0 0
Table 5. Ideal solution of the optimization model when the objective function is the total shortage minimization at M, + t,.
Wsit Irgit Qit Im;y Xijt Idj; Yjkt Skt
My My My M, My Mz My M Dy D D3 D1y D D3 Ri R R3 R4 Rs R¢ Ri Ry Rz Ry Rs Rg
S 30 0 150 145 300 50 40 0 M 5 255 0 0 0 0 D O 0 0 5 0 0 0 0 0 0 0 0
T S, 350 0 150 150 M, 50 0 0 D, 45 45 55 0 45 65
S3 700 0 250 400 Dy 0 0 0 0 0 0
S 155 0 0 50 306 O 0 0 M 70 275 O 0 0 0 D O 0 0 70 0 0 0 0 0 0 0 0
T, S 155 0 0 50 M, 0 0 0 D, 4 5 8 0 50 55
Sz 450 0 40 Dy 0 0 0 0 0 0
S; 145 145 0 0 145 200 0 0 My 0 145 0 0 0 0 D O 0 0 55 0 65 0 0 0 0 0 0
I3 S, 150 150 O 0 M, 120 80 0 D, 40 4 60 0 8 O
Sz 250 400 0 0 Dy 0 0 0 0 0 0
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Table 4 shows the ideal solution for problem with objective function (1) with values $11,638.52,
285 units and 29.41 kg for the optimal profit of the manufacturer, amount of cumulative shortages
and carbon offsets, respectively. The above scenario only uses the second distribution center. In our
model, Sy; represents the shortage amount of the k-th retail outlet for time period . The demand
for the first retail outlet in the first time period is 45 units. However, 15 units are delivered from the
second distribution center. Therefore, the total shortage is 30 units. The demand for the first retail
outlet in the second time period is 40 units. However, finished products are not supplied during this
period. Therefore, the amount of combined shortages for the first retail outlet is 70 units at the end of
the second period. Similar to the case of having limited available supply for Sy, in the second time
frame, finished products are not supplied during the third time frame despite the presence of the
demand of 40 units. Therefore, the amount of cumulative shortages becomes 110 units. In the sixth
retail outlet, the shortage amount for the second period is 25 units, and demand for the third period is
65 units. Because 90 units are supplied during the third period, no shortages occur in the third time
period. Table 5 shows the ideal solution for problem with the objective function (2). The solution holds
noticeably different characteristics compared to the previously-explained ideal solutions from the first
scenario. The amount of shortage for the entire planning horizon becomes zero with corresponding
optimal profit and carbon offsets as $7525.84 and 176.25 kg, respectively. Moreover, the manufacturer
must maintain a large inventory of both raw material and finished product to fulfill the future demand.
The scenario creates high carbon offsets and comparatively low profits. The manufacturer needs to use
the second and third distribution centers in the planning horizon. Furthermore, the second objective
function’s optimal distribution schedule’s characteristic is significantly different compared to the first
objective function’s optimal distribution schedule’s characteristic. The ideal solutions for the objective
functions subject to the set of functional constraints and operational constraints at M maximizing the
profit and minimizing the total cumulative shortage are shown in Tables 6 and 7, respectively.

Table 6 shows the ideal solution for the problem with the objective function (1) with values
$11,516.84, 305 units and 28.41 kg for the optimal profit of the manufacturer, total cumulative shortages
and carbon offsets, respectively. Compared to the solution obtained from using M~ + t,, ML’s solution
shows an increased optimal shortage amount and decreased profit. The observation implies that
strict resource constraints significantly affect the ideal solution for the problem. Additionally, the
manufacturer should maintain inventory for raw materials. Table 7 represents the ideal solution for the
problem with the objective function (2) with $7090.51 and 181.15 kg as the optimal profits and carbon
offsets, respectively. The manufacturer is able to fulfill the demand for all retail outlets at the expense
of the profit. In addition, a large deviation in carbon offsets is observed. The results of the sensitivity
analysis of the effect of carbon price at ML, on the objective function (1) are given in Figure 3a,b.
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Figure 3. (a) Value of the total profit of the manufacturer and shortages for various carbon prices;

(b) the amount of carbon offsets.
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Table 6. Ideal solution of the optimization model when the objective function is the total profit maximization at M;.

