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Abstract: Electric vehicles play a key role for developing an eco-sustainable transport system.
One critical component of an electric vehicle is its battery, which can be quickly charged or exchanged
before it runs out. The problem of electric vehicle dispatching falls into the category of the shortest
path problem with resource renewal. In this paper, we study the shortest path problems in (1) electric
transit bus scheduling and (2) electric truck routing with time windows. In these applications, a
fully-charged battery allows running a limited operational distance, and the battery before depletion
needs to be quickly charged or exchanged with a fully-charged one at a battery management
facility. The limited distance and battery renewal result in a shortest path problem with resource
renewal. We develop a label-correcting algorithm with state space relaxation to find optimal solutions.
In the computational experiments, real-world road geometry data are used to generate realistic
travel distances, and other types of data are obtained from the real world or randomly generated.
The computational results show that the label-correcting algorithm performs very well.

Keywords: electric vehicles; battery swapping or charging; resource-constrained shortest path;
label-correcting algorithm

1. Introduction

Recently, aimed at reducing vehicle emissions and greenhouse gases, more and more electric
transit buses and delivery trucks have been used in personal travel, public transit, home deliveries
from grocery stores, postal deliveries and courier services. For example, electric motorcycles or scooters
have been promoted through incentive programs in Taiwan. UPS began using electric vehicles in their
fleet as early as 1933, and now almost 2000 electric delivery trucks have been used [1]. More than
80 electric transit buses were used in the World Expo 2010 Shanghai [2]. As a benchmark city of electric
vehicle demonstration application in China, Beijing released the Beijing electric vehicle promotion
application action plan (2014–2017) in June, 2014 [3]. Although electric vehicles produce zero emissions,
a fully-charged battery only allows running a limited operational distance. The limited short range may
not be a problem for commute drivers in an urban area. It will have great impacts on the applications
of vehicle scheduling and routing. In order to make electric vehicles service for a whole day, the
battery near depletion can be either quickly charged or exchanged with a fully-charged one at a battery
service station. Therefore, the problem of electric vehicle dispatching with battery renewal falls into
the category of the resource-constrained shortest path problem.

The resource-constrained shortest path problem consists of determining the lowest-cost path from
an origin node to a destination node on a network, such that resources consumed along the path are
no more than specified values. Some typical examples of resources include maximum daily working
hours, vehicle capacity, fuel tank size and maximum traveled distances. The resource-constrained
shortest path problem has significant applicants in transportation, such as in vehicle scheduling with
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time windows [4], vehicle routing with time windows [5], transit crew scheduling [6] and airline crew
pairing [7]. In these applications, the resource-constrained shortest path problem often appears as a
sub-problem in the context of column generation. One critical component of an electric vehicle is its
battery. Unlike the resources previously mentioned, a battery can be quickly charged or exchanged
with a fully-charged one before it runs out. Such an aspect results in the shortest path problem with
resource renewal, which will be investigated in this paper.

The resource-constrained shortest path problem may be classified into two types. In the first
type, either the problem is based on an acyclic network, or although the underlying network is
cyclic, there are no negative cost cycles (e.g., all arcs have positive costs). Solution approaches
include branch-and-bound [8], label setting [9], label setting with preprocessing [10], K-shortest path
enumeration [11,12] and Lagrangian relaxation with robust shortest path enumeration [13]. In the
second type, there are negative cost cycles in the underlying network. If no cycles are allowed
in the shortest path, such a problem is called the elementary shortest path problem with resource
constraints. Solution approaches include branch-and-bound [8], label correcting [14], bi-directional
label correcting [15] and label correcting with state space relaxation [16]. A relaxed version allows the
existence of cycles in the shortest path. Solution methods are mainly based on dynamic programming
with the strategies of two-cycle elimination [5,17], k-cycle elimination [18] and a combined (k,
2)-loop elimination [19]. Both types of resource-constrained shortest path problems are NP-hard [20].
The literature about the electric vehicle routing problem is focused on refueling station location [21,22],
battery swapping or charging replenishment [23,24] and the electric traveling salesman problem [25]
or the electric vehicle routing problem [26–28].

In this paper, we consider the shortest path problems in two types of electric vehicles with battery
renewal: electric buses and electric trucks. The problem on electric buses is defined as follows: given
an origin and a destination depot, a set of scheduled trips with starting and ending times, the travel
distance between two locations, the maximal range of the electric bus before battery renewal and
the cost between two nodes, find the shortest path from the origin depot to the destination depot.
The problem on electric trucks is similar, but with additional constraints: the service has flexible time
windows and demand, and the truck has limited capacity.

The contributions of this paper are as follows. First, we model the shortest path problem in two
important applications: (1) electric transit bus scheduling and (2) electric truck routing with time
windows. We propose integer programming-based formulations. Second, we develop a dynamic
programming-based algorithm to find optimal solutions for these emerging shortest path problems.
Third, we conduct the extensive computational experiments in the context of real-world settings:
the travel distance is obtained from real-world road geometry data; the battery service time and
operational distance are obtained from real-world experiences; and the unit electricity cost is estimated
based on real-world testing reports. We also compare the computational time with CPLEX.

The rest of this paper is organized as follows. Section 2 models the shortest path problems with
battery renewal. Section 3 presents the label-correcting algorithm. Numerical studies are presented in
Section 4. Section 5 concludes the paper and describes future research directions.

