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Abstract: With the increasing concern for the environment, energy-efficient scheduling of the
manufacturing industry is becoming urgent and popular. In turning processes, both spindle speed
and processing time affect the final energy consumption and thus the spindle speed and scheduling
scheme need to be optimized simultaneously. Since the turning workshop can be regarded as
the flexible flow shop, this paper formulates a mixed integer nonlinear programming model for
the energy-efficient scheduling of the flexible flow shop. Accordingly, a new decoding method is
developed for the optimization of both spindle speed and scheduling scheme simultaneously, and
an estimation of the distribution algorithm adopting the new decoding method is proposed to solve
large-size problems. The parameters of this algorithm are determined by statistics from a simplified
practical case. Validation results of the proposed method show that the makespan is shortened
to a large extent, and the consumed energy is significantly saved. These results demonstrate the
effectiveness of the proposed mathematical model and algorithm.

Keywords: energy-efficiency scheduling; flexible flow shop; estimation of distribution algorithm;
turning processing

1. Introduction

With the increasing attention on global warming and climate change, energy-efficient scheduling
is becoming an important objective in the process of production [1]. Since about one-half of energy
consumption is industrial [2], the reduction of the energy consumption in the manufacturing process
is a global concern. Two methods are often used to reduce energy consumption: developing
power-efficient machines [3,4] and designing energy-saving manufacturing system frameworks [5,6].
After long-term endeavors, the first method has maintained a good momentum on the single equipment
with manufacturing process improvement, material savings, and waste reduction [7–9]. As for the
second method, energy-saving through optimization the manufacturing system faces great challenges
due to changeable market demand, diversified product structure, and flexible processing routes [10–12],
as well as insufficient accurate data of energy consumption [13,14], so researchers still struggle to break
down these technical and theoretical barriers.

With respect to the energy-efficient scheduling, the well-known machine turn-on and turn-off
scheduling framework has been proposed by Mouzon et al. [15] and further explored by Mouzon and
Yildirim [16]. Then Dai et al. [17] applied this framework to the flexible flow shop scheduling problem,
and Tang et al. [18] adopted it to solve an energy-efficient dynamic scheduling. Since some machines
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and appliances cannot be switched off during the manufacturing process in some workshops [19],
a new method of speed scaling framework has been developed by Fang et al. [20]. Under this
framework, Fang et al. [20] researched a flow shop scheduling problem with a restriction on peak
power consumption, and Liu and Huang [21] studied a batch-processing machine scheduling problem
and a hybrid flow shop problem.

The turning workshop typically involves two processes, i.e., rough turning and fine turning, and
each process usually can be completed at any one of parallel lathes, and thus the ordinary turning
workshop can be regarded as the flexible flow shop. Salvador [22] originally has proposed the flexible
flow shop scheduling problem (FFSP) in oil industry, and this problem is also known as hybrid flow
shop scheduling problem (HFSP) [23]. For traditional optimization of the flexible flow shop scheduling,
Linn and Zhang [24] pointed out that HFSP is a non-deterministic polynomial (NP) problem after they
reviewed computational complexities, scheduling objectives, and solving methods. Aiming at solving
the NP problem, Kis and Pesch [25] put forward a method to determine the lower bounds, and they
also developed a new branch and bound method which is faster than the method of Azizoglu et al. [26].
However, for large-scale scheduling problems, these optimal methods are inefficient due to high
demand for computational time and storage space. Therefore, a lot of heuristics and meta-heuristics
were put forward, such as the NEH algorithm [27], Palmer algorithm [28], CDS algorithm [29], and
genetic algorithm [30]. More new methods were developed, including artificial immune algorithm [31],
particle swarm optimization algorithm (PSO) [32], water-flow algorithm [33], quantum-inspired
immune algorithm [34], iterated greedy algorithm [35], and intelligent hybrid meta-heuristic [36].

To our best knowledge, most researchers study process parameters and scheduling schemes
in turning processing separately except for the work of Lin et al. [37], who proposed a two-stage
optimization method to successively find out the optimum process parameters and scheduling scheme
for the single-machine scheduling in a turning shop. Obviously, more mathematic models and more
methods targeting at the synchronous optimization are necessary to be developed. Aiming at this
target, this paper approaches the energy-efficient scheduling of the flexible flow shop in the following
ways. First, a mixed integer nonlinear programming model of the energy-efficient scheduling is
established and this model can be solved with a GAMS/Dicopt solver. Second, a new decoding
method is proposed and integrated into the estimation of distribution algorithm (EDA) to solve the
problem, which is an effective and promising algorithm based on the statistical learning theory. Thirdly,
the model and EDA are verified in a real case.

The paper is organized as follows. In Section 2, research problem and energy consumption of
lathes in the turning process are analyzed in detail. In Section 3, the mixed integer programming
nonlinear model of the research problem is put forward. Section 4 presents a new decoding method and
adopts an estimation of distribution algorithm to solve the energy-efficient scheduling. The verification
of the model and algorithm is reported in Section 5, and conclusions are arrived in Section 6.

2. Problem Statement

2.1. Motivating Example

A simplified case of a real turning processing is used as the motivating example for the current
research. This case involves two types of processes: rough turning and fine turning. Eleven C630 lathes
are employed, five of which are applied for the rough turning and six for the fine turning. Each athe
has 12 levels of spindle speed for processing jobs. The transport times among these lathes derive from
a statistical survey on the spot. The detailed layout of the turning workshop is shown in Figure 1.
According to the production plan, there are 60 rolls of 12 types to be processed. The materials of these
rolls may be Cr12MoV, 4Cr5MoSiV1, GCr15, 45# steel, 3Cr2W8V, or 40Cr. There is a great difference
among these rolls in diameter ranging from 66 mm to 550 mm, and in the length varying from 1520 mm
to 1846 mm. All the relative data of this real case are provided in Appendix A.
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Since environment-friendly and energy saving manufacturing is an urgent requirement, it is
highly necessary to both adjust the parameters of rough turning and fine turning like spindle speed
and optimize the processing scheme so as to reduce energy consumption effectively.