Wsit Irsit Qit Xijt Yjkt

M M My M, My M D1 D Ri Ry R3 R¢ R¢
Ty 100 0 20 0 180 100 My 0 180 Dy 0 0 0 0 0

80 0 0 0 M, 0 100 D, 15 45 55 65

260 100 0 0 Ds 0 0 0 0
T 250 0 0 0 270 0 My 0 270 Dy 0 0 0 0 0

300 0 30 0 M, 0 0 Dy 0 50 80 55

540 0 0 0 Ds 0 0 0 0
T3 280 0 0 0 280 0 My 0 280 Dy 0 0 0 0 0

250 0 0 0 M, 0 0 Dy, 0 45 60 65

560 0 0 0 Ds 0 0 0 0

Table 7. Ideal solution of the optimization model when the objective function is the total shortage minimization at M,L.

Wsit Irsit Qir Xijt Yikt

My M My M, My M D1 D Ri Ry R; Re Re

300 0 95 50 305 50 My 5 255 Dy 0 0 0 0 0
Ty 300 0 95 50 M, 50 0 D, 45 45 55 65

650 0 140 0 Ds 0 0 0 0

250 0 45 50 300 0 My 70 275 Dy 0 0 0 0 0
T 300 0 95 50 M, 0 0 D, 40 50 80 55

650 0 190 0 Ds 0 0 0 0

50 0 0 0 95 250 M, 0 95 D4 0 0 0 10 0
T3 200 200 0 0 M, 65 185 D, 40 45 60 55

0 500 0 0 Ds 0 0 0 0
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Figure 3a shows an exponentially decreasing manufacturer’s optimal profit and an exponentially
increasing amount of cumulative shortages. Similarly, Figure 3b shows a decreasing amount of carbon
offsets as the AC increases. Therefore, the manufacturer should minimize the shortage to retain
business opportunities when facing the presence of the emission constraint. Figure 4 shows the results
from sensitivity analysis on the objective function (1) affected by the effects of shortage cost at ML.

From Figure 4, we can conclude that the amount of carbon offsets and the total profit are sensitive
to the shortage cost. As the shortage cost increases, the manufacturer profit decreases, and the amount
of carbon offsets increases. Through examining the above ideal solutions and the sensitivity analysis
results, we are able to conclude that a trade-off exists between the objective functions. Furthermore,
the solutions are highly sensitive to the tolerance margins t,, (i.e., the subjective estimation of available
resources). The result motivates us to find a solution to the proposed bi-objective optimization problem
by using a two-phase approach in which the subjective goals of decision makers are unrestricted.
Under the two-phase approach, the value of the membership functions can be larger than one.
Therefore, the decision makers can evaluate whether the fuzzy goals of the objective functions
are overestimated and compute the possible amount of overestimation. Tables 8 and 9 show the
fuzzy-efficient solutions obtained from solving (15) and (16).

, . , . 45
11700
L

] —+— total profit

11600 —e— Carbon offsets/ | 40
4 L]

11500 g

11400 \ i
] =

11300 - \
1 - 30

11200 - .
11100 | o5
11000 4

10900 +

Total Profit
S19S10 uoglen

0 1 2 3

Shortage cost

Figure 4. Values of the total profit of the manufacturer and carbon offsets for the different shortage costs.