2. The Shortest Path Problems in Electric Vehicle Dispatching

In this section, we first model and formulate the shortest path problem in electric transit bus
scheduling with battery renewal, where the underlying network is acyclic. We then model and
formulate the shortest path problem in electric truck routing with battery renewal and time windows,
where the underlying network may contain negative cost cycles.

2.1. The Shortest Path Problem in Electric Transit Bus Scheduling

Heavy-duty diesel trucks and buses generate more than 45% of the nitrogen oxide and 75% of
the particulate matter [29]. In contrast, electric transit buses have a unique advantage: zero emissions.
The use of electric buses in transit service may date back to the 1990s in Santa Barbara, California [30],
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and Chattanooga, Tennessee [31], with the main purpose of reducing vehicle emissions in downtown
areas. Electric buses were used at a large scale during the Beijing Summer Olympics [32] and World
Expo 2010 Shanghai [2]. It was reported in [33] that nine electric buses have been used in Seoul.
In Los Angeles, Foothill Transit has already used a number of electric buses in service with a future
goal of a 100% clean-fuel fleet [34].

A major problem of electric buses is the restricted operational distance caused by the limited
battery capacity. For example, a bus with 22 to 25 seats can run 60 to 90 km in Chattanooga before
the battery runs out [31]. In the Beijing Olympics, the maximum operational distance is 130 km [32].
The electric buses servicing Seoul can run 80 km [33]. In the Foothill Transit of Los Angeles, a
fully-charged battery can propel the bus for 3 h [34]. In [35], certain specifications of electric bus
engines are listed. The use of an air conditioner has a great impact on the operational distance.
The United Nations Environment Programme [2] reported that the maximum distance was 150 km
with an air conditioner on and 250 km with an air conditioner off in the Shanghai World Expo. In order
to overcome the short operational distance, a battery near depletion can be charged or exchanged with
a fully-charged one at a battery service station. The fast charge is used in Seoul and Los Angeles; the
charging time is from 20 to 30 min in Seoul [33] and about 10 min in Los Angeles [34]. Battery exchange
has been employed in Tennessee [31], Beijing [30] and Shanghai [36]. The time of each battery exchange
is 10 to 15 min in Tennessee [31].

Both battery charging and exchange are generally accomplished at a battery management station,
which has limited service spaces. If a bus arrives at a battery station without any available space,
the bus has to wait. We define a maximum waiting time at each battery station in order to avoid
unnecessarily long waiting. The capacity of battery stations cannot be violated at any moment. We use
a discretization approach to handle this requirement. For each trip, the earliest service start time
at a battery station is the arrival time, and the latest service start time is the arrival time plus the
maximum waiting time. We then sample the start time range and generate certain discretized nodes.
The discretization is applied to all of the trips. The discretized nodes are called time-expanded station
nodes, each of which corresponds to a battery service station at a specified time. Such a discretization
technique has been widely used in the single-track train scheduling problem with limited spaces at a
terminal (e.g., see [37]) and transit bus scheduling with the maximum route distance constraint for
compressed natural gas, diesel or hybrid-diesel buses [38].

We now formally define the shortest path problem. The parameters that will be used in the paper
are listed as follows.

B the set of available battery stations;
Tb the set of time-expanded station nodes associated with b P B;
T “ UbPBTb the set of all time-expanded nodes;
at service starting time;
Ut the battery service (swapping or charging) time at node t P T;
at + Ut service ending time;
S the set of service trips;
as starting time, s P S;
Us the service duration, s P S;
o the origin depot;
d the destination depot;
D the maximum distance that a fully-charged battery allows;
dij the travel distance from i P {oYT}, or the ending point of trip i P S to j P {dYT}, or the ending

point of trip j P S; the trip service distance is included if j P S;
tij the travel time from i P {oYT}, or the ending point of trip i P S to j P {dYT}, or the ending point

of trip j P S;
A the set of arcs, including the following arcs: (1) arcs from o to i P S; (2) arcs from i P SYT to d;

and (3) arcs from i P SYT to j P SYT if ai + Ui + tij ď aj and at least one of i and j belongs to S;
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cji the arc cost, often defined as the operational cost; if the shortest path appears as a sub-problem
in column generation or Lagrangian relaxation, cji is defined as a function of the operational cost of
arc ji and linear or Lagrangian dual variables; it is worthy to mention that the underlying network is
acyclic because the starting times of all nodes in SYT are fixed.

The decision variables are defined as follows.
xji a binary variable; xji = 1 if a vehicle is assigned to node i directly after node j;
gs a continuous variable that indicates the accumulative distance traveled to the ending point of

trip s P S since the latest battery renewal.
The shortest path problem in electric transit bus scheduling with battery renewal is formulated in

Table 1.

Table 1. The mathematical model of the shortest path problem in electric transit bus scheduling with
battery renewal.

Objective Function and Restrictions Variable Range Equation No.

min
ř

pj,iqεA
cjixji (a1)

st
ř

j:pi,jqεA
xij “ 1

@i “ o (a2)
ř

j:pj,iqεA
xji “ ´1

@i “ d (a3)
ř

i:pj,iqεA
xji ´

ř

i:pi,jqεA
xij “ 0

@j P SY T (a4)

gi “
ř

j:pj,iqεA
pgj ` djiqxji @i P S (a5)

gi “ 0 @i P TY tou (a6)
´

gj ` djt

¯

xjt ď D @t P TY tdu , pj, tq P A (a7)
xij P t0, 1u pi, jq P A

The objective is to minimize the total cost. Constraint (a2) ensures sending a unit flow; Constraint
(a3) forces receiving a unit flow; and Constraint (a4) is flow conservation. Constraint (a5) determines the
accumulative distance traveled since the latest battery renewal. Constraint (a6) sets the accumulative
distance as zero at battery stations and the origin depot. Constraint (a7) forces that the maximum route
distance restriction is satisfied.