2.2. Problem Description

Since the fine turning begins only after the rough turning completes, and there is usually more
than one lathe for each turning process, this workshop can be regarded as a two-stage flexible flow
shop. Meanwhile, energy saving is a new focus in this workshop.

Thus, the problem under consideration can be regarded as a flexible flow shop scheduling problem
with two objectives: production efficiency and energy saving. Makespan noted as Cmax, is chosen as
the production index evaluator. The energy consumption is evaluated by the total energy consumption
noted as TEC.

Utilizing the three-field notation proposed by Graham et al. [38], we express the above problem
as FFmprq | |Cmax` TEC , where FF represents the flexible flow shop, m the number of stages,
r unrelated parallel machine, || no special constraints, and Cmax` TEC the optimization goals.

For the convenience of mathematical modeling of this problem, the turning operations and energy
consumption are analyzed in the following.

2.3. Analysis of Turning Operations

A turning operation (Oik) can be defined as: job i is handled on lathe k, and it generally needs to
pass five steps which are job-loading, lathe starting, job cutting, lathe stopping, and job-unloading.
Because a turning operation of Oik contains five sub-operations, the total processing time is the
summation of them. Therefore, the total processing time of Oik can be achieved with Equation (1).

Tz
ikl “ tl

ik ` tS
kl ` tc

ikl ` tD
kl ` tu

il (1)

where, tl
ik is the loading time of job i onto machine k, tS

kl the time for speeding up the spindle of lathe k
to l level, tc

ikl the cutting time of job i is processed on the lathe k at the speed level l, tD
kl the time for

stopping lathe, and tu
ik the unloading time of job i from machine k.

When job i and machine k are known, tl
ik, tS

kl , tD
kl and tu

ik can be seen as parameters, and the total
processing time of any turning operation can be expressed by Equation (2) according to Equation (10)
in Section 2.4.

Tz
ikl “ tl

ik ` tS
kl `

60Vz
ik

πˆ apik ˆ fik ˆ d0
i ˆ nc

kl
` tD

kl ` tu
il (2)

where, Vz
ik is the total removed volume from the semi-product of job i by lathe k, apik the depth of

cutting, fik the feed rate, d0
i the semi-product diameter of job i, and nc

kl the spindle speed of level l of
the lathe k.

2.4. Analysis of Energy Consumption

Lathes are responsible for energy consumption of the turning process [39]. If job loading and
unloading are accomplished automatically, their power consumption is fixed. If they are done manually,
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the power consumption is not needed. Therefore, alterable energy consumption mainly results from
the power consumption of other three operational steps: lathe starting, job cutting, and lathe stopping.
Es

kl is the power consumed by speeding up the spindle of lathe k to the designated speed level l and that
by running without loads before turning jobs. Ec

ikl is the power consumption by the lathe k handling
the job i at the speed level l, and it is the total of the power for running the lathe and that for material
removal, which is expressed with Equation (3) [40] and Equations (4)–(10) [41], respectively. ED

kl is the
power consumption of lathe k for braking or stopping the spindle of speed level l after completing jobs.

Ec
ikl “ pP

0
kl ` Kc

ikl
¨
vikqtc

ikl (3)

where P0
ik is the power for lathe k of spindle speed level l running without load, Kc

ikl the energy

coefficient of lathe k of spindle speed level l cutting job i,
¨
vik material removal rate of job i on the lathe k.

Kc
ikl
¨
vik “ Pm

ikl “
Fm

ikl ˆ vc
ikl

103 (4)

where Pm
ikl is the power consumed to remove the extra material of processing job i by the lathe k of

spindle speed level l, Fm
ikl the cutting force of the processing, and vc

ikl the linear cutting velocity of
the same processing. The definition and evaluation function of Fm

ikl is similar to that in Machinery
Handbook [41], and can be described with Equation (5).

Fm
ikl “ CF ˆ apxFm

ik ˆ f yFm
ik ˆ vnFm

ikl ˆ KF (5)

Under general cutting conditions, xFm « 1, yFm « 0.75, nFm « 0, and CF is a coefficient related
to materials and cutting conditions. KF is also a coefficient for cutting force. The cutting force can be
obtained with Equation (6) since the value of these coefficients can be found in Machinery Handbook.

Fm
ikl “ CF ˆ apik ˆ f 0.75

ik ˆ KF (6)

The additional load-loss energy of Pa
ik will be required in the cutting process [42], and it can be

calculated by Equation (7).
Pa

ikl “ bm
k ˆ Pm

ikl (7)

where bm
k is the additional load-loss coefficient, and its value can be adjusted between 0.10 and 0.20

according to the state of lathe k [43]. In the cutting process, the linear velocity of vc
ikl can be calculated

by Equation (8) [37].

vc
ikl “

πˆ d0
i ˆ nc

kl
60

(8)

If Vz
ik represents the total removed volume from the semi-product of job i on lathe k, the cutting

time can be calculated by Equation (9), and combined with Equation (8), it conducts Equation (10).

tc
ikl “

Vz
ikl

apik ˆ fik ˆ vc
ikl

(9)

tc
ikl “

60Vz
ikl

πˆ apik ˆ fik ˆ d0
i ˆ nc

kl
(10)

Based on the above five Equations (3)–(10), the total power consumption can be calculated by
Equation (11).