From Table 8, we see that the total amount of shortage is reduced to 81 units. The optimal
profits and additional carbon emissions are $10,634.45 and 104.59 kg, respectively. Therefore, the
obtained solution is a Pareto optimal solution. Finally, according to Table 9, the solution obtained in
Phase II indicates the reduced shortage amount of 59 units. The computation time for solving the
final problem is 0.109 s. The demand for the first retail outlet in the second time period is 40 units.
However, 31 units are delivered from the second distribution center and results in a total shortage of
nine units. The demand for the first retail outlet in the third time period is 40 units. However, the
finished product is not supplied during the period. Therefore, the amount of combined shortages for
the first retail outlet becomes 49 units at the end of the third period. The corresponding optimal profits
and additional carbon emissions are $10,766.12 and 109.03 kg, respectively. By comparing the final
solution with the solution given in Table 4, we conclude that the manufacturer can reduce the shortage
amount by 79.29% at the expense of 7.49% profit.
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Table 8. Optimal solution for Phase L.
Wsit Irgit Qit Im;y Xijt Idj Yjkt Skt
M M My M My M, M M Dy Dy D3 D1 D2 Djs Ri R R3 R4 Rs R¢ Ri R R3 Ry Rs Rg
S 168 0 8 0 260 100 8 0 My 0 180 72 0 0 42 D 0 0 0 0 0 0 0 0 0 0 0 0
1 S, 162 0 2 0 M, 0 100 0 D, 45 45 55 55 45 35
S3; 420 100 0 0 Ds 0 0 0 0 0 30
Sy 265 0 0 0 273 0 0 0 My 0 280 1 0 0 0 Dy 0 0 0 0 0 0 9 0 13 0 0 0
T, S, 314 0 44 0 M, 0 0 0 D, 30 50 43 70 50 37
Sz 547 0 2 0 Ds 1 0 24 0 0 18
Sy 308 0 0 0 308 0 0 0 My 0 280 28 0 0 0 Dy 0 0 0 0 0 0 48 0 0 11 0 0
T3 Sp 265 0 0 0 M, 0 0 0 D, 1 45 73 44 80 37
Sz 615 0 0 0 Ds 0 0 0 0 0 28
Table 9. Optimal solution for Phase IIL
Wsit Irsit Qit Im;y Xijt Idjt Yjkt Skt
My M My M, My M; My M Dy Dy D3 D1 Dy Ds Ri R R3 R4 Rs Rs¢ Ri Ry Rz Ry Rs Rg
Sy 181 0 10 0 271 100 5 0 My 0 180 86 0 0 56 Dy 0 0 0 0 0 0 0 0 0 0 0 0
T, S5 171 0 0 0 M, 0 100 0 D, 45 45 55 55 45 35
Sz 442 100 0 0 Ds 0 0 0 0 0 30
Sy 265 0 0 0 275 0 0 0 My 0 280 0 0 0 0 D1 0 0 0 0 0 0 9 0 0 0 0 0
T, S, 314 0 40 0 M, 0 0 0 D, 3 50 79 70 60 0
Sz 550 0 0 0 Ds 0 0 1 0 0 55
S 304 0 0 0 304 0 0 0 M, 0 280 24 0 0 0 Dq 0 0 0 0 0 0 49 0 0 1 0 0
T3 S, 265 0 0 0 M, 0 0 0 D, 0 45 60 54 80 41
Sz 608 0 0 0 Ds 0 0 0 0 0 24
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5. Conclusions and Future Research

In this study, we propose a four-stage production-distribution planning problem under a carbon
emission restriction and imprecise information on raw material resources. A fuzzy bi-objective
optimization problem is formulated for determining the trade-off between the optimal profits and
shortages. The problem is solved with a two-phase solution approach to find the fuzzy-efficient
solution for the manufacturer. The computational experiments are performed for analyzing, validating
the model and determining whether the solution approach is able to provide the flexibility required
for obtaining a Pareto-optimal solution in a bi-objective decision making environment.

The results in this paper have important managerial implications. First of all, minimizing
shortages is crucial for fulfilling the present demand and retaining future business opportunities.
The study showed that the carbon penalty increases the amount of shortages, which would decrease
the manufacturer’s profit. However, under the bi-objective optimization formulation, operational
adjustments can lead to significant reductions in emissions and shortages without considerably
decreasing the profit. The manufacturer can reduce the business risk even in the absence of long-term
accounts by ensuring the fulfillment of orders for retailers and keeping the market share. Second, the
optimal solution obtained by using the two-phase approach always provides a desired Pareto-optimal
solution along with additional information for achieving objective goals despite the difficulty of setting
goals under the multi-objective optimization framework due to imprecise information on raw material
resources. Finally, the study provides important industrial implications. The optimal decision for a
production-distribution planning problem under an emission constraint should be considered with a
bi-objective formulation, which contributes to enhancing business opportunities under environmental
regulations by allowing decision makers to fulfill demand and maximize profit.

Research on this problem can be extended in several ways. For example, assumptions on
deterministic demand can be relaxed by incorporating fuzzy or stochastic demand. Future research
may incorporate the selection problem where each supplier can sell more than one raw material.
Researchers may want to generalize the solution procedure for further application on large-scale
problems. Additionally, the study can be extended to analyzing the problem with a supply chain
framework where operations at each state are controlled by different members for profit maximization
and emission minimization for all corresponding controlling members.
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