If a sufficiently large penalty is imposed for each arc ji with i P T, the problem becomes the
resource-constrained shortest path problem, which is NP-hard [20]. Therefore, the shortest path
problem in electric transit bus scheduling is NP-hard.

2.2. The Shortest Path Problem in Electric Truck Routing with Time Windows

The rapid development of online retailing has brought the huge demand of last-mile delivery of
parcels. The application of electric trucks will offer great potential to reduce greenhouse gas emissions.
FREVUE (Freight Electric Vehicles in Urban Europe) provides evidence on how innovative solutions
using electric freight vehicles can help to achieve emission free city logistics. It reports that the electric
vehicles should be used in a two-phase delivery network [25], which has been widely adopted by big
online retailers, e.g., yhd.com and jd.com in China. In the network, conventional trucks first send
parcels to delivery terminals, and later, the electric vehicles finish the last-mile deliveries to customers.
A number of electric trucks have already been used in a major shipping company in order to reduce
emissions and maintenance costs [1]. It was also reported in 2011 [39] that UPS agreed to purchase
100 electric vans for use in California. Major car manufacturers also produce electric shuttles now.
For example, Ford Motor has proposed a type of electric van, named the Ford Transit Connect [40].
Electric delivery trucks also face the restriction of the maximum operational distance. For example, the
maximum operational distance of Ford Transit Connect is 120 km [40], and the new trucks that UPS
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agreed to buy can run about 140 km after a full battery charge [39]. It was reported that it can take six
to eight hours for Ford Transit Connect to have a full charge [40].

In the current practice, electric trucks generally serve a relatively short and direct route [39] and do
not have the problem of battery depletion. However, in order to use electric trucks at a large scale, the
charging time has to be significantly reduced (e.g., using direct current charging) or a battery exchange
station has to be built. Although we did not find reports on battery exchange for electric trucks, it can
be expected that battery exchange facilities will be constructed in the future. Such construction may
be benefited by financial incentives from governments and air-quality management districts. In fact,
seven millions incentives were obtained when UPS agreed to buy electric vans [39]. We will assume
that at least one battery station has been constructed for battery exchange or fast charging. Similarly, a
battery service station can simultaneously serve a limited number of electric trucks.

We now define the shortest path problem formally.
S the set of the customers;
[ai, bi] the time window of customer i P S;
vi demand of each node i P S;
Ui service duration of each node i P S;
D the maximum operational distance;
V the vehicle capacity;
dij the travel distance between each pair of locations;
tij the travel time between each pair of locations;
A the set of arcs, including the following arcs: (1) arcs from o to i P S; (2) arcs from i P SYT tod;

and (3) arcs from i P SYT to j P SYT if ai + Ui + tij ď bj and at least one of i and j belongs to S;
cji the arc cost, often defined as the distance cost and may include linear or Lagrangian dual

variables if the shortest path appears as a sub-problem in column generation or Lagrangian relaxation;
B the set of available battery stations;
Tb the set of time-expanded station nodes associated with b P B. This is determined in a similar

way for electric bus scheduling: for each customer i P S, we determine its earliest and latest service
start time at a battery station. The earliest service start time equals ai plus Ui plus the travel time to the
battery station, while the latest service start time equals bi plus Ui plus the travel time to the station
plus the maximum waiting time. The discretization is then used to sample the start time range, and
the time-expanded station nodes are generated. T “ UbPBTb is then the set of all time-expanded nodes,
each of which corresponds to a battery station with specific starting time ai = bi, i P T.

Unlike the electric bus scheduling problem, the electric truck routing problem may be based on
an underlying network with negative cost cycles if the width of time windows is large.

Decision variables are defined as follows.
si the service start time at node i;
xji, gs the same definition as in electric bus scheduling.
The shortest path problem in electric truck routing with the time windows, vehicle capacity and

battery renewal is then formulated in Table 2.
The objective (b1) is to minimize the total cost. Constraints (a2) to (a7) have the same meanings as

in electric bus scheduling. Constraints (b3), (b4) and (b5) ensure that the requirement of starting time
is satisfied. Constraint (b6) guarantees that the vehicle capacity is not violated.

If D is set as a sufficiently large value, the problem becomes the shortest path problem with time
windows, which has been proven to be NP-hard in the strong sense [40]. Therefore, the shortest path
problem in electric truck routing is NP-hard.
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Table 2. The mathematical model of the shortest path problem in electric truck routing with the
time windows.

Objective Function and Restrictions Variable Range Equation No.

min
ř

pj,iqεA
cjixji (b1)

st
(a2) ´ (a7) (b2)
sj `Uj ` tji ď si `Mp1´ xjiq @ pj, iq P A, i P SY T (b3)
ai ď si ď bi @i P S (b4)
s0 “ 0 (b5)
ř

pj,iqεA
vixji ď V (b6)

xij P t0, 1u pi, jq P A (b7)

3. The Label-Correcting Algorithm

In this section, we present a label-correcting algorithm to solve the proposed shortest path
problems. As discussed in Section 1, preprocessing and K-shortest path enumeration have been
successfully used in the resource-constrained shortest path problem without negative cost cycles.
Although the underlying network for electric bus scheduling does not contain negative cost cycles,
it is difficult to employ these approaches due to the battery renewal. In this paper, we develop a
unified label-correcting algorithm to find the optimal elementary shortest paths for both the electric
bus scheduling and electric truck routing problems. The details of the label-correcting algorithm (LC)
are provided in Figure 1. After the algorithm is finished, an optimal elementary path will be outputted.Sustainability 2016, 8, 607 7 of 18 
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Figure 1. The flowchart of the label-correcting algorithm.
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Two major operations in the label-correcting algorithm are label extension and label dominance.
Label extension is critical to ensure the solution feasibility, while label dominance is crucial to algorithm
efficiency. Dominated labels can be deleted from the label pool.