Eikl “ Es
kl ``

60Vz
ikP0

ikl
πapik fikd0

i nc
kl
` p1` bm

k qC
F f´0.25

ik KFVz
ik ˆ 10´3 ` ED

kl (11)
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where the values of Es
kl , ED

kl , and P0
kl can be obtained by experimental tests. Since the lathe and spindle

speed level are certain, these values are deterministic and thus can be used as parameters.

3. Modeling

From the Equation (11), we can find that the energy consumption for completing a turning
operation is inversely proportional to the spindle speed. From Equation (2), we can also find that the
completion time is an inverse function of the spindle speed, so the weighted method is suitable for
dealing with the two objectives of energy consumption and makespan. Considering this multi-objective
optimization problem, the complexity of weighted method is lower than that of Pareto non-dominated
method. In the scheduling optimization, except for spindle speeds, all processing parameters are
known and certain. Therefore, optimization variables are machine allocation, job sequence, and spindle
speed. The presented formulation is based on the following assumptions. Firstly, all of the n jobs and
m machines are available for processing at the initial time. Secondly, one machine can process only one
job at a time and one job can be processed by only one machine at a time. Thirdly, the spindle speed
must be selected among several alternative levels.

Indices

i Index of jobs, i P t1, 2 ¨ ¨ ¨ , nu
j Index of stages, j P t1, 2 ¨ ¨ ¨ , Su
k Index of machines, k P t1, 2, ¨ ¨ ¨ , Mu
t Index of event points, t P t1, 2, ¨ ¨ ¨ , nu
l Index of spindle speed levels, l P t1, 2, ¨ ¨ ¨ , Lu

Parameters

Kj Set of machines in stage j
Nik Set of spindle speed levels where job i can be processed on machine k
Mv Positive constant large enough
nc

kl Spindle speed of machine k at level l
Vz

ik Total removed volume for Oik
apik Depth of cutting for Oik
fik Feed rate for Oik
d0

i Semi-product diameter for Oik
CF

ik Coefficients of cutting force for Oik
KF

ik Coefficients of cutting force for Oik
ES

kl Power consumption for starting machine for Oik
ED

kl Power consumption for stopping machine for Oik
P0

kl Power of machine k running without load at speed level l
Td

kk1 Transport time between machine k and machine k’
bm

k Additional load loss coefficient of machine k
a Weight of energy consumption
TCE0 Normalizing parameter of energy consumption
Cmax0 Normalizing parameter of makespan

Binary Variables

xikt “

#

1, if job i is processed at event t on the machine k
0, otherwise

yikl “

#

1, if job i is processed at speed level l on the machine k
0, otherwise
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Positive Variables

Skt Start time of the event t at machine k
Fkt Finish time of the event t at machine k
Cmax Maximum completion time, i.e., makespan
TCE Energy consumption

3.1. Mathematical Model

minZ “ aˆ
TEC
TEC0

` p1´ aq ˆ
Cmax
Cmax0

(12)
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kl
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Fkt ď Sk,t`1@k, t ă n p20q

TEC “
ř

i

ř

k

ř

l
trEs

kl `
60Vz

ik P0
kl

πapik fikd0
iknc

kl
` p1` bm

k qC
F
ik f´0.25

ik KF
ikVz

ik`ED
kl s ˆ yikl ˆ

ř

t
xiklu p21q

Cmax ě Fk,S @k p22q

Equation (12) is the objective function to minimize the normalized total energy consumption and
makespan simultaneously, where a is the weight of energy consumption obtained by such methods as
the analytical hierarchy process (AHP), and fuzzy clustering method after investigating the preference
of management. TCE0 and Cmax0, are applied as two normalizing parameters, and they are obtained
by a heuristic rule in this paper. Equations (13) and (14) both ensure each job is processed once at any
stage. Equation (15) ensures that one of the available spindle speeds is selected when a job is assigned
to a machine. Equation (16) controls that, at most, one job is processed in an event point. Equation (17)
controls that one machine is available at an event point only after its previous jobs are completed.
Equation (18) ensures the completion time of an event point is equal to the sum of the start time and
processing time. Equation (19) limits that the starting time of each job in any stage is at least equal
to the total time of the completion time in the previous stage and the transport time. Equation (20)
controls that the completion time of any event point on a machine is at most equal to the start time of
the subsequent event point on the same machine. Equation (21) ensures that TCE is the summation of
energy consumption of all turning operations. Equation (22) controls that the Cmax is greater than or
equal to the completion times of the last event point on all machines.

3.2. Heuristic Rule for Normalizing Parameters

As pointed out above, normalizing parameters TCE0 and Cmax0 are obtained by the heuristic
rule, which can be described as follows.

‚ Step 1: The theoretical linear cutting velocity v˚ik is calculated with Equation (23), the theoretical
spindle speed is obtained with Equation (8), and then the real level of spindle speed noted as l* is
determined according to machine operating instructions.
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‚ Step 2: The total processing time of one turning operation (TZ
ikl˚) is calculated by Equation (2), the

average processing time (Ti) of job i in all stages is calculated with Equation (24), and then the
scheduling scheme is obtained by the following three-step circulation.

‚ Step 2.1: Set j = 1 and sequence jobs by the ascending order of Ti, denote the sequence as πt

and set Tc
π1,1 “ 0.

‚ Step 2.2: Assign the first free machine noted as k˚ to process jobs in stage j, and calculate the
completion time of jobs Tc

πt ,j according to Equation (25). Then, calculate the consumed energy
for cutting each job in stage j with Equation (11), and calculate the total energy consumption
of stage j by Cz

j “
ř

kPKj

ř

i
Cz

ikl˚ .Terminate this circulation when stage j is the last stage or go

on to step 2.3.
‚ Step 2.3: Reorder jobs and update πt in the ascending order of Tc

πt ,j, then set j = j + 1 and
return to step 2.2.