3.1. The Label Operations for Electric Bus Scheduling

The label operations are relatively simple for electric bus scheduling due to an acyclic underling
network and fixed service start times. In the extension context (state space), each state can be
represented by label (i, g), where i is the last reached node and g the accumulative traveling distance
since the last battery renewal. c(i, g) represents the accumulative cost of label (i, g) since leaving from
the depot.

The first label in the extension space is (o, 0), which means that the vehicle starts from the depot
with distance zero and cost zero. Label (i, g) can be extended to label (j, g). If g + dij ďD. Additionally, g
can be determined by a rule: g = 0 if j P T, and g = g + dij otherwise. For the label dominance relationship,
let label (i; g) and label (i, g) be two paths to node i. We define label (i, g) to be dominated by label (i, g)
if c(i, g) ď c(i, g) and g ď g.

3.2. The Label Operations for Electric Truck Routing

The label operations are much more complicated for electric truck routing due to the existence of
negative cost cycles and additional constraints on the vehicle capacity and time windows. Each label
is now defined as (i, g, s, v, R), where s represents the earliest time when service can commence at i and
v represents the accumulative demands at i. R is a binary resource vector to indicate if every node i P S
is visited [8], aimed at avoiding negative cost cycles: initially, all of the positions in R are set to zero;
and if a node is visited, the corresponding position in R is set to one. It is not needed to keep track
of visiting information for time-expanded station nodes in T. Due to the fixed service starting time,
such nodes cannot be visited more than once in a feasible solution. The cost of label (i, g, s, v, R) is
c(i, g, s, v, R).

The first label in the extension is (o, 0, 0, 0, R) with Ri = 0, i P S. Now, consider that label (i, g, s,
v, R) is extended to label (j, g, s, v, R). The extension is feasible if: (1) g + dij ď D; (2) s + Ui + tij ď bj;
(3) v + vj ď V; and (4) j has not previously been visited (Rj = 0). If feasible, label (j, g, s, v, R) is
determined as follows: g = 0 if j P T, and g = g + dij otherwise; s = max{s + Ui + tij, aj}; v = v + vj; and
Rk = Rk if k ‰ j, and Rj = 1. Then, we discuss the label dominance. Consider that both label (i, g, s, v, R)
and label (i, g, s, v, R) have node i as their last reached node. Label (i, g, s, v, R) dominates label (i, g, s,
v, R) if: (1) c(i, g, s, v, R) ď c(i, g, s, v, R); (2) g ď g; (3) s ď s; (4) v ď v; and (5) R ď R.

Note that in the label dominance, Condition (5) requires examining the visit information for each
customer iPS. Such a strong condition results in a large number of non-dominated labels. In order to
reduce the number of non-dominated labels and the computational time, certain studies proposed
a state space relaxation technique (see [5,14,41,42] for more information) to relax Condition (5), say
to: |R| ď

ˇ

ˇR
ˇ

ˇ where |R| =
ř

iPS Ri and
ˇ

ˇR
ˇ

ˇ “
ř

iPS Ri. Due to relaxing the visiting information for each
individual customer, satisfying Condition (4) in the label extension is not needed. However, some states
may correspond to an infeasible solution that includes negative cycles. In order to obtain a feasible
solution, we use a decremental state relaxation technique proposed by Righini and Salani [16] that:
(i) initially applies the state relaxation to all of the customer nodes; (ii) calls the dynamic programming
algorithm LC; (iii) examines if some nodes have been visited more than once in the solution; (iv) if
having the nodes with multiple visits, removes the state relaxation, uses the original extension and
dominance rules for these nodes and returns to Step (ii); and (v) stops if no node is visited more than
once. Both the label-correcting algorithm and the label correcting with state space relaxation will be
tested in the computational experiments.
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4. Computational Experiments

In the computational experiments, we tested the performance of the label-correcting algorithm
and compared it to one of the best MIP solvers of CPLEX 11.2 [43]. We implemented our algorithm
in C++ on a Linux Workstation with a 2-GHz CPU and 16 GB of RAM. When implementing the MIP
models in CPLEX, we used the big-M technique to linearize gjxji appearing in Constraints (a6) and
(a7), and the big-M was set equal to D.

In the following experiments, the battery service time was set as 10 min; the maximum waiting
time at a battery station was set as 30 min; and the sampling unit for generating time-expanded station
nodes (T) was set as 1 min. We set the maximum running time of CPLEX and label-correcting algorithm
as 3600 CPU s. The computational experiments show that in comparison with the state-of-art MIP
solver CPLEX, our algorithms spend much less time in finding optimal solutions.

4.1. The Shortest Path in Electric Bus Scheduling with Battery Renewal

For the shortest path problem in electric bus scheduling, we used real-world data from a transit
agency in the Bay Area. The transit agency is County Connection, whose data can be obtained from [44].
The data are in the GTFS (General Transit Feed Specification) format which is an open format for
packaging scheduled service data. They include stop locations and published weekday and weekend
schedules. The schedule includes the starting times at the stop locations. In order to conduct more tests,
we divided each weekday schedule into two parts and also generated more instances by randomly
shifting the trip starting time within [´10, 10] min from the original value. The ending time was also
adjusted by keeping the same trip duration. Table 3 describes the problem instances. Columns 3
provides the number of time-expanded station nodes. We determined the distance between each pair
of locations by solving a shortest path problem based on the real-world road geometry data provided
by NavTeq. We first determined the nearest intersection to each bus stop. We then solved a one-to-one
shortest path problem between each intersection using the Dijkstra algorithm. The travel times were
then determined using the obtained distances and average vehicle speed of 25 mph.

Table 3. Description of instances in electric bus scheduling.

Instance # of Trips # of Time-Expanded Nodes Description

S
Sa
Sb
Sc

242

952
951
943
930

published weekend schedules
randomly-generated based S
same as above
same as above

W
Wa
Wb
Wc

947

1132
1136
1136
1130

published weekday schedules
randomly-generated based W
same as above
same as above

W1
W1a
W1b
W1c

463

1073
1087
1074
1084

half of W
randomly-generated based W1
same as above
same as above

W2
W2a
W2b
W2c

484

1132
1131
1124
1126

the other half of W
randomly-generated based W2
same as above
same as above

The operational cost of arc (ji) is defined as: (1) if j = o, cji equals the distance cost plus the fixed
vehicle maintenance cost; (2) if i P S, cji equals the distance cost plus the waiting cost at i; and (3) if
i P T, cji equals the sum of the distance cost, the waiting cost at i and the battery service cost. The fixed
vehicle maintenance cost is set as $100; the unit waiting cost is set as $0.1 per minute; and each battery
service cost is set as $5. The unit distance cost is estimated based on the data from Haggis and Beback
(2010) [35], which show that it can take about 8 h for a battery charger with 400 V/100 A to fully charge
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a battery whose operational distance is approximately 490 km. The average electricity price is set
as 10.26 cents per kWh [45]. Finally, the electricity cost per kilometer is 6.61935 cents. The overall
cost of arc (ji) is defined as: cji = cji – 5 ˆ (λi + λj), where λi and λj are dual values of nodes i and j.
In order to conduct the computational experiments, we have to generate dual variables (e.g., see [14]).
First, we determined the average arc operational cost by excluding the fixed vehicle cost and set it
as C. Then, we generated an integer value uniformly drawn from [0.7C, 1.3C] and set it as the dual
variable. In order to conduct more tests, we generated two different dual variables for each instance
using different random seeds.

In accordance with real-world operations, we tested two different values of the maximum
operational distance: 120 km and 150 km. We considered two different locations for the battery station.
In the first case, the battery station is assumed to be located in the depot, and the computational
results are shown in Table 4. In Table 4, Columns 1 and 2 provide the problem instance and dual
variable ID. Columns 3 to 6 report the results when the maximum operational distance is 120 km.
Column 3 provides the optimal objective value. Column 4 reports the CPU seconds of the CPLEX
MIP solver. Columns 5 and 6 present the number of non-dominated labels and CPU seconds when
the label-correcting algorithm is used. Columns 7 to 10 report the corresponding results when the
maximum operational distance is 150 km.

Table 4. Results on scheduling with the battery station in the depot.

Instance Dual
Max Distance 120 km Max Distance 150 km

Optimal
Objective

Value

CPLEX Label Correcting Optimal
Objective

Value

CPLEX Label Correcting

CPU (s) Labels CPU (s) CPU (s) Labels CPU (s)

S

Sa

Sb

Sc

1
2
1
2
1
2
1
2

–822,351
–819,804
–707,440
–705,225
–712,234
–724,879
–751,972
–790,796

117.94
1167.49

26.77
39.38
45.25
26.09

101.99
33.72

2875
2668
1735
2065
1917
2134
2305
2283

0.72
0.72
0.53
0.52
0.54
0.54
0.57
0.56

–824,405
–829,648
–707,440
–705,225
–712,234
–724,879
–755,469
–790,796

141.92
61.65
27.79
32.6
38.13
29.23
42.92
40.46

2897
2739
1735
2066
1919
2134
2511
2302

0.74
0.78
0.55
0.58
0.56
0.6
0.6

0.58

W1

W1a

W1b

W1c

1
2
1
2
1
2
1
2

–1,175,252
–1,185,467
–1,190,403
–1,140,363
–1,180,257
–1,133,505
–1,226,202
–1,160,532

2927.46
338.88
262.11
328.97
738.82
249.87
248.59

+

3239
3012
3123
3075
3431
2702
3116
4126

1.64
1.62
1.5
1.46
1.46
1.35
1.69
1.53

–1,175,252
–1,185,467
–1,190,403
–1,140,363
–1,181,390
–1,133,505
–1,226,202
–1,162,385

+
273.81
273.04
256.57
298.17
808.2

251.33
1052.89

3287
2987
3123
3078
3639
2717
3118
4513

1.74
1.71
1.58
1.56
1.69
1.41
1.8
1.65

W2

W2a

W2b

W2c

1
2
1
2
1
2
1
2

–1,241,010
–1,250,571
–1,236,314
–1,293,550
–1,271,817
–1,228,527
–1,321,741
–1,279,684