‚ Step 3: TEC0 can be obtained by
ř

j
Cz

j , and Cmax0 can be determined by max
i

Tc
i .

Detailed explanations are described with Equations (23)–(25)

v˚ik “
Cv

Tzv apxv
ik f yv

ik
(23)

Ti “
ÿ

j

p
ÿ

kPKj

Tz
ikl˚{mjq{S (24)

Tc
πt ,j “

$

’

&

’

%

maxtTc
πt ,j´1, Tc

πt´1,ju ` Tz
πt ,k˚l˚,@t ą 1, j ą 1,

maxtTc
πt ,j´1, 0u ` Tz

πt ,k˚l˚, @t “ 1, j ą 1
maxt0, Tc

πt´1,ju ` Tz
πt ,k˚l˚, @t ą 1, j “ 1

(25)

In Equation (23), v˚ik is the theoretical linear cutting speed of job i on the machine k, apik is the
depth of cutting, fik is the feed rate, Cv is the durability coefficient of cutting tool, T is the durability of
cutting tool, and zv, xv, yv are coefficients whose values are set according to the processed materials
and conditions. In Equations (24) and (25), Tz

ikl˚ is the total processing time of job i processed on
machine k at spindle speed level l, S is the number of stages, mj is the number of parallel machines in
stage j, and Kj is the set of machines.

The above model of FFmprq| |TCE` Cmax can be solved accurately by the GAMS/Dicopt solver
for small-scale problems, but the solver will fail for large-size problems due to limited computer
memory and a long running time. Therefore, it is necessary to develop efficient intelligent algorithms
to assign parallel machines, select optimal spindle speeds, and sequence jobs simultaneously.

4. EDA Algorithm

The estimation of distribution algorithm (EDA) is a population evolutionary algorithm based
on probabilistic model [44–46], which guides the population evolution utilizing the probability of the
dominant individuals. This algorithm employs the statistical probability to describe the distribution of
solutions, and generates new populations by sampling probability. A large number of research groups
have paid efforts to improve the performance of EDA algorithm [47–49]. The algorithm has been
successfully applied to solve flow shop scheduling problems [50–52] and flexible flow shop scheduling
problems, and it has obtained promising scheduling results. For its advantages, EDA is used to solve
the energy-efficient scheduling problems in flexible flow shops in this paper. A novel decoding method
is developed to optimize machine allocation, speed selection, and job sequence.
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As for the process of EDA, the initialized population is randomly generated first, and the dominant
individuals are selected according to their fitness. Then, the probability model is constructed from the
dominant individuals to generate new ones. After the new population is generated, the termination
criterion works to determine whether to stop this algorithm or not. This process is depicted in Figure 2.
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4.1. Encoding, Decoding, and Dominant Individuals

The frequently utilized encoding method for solving FFSP is the arrangement-based encoding
approach, in which only job sequence in the first stage is encoded and the jobs in the next stages are
sorted according to dispatching rules like FCFS and SPT. Suppose that there are four jobs with an
examplified code of [1 3 4 2], the first job is firstly processed and the third job is processed secondly.
This encoding approach is simple to understand and complement, and thus is applied in this paper.

In regard to the population initialization, we adopt the random initialization method to ensure the
population diversity. The computational complexity of this initialization method is OpPsizenq, where
Psize is the population size and n the number of jobs.

On the ground of job sequence of the first stage, machine allocation, spindle speed, and job
sequence at other stages are determined by decoding. In order to generate a feasible scheduling
scheme, a dispatching rule is embedded in decoding to specify the job with the earliest completion
time to be first processed, and any individual in the population can be decoded with Steps 1–3.

‚ Step 1: Choose an individual from the population, obtain its job sequence in the first stage, and
set t = 1, TEC˚ “ 0, Tc

π1,1 “ 0 and Tm
πt ,k

“ 0.
‚ Step 2: Determine the processing machine and the spindle speed of all the jobs in current stage.

‚ Step 2.1: Calculate the processing time (Tz
πtkl) and energy consumption (Eπt ,k,l) of the

current job (πt) at all alternative speed levels on all available machines by Equations (2)
and (11), respectively.

‚ Step 2.2: Calculate the completion time (To
πt ,k,l) of the job at all alternative speed levels on all

available machines by Equation (26). Set Cmaxπt ,k,l “ To
πt ,k,l and TECπt ,k,l “ TEC˚ ` Eπt ,k,l .

To
πt ,k,l “

$

’

&

’

%

maxtTc
πt, j´1 ` Td

k$k, Tm
πt´1,ku ` Tz

πtkl , @t ą 1, j ą 1, k P Kj, l P Nπt,k

maxtTc
πt ,j´1 ` Td

k$k, 0u ` Tz
πtkl , @t “ 1, j ą 1, k P Kj, l P Nπt,k

maxt0, Tm
πt´1ku ` Tz

πtkl , @t ą 1, j “ 1, k P Kj, l P Nπt,k

(26)
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‚ Step 2.3: Calculate the weighted target value using Equation (12), select the machine and the
speed level with the smallest weighted target value for the job, and mark the index of the
machine and corresponding speed level with k˚ and l˚.

‚ Step 2.4: Set Tm
πt ,k˚

“ Tc
πt ,j “ To

πt ,k˚,l˚, TEC˚ “ TEC˚ ` Eπt ,k˚,l˚. If t “ n, go to Step 3.
Otherwise, set t = t + 1 and return to Step 2.1.

‚ Step 3: If j “ S, the decoding process terminates. Otherwise, determine the job sequence in
ascending order of the completion times, set j = j + 1, t = 1, Tm

πt ,k
“ 0, and return to Step 2.

Calculate the final weighted target values of this individual using Equation (12).