1142.48
339.46
314.43
421.19
3565.16
1645.09
376.29
274.28

3060
3133
3492
2899
4166
3831
3967
3681

1.69
1.65
1.61
1.62
1.53
1.56
1.81
1.84

–1,241,010
–1,250,571
–1236,314
–1293,550
–1286,476
–1235,273
–1,321,741
–1,279,684

+
593.26
481.85

1513.48
505.13
424.58
362.13
311.64

3195
3205
3548
2924
4906
4133
3990
3742

1.82
1.74
1.66
1.68
1.58
1.67
1.92
1.97

W

Wa

Wb

Wc

1
2
1
2
1
2
1
2

–1,614,504
–1,574,276
–1,465,572
–1,513,933
–1,484,716
–1,469,219
–1,490,073
–1,518,417

*
*
*
*
*
*
*
*

8333
7751
7953
8779

13,329
8644
8952

12,600

8.58
8.13
7.47
8.04
8.24
7.99
8.04
8.72

–1,628,219
–1,590,012
–1,471,389
–1,518,442
–1,495,817
–1,502,780
–1,498,017
–1,526,627

*
*
*
*
*
*
*
*

9104
8420
8228
9101

16,182
10,332
10,500
14,393

9.65
8.96
8.21
9.07
9.42
8.74
9.36
9.74

* CPLEX was terminated due to being out of memory; +: no an optimal solution was found within 1 CPU hour.

In the second case, the station is assumed to be located in a bus stop that roughly centers on the
overall coverage area. Figures 2 and 3 show the comparison of the computational times consumed
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by CPLEX and label correcting for solving the problem instances for the same scenarios as in Table 4
under this case.Sustainability 2016, 8, 607 11 of 18 
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Table 4 and Figures 2 and 3 show that the label-correcting algorithm finds the optimal solution
very quickly for the instances with less than 500 trips (instances S, W1, W2 and ones that are randomly
generated based on them); the computational time is less than two CPU seconds. For the large
instances with 947 trips (instances W, Wa, Wb and Wc), the label-correcting algorithm spends less than
10 CPU seconds to obtain optimal solutions. The label-correcting algorithm requires much smaller
computational times than CPLEX for all of the instances tested. In particular, for large instances W,
Wa, Wb and Wc, CPLEX was terminated due to insufficient memory (see Columns 4 and 8 in Table 4,
and the last eight red bars in Figures 2 and 3). The computational time of CPLEX is larger if the
maximum operational distance is smaller (for example, see Columns 4 and 8 in Table 4). In contrast,
the label-correcting algorithm spends less time to obtain optimal solutions in such situations, which
can be confirmed by the lesser number of non-dominated labels (see Columns 5 and 9 in Table 4).
Such phenomena may be explained as follows. If the maximum operational distance is smaller, the
linear programming model is more tightly constrained and is certainly more difficult for CPLEX to
solve. However, in the label-correcting algorithm, the existing labels have to extend to time-expanded
station nodes in T more frequently. While at time-expanded station nodes, g of all the labels is zero,
and only cost c(i, g) needs to be compared in the label dominance. Therefore, the label dominance is
stronger on average at time-expanded station nodes, resulting in lesser number of non-dominated
labels in total. The overall computational time is then reduced.
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4.2. The Shortest Path in Electric Truck Routing with Battery Renewal

As discussed in Section 2.2, the current battery technique allows a truck to run about 120 to
140 km [39,40]. We tested two different values of the maximum operational distance: one was 130 km,
and the other one was shorter, 100 km. In order to test the impact of the maximum operational distance
in the context of real-world roads, we calculated the travel distance between two locations based
on the road geometry data provided by NavTeq. We did not use the standard benchmark instances
by [46]. The South Bay Area in California was selected as our case study. First, we determined |S|
locations by randomly generating latitude and longitude in the South Bay Area. Then, we conducted
the point-to-curve map matching to project the random location to the link in the road geometry
network with the shortest perpendicular distance [47]. The point on the projected link was selected
as the customer location. Finally, we solved a one-to-one shortest distance problem between each
customer location using the Dijkstra algorithm based on the road geometry network. The travel times
were then determined using the obtained distances and the average vehicle speed of 40 mph.

The demand at each location was randomly selected from 10, 20 and 30. The vehicle capacity
was set as 400. The earliest service start time (ai) at node i P S was uniformly drawn from 8 a.m. to
6 p.m. As is well known, the width of time windows has a great impact on the computational time.
We tested three scenarios in terms of the width range of time windows: [5, 20] min, [5, 40] min and
[5, 60] min. In each scenario, the width of time windows at each node iPS was uniformly drawn from
the given range. Table 5 presents the summary of generated problem instances. The operational cost of
arc ji is defined as the distance cost. If i is a time-expanded station node (i.e., i P T), an additional $5
is added for battery service cost. The unit distance cost was estimated based on the data from Ford
Transit Connect [48], which shows that it can take about 8 h for a 6.6-kilowatt charger to fully charge a
battery whose operational distance is approximately 120 km. The average electricity price was set as
10.26 cents per kWh [43]. Finally, the electricity cost per kilometer is 4.207677 cents. The overall cost
of arc (ji) is defined as: cji = cji – 5 ˆ (λi + λj), where λi are λj generated in a similar way for electric
bus scheduling.

Table 5. Description of the instances in electric truck routing.