Next, several dominant individuals are to be selected from the population so that the probability
model can be applied. Based on the weighted target values, we sort all individuals in the ascending
order of the target values, and then select the top η% of individuals.

4.2. Population Updating Based on Probability Model

For the convergence, EDA applies an indicator function to extract the sequence characteristics
of dominant individuals, and then constructs a probability model to guide the further population
updating. Utilizing indicator functions, the position of a job in a dominant individual is signified and
then the probability of this job arranged at all positions is statistically calculated. If the probability
is higher, there is more chance for this job to stay at its previous position, and thus the population
is updated gradually according to the mechanism of the roulette. The detailed steps of population
updating based on probability model are as follows.

‚ Step 1: Set the indicator function pISl
tip0qqto zero, and set all elements in the probability matrix

pPrtip0qq to 1{n.
‚ Step 2: At the gth generation, if job i is on position t of dominant individual l, set pISl

tipgqq to 1.
Repeat this process till all dominant individuals, all jobs and all positions have been iterated.
Calculate the total value of job i on position t and then yield the probability pPrtipg` 1qq by using
Equation (27).

Prtipg` 1q “ p1´ asq ˆ Prtipgq ` as ˆ
ÿ

lPSp

ISl
tipgq{|Sp|,@g ă G, t, i (27)

‚ Step 3: Update the population according to Prtipg` 1q by the roulette approach. Terminate the
algorithm if termination criterion is met; otherwise, set g = g + 1 and return to Step 2.

5. Verification and Discussion

Computational experiments are conducted to verify the validity of the proposed mathematical
model, and the effectiveness of the proposed EDA algorithm. All the experiments are performed on
the computer with an Intel Core i5 processor running at 2.8 GHz and a main memory of 4G Bytes.
The employed operating system is Windows 7 Professional. Note that the proposed mathematical
model is programmed in GAMS/Dicopt and the proposed EDA is encoded in the programming
language of MATLAB R2010a (The MathWorks, Inc., Natick, MA, USA).

To compare the performance of the proposed mathematical model and EDA, two smaller size
turning cases are designed. Thus, there are three types of problems: a small-scale problem with four
rolls, a medium-scale problem with 12 rolls, and a large scale problem with 60 rolls.

Before experiment, the weight of energy consumption was set to 0.8, which derived from Analytic
Hierarchy Process (AHP) on the spot. Meanwhile, normalizing parameters of Cmax0 and TEC0 were
determined for the three size experiments utilizing the heuristic rule in Section 3.2. Their values under
small-scale, medium-scale, and large-scale circumstances were (3420 s, 29.07 MJ), (18,652 s, 289.17 MJ),
and (26,763 s, 1294.1 MJ) respectively.
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5.1. Parameter Calibration of EDA

EDA has three main parameters, namely population size noted as Psize, the ratio of dominant
population noted as η% which is equal to |Sp|{|Psize|, and learning rate noted as as. In this research,
each factor has three levels: Psize (30, 50, 80), η% (10%, 20%, 30%), and as (10%, 20%, 30%). We adopt an
orthogonal experiment whose size is L9 (33) to calibrate these parameters, and the stopping criterion is
the elapsed time of 80 s. The numerical results are obtained through the heurisitc rule. Then TEC0 and
Cmax0 are used as parameters to calculate weighted goals according to Equation (12), where a “ 0.8.
Finally, the AOV of each experiment is obtained as shown in Table 1, where AOV is the average value
of the weighted targets for 30 tests.

Table 1. Orthogonal experiment of EDA.

Combination
Level

AOV
Psize η% as

1 80 30 0.1 0.9239
2 30 20 0.3 0.9237
3 80 10 0.3 0.9229
4 30 30 0.2 0.9243
5 50 30 0.3 0.9239
6 80 20 0.2 0.9239
7 50 20 0.1 0.9233
8 50 10 0.2 0.9230
9 30 10 0.1 0.9232

Table 1 shows under the third combination of (0, 10%, 0.3), the AOV value is the smallest, and thus
the third combination is the best. However, when these parameters are invetsigated independently
in Figure 3, we note that the best population size is 50, the best rate of dominant population 10%
and the best learning rate 10% or 30%. The above results are not in accordance with that in the
third combination. Considering the incompleteness of the orthogonal experiment, two more tests of
the combinations of (50, 10%, 0.1) and (50, 10%, 0.3) are performed, and their AOVs are 0.9229 and
0.9228. Taking these 11 experiments into account, we draw the conclusion that the optimal parameter
combination is (50, 10%, 0.3) for the population size, rate of dominant population, and the learning rate.
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The EDA is applied to schedule 12 rolls, and the termination criterion is that the elapsed time
reached 80 s. These jobs are completed in 14,594 s, and 4058 s is saved compared with 18,652 s which
is the makespan of the original scheduling by the heuristic rule. The total energy is 280.08 MJ, and
9.09 MJ is saved compared with the original scheduling. The results of the heuristic rule are depicted
in Figures 4a, 5a and 6a, and the results of EDA are shown in Figures 4b, 5b and 6b.
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5.2. Experimental Results of the Motivating Example

Figure 7a,b compare the Gantt charts of 60 rolls by heuristic rule and by EDA. Apparently, the
derived maximum completion time by EDA is shortened by 6749 s or by 25.22% compared with that
by heuristic rule. Only tiny idle times remain in the Gantt chart by EDA.

With respect to the consumed energy, Figure 8b shows that the peak value of energy comsumption
of 60 rolls by EDA is less than 250 MJ, while that by heuristic rule is nearly 300 MJ. The total energy
consumed by the proposed EDA and the heuristic rule is 1223.2 MJ and 1294.1 MJ. In other words,
70.9 MJ or 5.48% of the total energy is saved by the proposed EDA. Note that, the energy consumptions
of all lathes are reported in Figures A1 and A2 in Appendix.

Figure 9 reports the Pareto frontier of the population. We can see the siginificant improvement of
the Pareto frontier from the first to the final generation, which clearly demonstrates a bidirectional
and synchronous optimization of the two objectives. Obviously, the optimal solution of the proposed
mathematical model, in which both the total energy consumption and makespan are weighted, lies on
the curve of Pareto frontier.



Sustainability 2016, 8, 762 12 of 20
Sustainability 2016, 8, 762  12 of 20 

 

(a) 

 

(b) 

Figure 7. Gantt chart of 60 rolls by the heuristic rule and EDA. (a) By heuristic rule; (b) By EDA. 

  

(a) (b) 

Figure 8. TEC for 60 rolls by heuristic rule. (a) By the heuristic rule; (b) By EDA. 

Figure 7. Gantt chart of 60 rolls by the heuristic rule and EDA. (a) By heuristic rule; (b) By EDA.

Sustainability 2016, 8, 762  12 of 20 

 

(a) 

 

(b) 

Figure 7. Gantt chart of 60 rolls by the heuristic rule and EDA. (a) By heuristic rule; (b) By EDA. 

  

(a) (b) 

Figure 8. TEC for 60 rolls by heuristic rule. (a) By the heuristic rule; (b) By EDA. Figure 8. TEC for 60 rolls by heuristic rule. (a) By the heuristic rule; (b) By EDA.



Sustainability 2016, 8, 762 13 of 20
Sustainability 2016, 8, 762  13 of 20 

 

Figure 9. Pareto optimal solutions. 

Table 2 compares the results obtained by the proposed EDA and that solved by GAMS/Dicopt 

solver for the MINLP model. It shows that, for small-scale problems, Dicopt solver outperforms the 

proposed EDA in both objectives during the acceptable time. For medium scale cases, the Dicopt 

solver takes much more time than the proposed EDA, but it produces a tiny improvement in the 

weighted target. For large-scale cases, the proposed EDA is absolutely superior over the Dicopt 

solver which cannot provide a feasible solution for the limited memory of the computer. 

Table 2. Comparison of results. 

Solving 

Methods 

Small Scale Medium Scale Large Scale 

Cmax 

(h) 

TEC 

(MJ) 
Z (%) 

Time 

(s) 

Cmax 

(h) 

TEC 

(MJ) 

Z 

(%) 
Time (s) 

Cmax 

(h) 

TEC 

(MJ) 

Z 

(%) 
Time (s) 

MINLP 0.91 23.40  83.54  0.66  4.22  275.33  92.47  4.2 × 103 out of memory >7.2 × 104 

EDA 0.92 23.40  83.71 10.00  4.05  280.08  93.13  80.00  5.56  1223.2  90.57  180.00  

In summary, using the proposed EDA, energy-efficient scheduling can be achieved effectively. 

Moreover, makespan and the total energy consumption can be reduced simultaneously, and hence 

production efficiency improvement and energy saving are realized. 

5.3. Discussion 

The weight used in this paper is determined by AHP after investigating the preferences of 

managers in the real case. In order to clarify the weight range, sensitivity analysis experiments are 

conducted. Experiments show that when the weight is 1, the makespan is 13.41 h and the TEC is 

1218.2. Although this TEC is slightly better than that under other circumstances, the makespan is 

particularly worse. Actually, this result originates from the single-objective optimization of the total 

energy consumption and the ignorance of makespan under this circumstance. Therefore, the weight 

value of 1 is excluded from the weight range and then the weight range is limited by (0, 0.8). Table 3 

shows the results after this adjustment. It demonstrates that the relative difference of total energy 

consumption is 2.03%, and that of makespan is 2.76%. Therefore, a conclusion can be reached that 

the two objectives are not sensitive to the weight when it ranges from 0 to 0.8. 

Table 3. Two objectives under different weights. 

Weights TEC (MJ) Cmax (h) 

0.8 1223.2 5.56 

0.6 1228.5 5.54 

0.5 1234.0 5.50 

0.4 1240.6 5.45 

0.2 1243.1 5.43 

0 1248.5 5.41 

Relative difference 2.03% 2.76% 

Figure 9. Pareto optimal solutions.

Table 2 compares the results obtained by the proposed EDA and that solved by GAMS/Dicopt
solver for the MINLP model. It shows that, for small-scale problems, Dicopt solver outperforms the
proposed EDA in both objectives during the acceptable time. For medium scale cases, the Dicopt solver
takes much more time than the proposed EDA, but it produces a tiny improvement in the weighted
target. For large-scale cases, the proposed EDA is absolutely superior over the Dicopt solver which
cannot provide a feasible solution for the limited memory of the computer.

Table 2. Comparison of results.

Solving
Methods

Small Scale Medium Scale Large Scale

Cmax
(h)

TEC
(MJ) Z (%) Time (s) Cmax

(h)
TEC
(MJ) Z (%) Time (s) Cmax

(h)
TEC
(MJ) Z (%) Time (s)

MINLP 0.91 23.40 83.54 0.66 4.22 275.33 92.47 4.2 ˆ 103 out of memory >7.2 ˆ 104

EDA 0.92 23.40 83.71 10.00 4.05 280.08 93.13 80.00 5.56 1223.2 90.57 180.00

In summary, using the proposed EDA, energy-efficient scheduling can be achieved effectively.
Moreover, makespan and the total energy consumption can be reduced simultaneously, and hence
production efficiency improvement and energy saving are realized.