Instance # of
Customers

# of Time-Expanded Nodes

Instance # of
Customers

# of Time-Expanded Nodes

Time Windows Time Windows

[5, 20] min [5, 40] min [5, 60] min [5, 20] min [5, 40] min

50a 50 620 665 685 150a 150 662 695
50b 50 585 666 687 150b 150 636 677
50c 50 623 661 681 150c 150 652 716
50d 50 597 641 665 150d 150 638 696
50e 50 547 644 653 150e 150 665 686

100a 100 644 656 662 200a 200 667 678
100b 100 634 639 663 200b 200 664 680
100c 100 655 693 696 200c 200 633 680
100d 100 645 680 700 200d 200 645 660
100e 100 658 683 697 200e 200 656 694

We first briefly show the effectiveness of the state relaxation in Figure 4 with CPU seconds
from eight problem instances. Figure 4 clearly shows that the state relaxation effectively reduces the
computational time. From now on, we will only use the label correcting with state relaxation for
further discussions. Table 6 presents the computational results for the width of time window [5, 20].
Columns 3 to 7 report the results when the maximum operational distance is 100 km. The column
definitions are similar to the ones in Table 4 with the exception of Column 4, which presents the
optimality gap of CPLEX, defined as|(objective value—optimal value)/objective value|, among
which, the objective value is obtained from the MIP solver of CPLEX; the optimal value is from the
label-correcting algorithm; and the absolute value operator is used since both values are negative.
Columns 8 to 12 report the corresponding results when the maximum operational distance is 130 km.
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Table 6. Results on electric truck routing with the time window width in [5, 20] min.

Instance Dual

Max Distance 100 km Max Distance 130 km

Optimal
Objective

Value

CPLEX State Relaxation Optimal
Objective

Value

CPLEX State Relaxation

Optimal
Gap

CPU
(s) Labels CPU

(s)
Optimal

Gap
CPU
(s) Labels CPU

(s)

50a 1 ´6220 0.00 0.63 1744 0.02 ´6220 0.00 0.70 1780 0.02
2 ´5314 0.00 0.63 1491 0.02 ´5314 0.00 0.61 1539 0.02

50b 1 ´8742 0.00 0.57 2896 0.01 ´8742 0.00 0.57 2904 0.01
2 ´8320 0.00 0.55 3204 0.02 ´8320 0.00 0.57 3208 0.02

50c 1 ´7195 0.00 0.50 2657 0.01 ´7195 0.00 0.50 2771 0.02
2 ´7487 0.00 0.53 2629 0.01 ´7487 0.00 0.49 2824 0.01

50d 1 ´12,234 0.00 0.54 3412 0.02 ´12,234 0.00 0.54 3846 0.02
2 ´11,807 0.00 0.59 4405 0.02 ´11,807 0.00 0.56 4841 0.02

50e 1 ´7986 0.00 0.47 2163 0.01 ´7986 0.00 0.49 2404 0.01
2 ´7962 0.00 0.48 2287 0.01 ´7962 0.00 0.45 2536 0.01

100a 1 ´11,773 0.00 1.66 5088 0.04 ´11,773 0.00 1.45 5483 0.04
2 ´12,385 0.00 1.37 5364 0.05 ´12,385 0.00 1.35 5754 0.04

100b 1 ´12,292 0.00 3.84 9008 0.09 ´13,195 0.00 1.55 9588 0.1
2 ´10,774 0.00 5.41 9615 0.10 ´11,494 0.00 1.59 10,277 0.11

100c 1 ´11,655 0.00 1.27 6211 0.05 ´11,655 0.00 1.23 6446 0.06
2 ´9025 0.00 1.33 5253 0.04 ´9025 0.00 1.38 5539 0.04

100d 1 ´13,405 0.00 1.70 9543 0.08 ´13,405 0.00 1.55 9816 0.09
2 ´12,576 0.00 1.53 10,192 0.10 ´12,576 0.00 1.67 10,391 0.1

100e 1 ´13,473 0.00 1.61 10,546 0.10 ´13,473 0.00 1.50 11,208 0.11
2 ´14,937 0.00 1.57 8134 0.08 ´14,937 0.00 1.53 8628 0.08

150a 1 ´14,980 0.00 4.99 20,942 0.84 ´16,159 0.00 3.48 21,548 0.84
2 ´16,327 0.00 6.80 18,039 0.75 ´16,883 0.00 4.66 18,726 0.75

150b 1 ´15,493 0.00 4.56 12,588 0.14 ´15,493 0.00 4.54 12,913 0.15
2 ´14,026 0.00 6.85 9966 0.13 ´14,026 0.00 5.86 10,167 0.14

150c 1 ´17,062 0.00 3.18 14,051 0.62 ´17,062 0.00 5.24 14,118 0.65
2 ´16,292 0.00 4.13 18,626 1.50 ´16,292 0.00 4.32 18,738 1.58

150d 1 ´18,158 0.00 10.70 29,828 3.36 ´19,656 0.00 4.61 31,441 2.34
2 ´17,744 0.00 12.90 19,941 1.48 ´18,587 0.00 5.99 26,233 1.87

150e 1 ´17,925 0.00 43.71 23,911 0.42 ´19,214 0.00 11.70 26,744 0.44
2 ´19,397 0.00 24.29 23,281 0.38 ´21,270 0.00 6.96 25,491 0.39

200a 1 ´17,718 0.00 15.93 25,200 2.40 ´19,265 0.00 13.09 24,390 0.53
2 ´18,891 0.00 24.28 30,553 2.68 ´18,891 0.00 10.14 26,201 2.37

200b 1 ´21,300 0.00 13.07 26,969 0.53 ´22,216 0.00 7.18 27,031 0.54
2 ´22,300 0.00 12.21 20,303 0.36 ´23,112 0.00 6.95 20,396 0.38