5.3. Discussion

The weight used in this paper is determined by AHP after investigating the preferences of
managers in the real case. In order to clarify the weight range, sensitivity analysis experiments are
conducted. Experiments show that when the weight is 1, the makespan is 13.41 h and the TEC is
1218.2. Although this TEC is slightly better than that under other circumstances, the makespan is
particularly worse. Actually, this result originates from the single-objective optimization of the total
energy consumption and the ignorance of makespan under this circumstance. Therefore, the weight
value of 1 is excluded from the weight range and then the weight range is limited by (0, 0.8). Table 3
shows the results after this adjustment. It demonstrates that the relative difference of total energy
consumption is 2.03%, and that of makespan is 2.76%. Therefore, a conclusion can be reached that the
two objectives are not sensitive to the weight when it ranges from 0 to 0.8.

Table 3. Two objectives under different weights.

Weights TEC (MJ) Cmax (h)

0.8 1223.2 5.56
0.6 1228.5 5.54
0.5 1234.0 5.50
0.4 1240.6 5.45
0.2 1243.1 5.43
0 1248.5 5.41

Relative difference 2.03% 2.76%
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Besides, in order to find out the underlying reasons, three different optimization goals and
two optimization methods are analyzed and compared. Three optimization goals are given: (1) the
comprehensive goal by weighting the consumed energy and completion time (Obj_C); (2) the single
target only considering the consumed energy (Obj_e); and (3) the single target only considering
makespan (Obj_t). The two different optimization methods are given as follows: (1) optimizing the
scheduling scheme and spindle speed synchronously (Opt_S); and (2) optimizing the scheduling
scheme after determining the appropriate spindle speed (Opt_o). The following experiments contain
six combinations of the above optimization goals and methods. For testing the robustness of the
proposed EDA, it is run 30 times for each combination. The stopping criterion is fixed to a given
maximum elapsed CPU time of 180 s. To evaluate the different optimization goals and methods,
firstly Cmax, TCE, and the weighted objective of the best scheduling for each experiment are recorded;
secondly the objectives are respectively analyzed by the repeated measures in IBM SPSS 19, in which
optimization goals are set as within-subject effects and optimization methods as between-subject
effects. The results are shown in Tables 4–6.

Table 4. Descriptive statistics.

Opt
Goals

Opt
Schemes

Weighted Objectives Cmax TEC

Mean (%) Std. Deviation Mean (s) Std. Deviation Mean (KJ) Std. Deviation

Obj_C Opt_S 0.9182 0.0009 20,138.03 114.48 1,088,720.23 595.05
Opt_o 0.9766 0.0009 24,327.10 115.38 1,127,157.80 808.95
Total 0.9474 0.0293 22,232.57 2115.28 1,107,939.02 19,393.75

Obj_e Opt_S 1.5976 0.0043 112,651.53 570.03 1,071,912.00 0.00
Opt_o 1.7903 0.0036 134,722.73 475.01 1,111,200.00 0.00
Total 1.6940 0.0972 123,687.13 11,140.88 1,091,556.00 19,809.78

Obj_t Opt_S 0.9212 0.0015 20,388.53 172.42 1,090,310.33 617.99
Opt_o 0.9794 0.0020 24,503.33 236.15 1,129,263.87 1082.78
Total 0.9503 0.0294 22,445.93 2084.87 1,109,787.10 19,660.57

Table 5. Multivariate tests of weighted objectives.

Effect Value F Hypothesis
df Error df Sig. Partial Eta

Squared

Objs

Pillai’s Trace 1.000 1,050,284.622 2.000 57.000 0.000 1.000
Wilks’ Lambda 0.000 1,050,284.622 2.000 57.000 0.000 1.000

Hotelling’s Trace 36,852.092 1,050,284.622 2.000 57.000 0.000 1.000
Roy’s Largest Root 36,852.092 1,050,284.622 2.000 57.000 0.000 1.000

Objs *
methods

Pillai’s Trace 0.997 8518.901 2.000 57.000 0.000 0.997
Wilks’ Lambda 0.003 8518.901 2.000 57.000 0.000 0.997

Hotelling’s Trace 298.909 8518.901 2.000 57.000 0.000 0.997
Roy’s Largest Root 298.909 8518.901 2.000 57.000 0.000 0.997

Note: (Objs * methods) means the interactions between optimization goals and optimization methods.

Table 6. Between-subjects effects on weighted objectives.

Source Type III Sum
of Squares df Mean Square F Sig. Partial Eta

Squared

Intercept 257.993 1 257.993 36,964,741.896 0.000 1.000
Methods 0.478 1 0.478 68,527.167 0.000 0.999

Error 0.000 58 6.979 ˆ 10´6

From Table 4, we note that in the columns of weighted objective and Cmax, Obj_C yield the
means of 0.9474 and 22,232.57 which are both better than that of Obj_e and Obj_t. In TEC, the mean
of 1,107,939.02 obtained by Obj_C is lower than that of Obj_t. Therefore, adopting the weighted goal
to measure energy-efficient scheduling is suitable for optimizing the comprehensive objective and
makespan. In TEC, the means of 1,091,556.00 is the lowest; however, the Obj_e is not often used in real
production due to the long makespan, which is 123,687.13 s, more than four times longer than that
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of Obj_C and Obj_t. The reason is that all the jobs are assigned on the most efficient machine while
the other machines are idle. Therefore, among the three optimization goals, the weighted objective is
the best measure method for energy-efficient scheduling. Table 4 also shows that Opt_S yields lower
means than Opt_o, no matter which of the three optimization goals is adopted. Therefore, optimizing
the scheduling scheme and spindle speed synchronously not only saves the consumed energy but also
shortens the makespan. Optimizing the scheduling scheme and turning parameters synchronously
has a great effect on environment protection and production efficiency.