200c 1 ´18,336 0.00 14.00 23,512 1.29 ´19,260 0.00 6.19 25,316 1.43
2 ´17,194 0.00 14.90 25,744 2.46 ´18,212 0.00 6.54 26,967 2.46

200d 1 ´19,536 0.00 27.92 46,037 4.80 ´20,742 0.00 67.16 48,768 4.93
2 ´20,315 0.00 92.37 46,088 2.80 ´20,607 0.00 58.97 46,342 5.51

200e 1 ´20,541 0.00 14.92 30,201 0.62 ´20,541 0.00 18.21 30,808 0.65
2 ´21,171 0.00 36.28 20,917 1.00 ´22,303 0.00 21.47 21,413 0.98
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Table 6 shows that if the width of time windows is randomly drawn from [5, 20] min, the
label correcting with state relaxation finds an optimal solution within 0.2 s for the instances with 50
and 100 customers. If the number of customers is 150 or 200, the CPU seconds are in the range of
[0.14, 5.51] s. The label-correcting algorithm requires much smaller computational times than CPLEX
for all of the instances with the width of time windows in [5, 20]. Figure 5 shows the comparison of
computational times by CPLEX and label correcting on electric truck routing with the time window
width in [5, 40] min and with a maximum distance of 100 km. Figure 6 shows the corresponding
comparison with a maximum distance of 130 km. Figure 7a,b shows the comparisons of computational
times with the time window width in [5, 60] min, with a maximum distance of 100 km and 130 km,
separately. We can find when the width of time windows is in the range [5, 40], the label-correcting
algorithm still finds an optimal solution for the instances with no more than 100 customers within
3 min (see Figure 5). When the width of time windows is in [5, 60], the computational time is less than
5 min for the instances with 50 customers (see Figure 6). However, if both the number of customers
and the width of time windows increase, the computational time of the label correcting often becomes
substantially longer, for example instances 150a to 150e with time windows in [5, 40] in Figures 5
and 6; and several instances cannot be solved by the label-correcting algorithm within one CPU hour.
In comparison with the MIP solver of CPLEX, the label-correcting algorithm performs much better
for most instances tested. In addition, similar to the cases in electric bus scheduling, if the maximum
operational distance is smaller, the computational time of CPLEX becomes longer, while on average,
the label-correcting algorithm spends less time to obtain an optimal solution. In addition, it is worthy
to mention that we generated relatively large dual variables, which result in more negative cost cycles
(see the objective values in Columns 3 and 8 in Table 6) and longer computational time (see Columns 5,
7, 10 and 11 in Table 6, Figures 5–7).

Finally, the computational experiments show that the shortest path problem in electric truck
routing is much more difficult to solve than the shortest path problem in electric bus scheduling. It takes
the label-correcting algorithm less than 9 s to find the shortest paths for bus scheduling problems with
947 trips, while the label correcting may spend a much longer time to find the shortest paths for a
routing instance with 100 customers and relatively wide time windows. The long computational time
in electric truck routing is mainly caused by the existence of negative cost cycles in the underlying
network, which leads to much more complicated label extension and dominance. The comparison
of the number of non-dominated labels in electric bus scheduling and electric truck routing supports
such an observation.
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5. Conclusions and Future Research

In this paper, we study the shortest path problems in emerging electric vehicle dispatching,
where a fully-charged battery allows a vehicle to run a limited operational distance and the battery
near depletion has to be charged or exchanged with a fully-charged one at a battery management
facility. The battery renewal makes the problem different from the resource-constrained shortest path
problems in the literature. We investigate the shortest paths for two important applications: one is
electric transit bus scheduling, and the other is electric truck routing with time windows. We develop
a label-correcting algorithm to solve these shortest path problems. Since the underlying network
of electric truck routing may contain negative cost cycles, the state space relaxation technique is
incorporated into the label correcting to reduce the computational time.

In the computational experiments, the travel time and distance are determined based on the
real-world road geometry data. Other types of data are obtained from the real-world or randomly
generated. The label-correcting algorithm spends less than 9 s to find the shortest paths for electric
bus scheduling problems with 947 trips. Due to the existence of negative cost cycles, the shortest path
problem in electric truck routing is much more difficult to solve than in the electric bus scheduling.
The label correcting with state space relaxation quickly obtains optimal solutions for the instances with
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200 customers and the width of time windows in [5, 20] min. However, if both the number of customers
and the width of time windows increase, the computational time often becomes substantially longer.
We compare the label-correcting algorithm developed with the CPLEX MIP solver. The computational
results show that the label-correcting algorithm performs much better than the CPLEX for the most
instances tested, since the former is specially designed to solve the shortest path problem in electric
vehicle dispatching. If the maximum operational distance is smaller, CPLEX spends a longer time for
the optimal solution, while the label-correcting algorithm, on average, requires a shorter time.

The shortest path problem is a critical component in column generation algorithms since
the sub-problem that is generally a shortest path problem needs to be repeatedly solved.
Column generation has been successfully used in many studies to solve complicated integer
programming problems [6,7]. Therefore, it is very important to develop an efficient algorithm for the
shortest path problem with battery renewal. We expect that our study can play an important role in
electric vehicle optimization problems.

Future work can include the development of new algorithms to reduce the computational time
for instances with wide time windows. The shortest path models and algorithms can be incorporated
into a column generation framework to solve electric vehicle dispatching. Investigating the location
problem of battery management facilities is another topic.
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