Table 5 also shows the multivariate tests of weighted objectives. Since all the differences are
significant (0.000 < 0.05), the optimization goals can affect the weighted objective significantly.
The interactions between optimization goals and optimization methods also affect the weighted
objective significantly. The differences of multivariate tests of Cmax and TEC are also significant, so
the optimization goals and the interactions can affect Cmax and TEC, too. The data of the multivariate
tests of Cmax and TEC are not reported here since they are similar to Table 5.

Table 6 shows the tests of between-subjects effects on weighted objectives. Since the difference
is significant (0.000 < 0.05), the optimization method can affect the weighted objective significantly.
The differences of between-subjects effects on Cmax and TEC are significant, so the optimization
methods can also affect Cmax and TEC significantly.

All in all, we find that different optimization goals and methods affect the Cmax and TEC
significantly, so both environmental and production benefits can be enhanced simultaneously by
optimizing the spindle speed and scheduling scheme, which is the first realization in this regard.

6. Conclusions

Reducing the energy consumption is increasingly believed to be an effective environment
protection measure in manufacturing industry. The optimization of the energy-efficiency scheduling
in flexible flow shops with parallel machines can contribute to energy consumption redution and
production efficiency improvement synchronously. In this paper, the following achievements have
been obtained towards the energy-efficient scheduling in turning shops:

(1) A mixed integer nonlinear programming model is established by optimizing the spindle
speed and scheduling scheme simultaneously, and subsequently, small-scale and medium-scale
problems are solved by the GAMS/Dicopt;

(2) For large-scale problems, an effective EDA algorithm is proposed in which a dispatching rule is
embedded in decoding to specify the job with the earliest completion time to be first processed,
and the population is updated utilizing the probability of the dominant individuals;

(3) The experiment results show that: (1) the proposed algorithm can reduce the energy consumption
to a certain extent and shorten the makespan to a large degree; and (2) there is a positive
correlation between the energy consumption and makespan.

In future research, other turning parameters such as cutting depth and feed rate will also be taken
into consideration so as to further improve the energy efficiency. More types of production shops, such
as no-wait or no-idle flow shops, as well as other constraints such as due date will be studied.
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Appendix A

Table A1. Parameters of machine.

Level Speed (rpm) Es (J) ED (J) Ts (s) TD (s) P0 (w)

1 31.5 16.9 8 0.02 0.01 855
2 45 47.3 43 0.05 0.05 950
3 63 212 203 0.2 0.19 1060
4 90 1017 419 1 0.4 1010
5 125 1569 453 1.73 0.5 910
6 180 2122 463 2.38 0.52 890
7 250 3179 527 3.49 0.58 910
8 355 4065 547 4.45 0.59 920
9 500 4800 576 4.92 0.61 975
10 710 6003 696 5.61 0.65 1070
11 1000 7811 813 6.9 0.72 1115
12 1400 9809 837 8.67 0.74 1130

Note: Speeds of machine are from Machinery Handbook, and the other parameters are the experimental data.
Additional load-loss energy coefficient (bm) is determined by the vibration noise, and the values of lathes R1, R2,
F1, and F2 are 0.1; those of lathes R3, R4, F3, and F4 are 0.13; and the rest are 0.15.

Table A2. Transport time (s).

Time F1 F2 F3 F4 F5 F6

R1 5 6 7 8 9 10
R2 6 5 6 7 8 9
R3 7 6 5 6 7 8
R4 8 7 6 5 6 7
R5 9 8 7 6 5 6

Table A3. Parameters of rolls.

Type Material Number D (mm) Length (mm) d0 (mm) tl (min) tu (min)

1 Cr12MoV 8 66 1550 72 0.65 0.43
2 Cr12MoV 8 76 1620 83 0.72 0.48
3 Cr12MoV 6 85 1750 92 1.05 0.70
4 4Cr5MoSiV1 6 140 1526 150 1.15 0.77
5 4Cr5MoSiV1 6 236 1758 248 1.42 0.95
6 4Cr5MoSiV1 6 246 1846 260 1.50 1.00
7 GCr15 4 202 1550 213 1.32 0.88
8 GCr15 4 336 1620 350 1.85 1.23
9 45# steel 2 425 1720 442 2.08 1.39
10 45# steel 2 550 1720 570 2.35 1.57
11 3Cr2W8V 4 360 1660 375 1.94 1.29
12 40Cr 4 430 1520 446 2.02 1.35

Table A4. Parameters of rough turning.

Type ap (mm) f (mm/r) v* (m/min) Optional Level

1 2.75 0.3 140.3 9,10
2 3.25 0.3 136.8 9
3 3.25 0.3 136.8 9
4 4.7 0.4 95.4 6,7
5 5.6 0.5 85.9 4,5
6 6.6 0.5 83.8 4,5
7 5.1 0.5 106.5 5,6
8 6.5 0.6 96.4 4
9 7.9 0.7 88.7 3

10 9.4 0.8 81.9 2
11 7 0.6 95.3 3,4
12 7.5 0.6 94.3 3

Note: ap and f are determined by the specific technological specification of the machine; v* is a linear cutting
velocity obtained by Equation (23).
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Table A5. Parameters of fine turning.

Type ap (mm) f (mm/r) v* (m/min) Optional Level

1 0.25 0.1 250.4 11,12
2 0.25 0.1 250.4 11
3 0.25 0.1 250.4 11
4 0.30 0.15 224.6 9
5 0.40 0.15 215.1 7,8
6 0.40 0.15 215.1 7,8
7 0.40 0.15 215.1 8
8 0.50 0.2 196.4 6
9 0.60 0.2 191.1 5,6

10 0.60 0.25 182.8 4,5
11 0.50 0.2 196.4 6
12 0.50 0.2 196.4 5,6

Note: ap and f are determined by the specific technological specification of the machine; v* is a linear cutting
velocity obtained by Equation (23).Sustainability 2016, 8, 762  18 of 21 
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