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Abstract: Wind speed forecasting plays a key role in wind-related engineering studies and is
important in the management of wind farms. Current forecasting models based on different
optimization algorithms can be adapted to various wind speed time series data. However, these
methodologies cannot aggregate different hybrid forecasting methods and take advantage of the
component models. To avoid these limitations, we propose a novel combined forecasting model
called SSA-PSO-DWCM, i.e., particle swarm optimization (PSO) determined weight coefficients
model. This model consisted of three main steps: one is the decomposition of the original wind speed
signals to discard the noise, the second is the parameter optimization of the forecasting method, and
the last is the combination of different models in a nonlinear way. The proposed combined model is
examined by forecasting the wind speed (10-min intervals) of wind turbine 5 located in the Penglai
region of China. The simulations reveal that the proposed combined model demonstrates a more
reliable forecast than the component forecasting engines and the traditional combined method, which
is based on a linear method.

Keywords: sustainable energy; wind speed forecasting; optimization algorithm; combined model;
weight coefficient optimization; de-noising procedure

1. Introduction

Due to increasing energy demands and environmental concerns, wind power has attracted global
attention as a source of sustainable energy. China is rich in wind energy resources. According to one
estimate of wind energy, at an altitude of 10 m, China has theoretical wind energy reserves of 600–1000
GW on land and offshore (exploitable) reserves of 100–200 GW. At present, the wind power industry
is growing rapidly in the country [1]. It is well known that wind energy has three main weaknesses;
low density, instability and regional variations. These features make wind speed difficult to predict.
Wind speed forecasting can be summed up in three categories: ultra-short-term forecast, short-term
forecast and mid-and-long term forecast [2]. In recent years, much research has been conducted to
enhance wind speed forecasting accuracy, and these approaches can be divided into four categories:
physical methods, statistical methods, hybrid physical-statistical approaches and artificial intelligence
techniques [3]. Among these four categories, artificial intelligence techniques and statistical methods
are the main methods studied in this paper.

Neural networks have good generalization ability, particularly in solving nonlinear problems,
and they have been extensively used to forecast wind speed. Artificial Neural Networks (ANNs) have
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three advantages: first, they possess self-learning ability, second, ANNs have associative memory
functions and, last, they are able to find optimal solutions. In the last 10 years, with the constant
development of artificial neural networks, many researchers have proposed the application of artificial
intelligence techniques to wind speed forecasting, including artificial neural and other mixed methods.
A Wavelet Neural Network (WNN) is a typical and widely used artificial neural network due to
its strong advantages in dealing with nonlinear estimation problems [4]. It has performed well in
various fields, such as pattern recognition [5], image processing [6], forecast estimation [7], biology [8],
medicine [9], economics [10] and others. The WNN method has several advantages such as high data
error tolerance and no requirement for excess information beyond a wind speed history. It can fit
unattained samples from historical data and can also approach an optimal nonlinear function with high
precision. Based on the above advantages of WNNs, many studies have applied them to forecasting
future data.

Decomposition of raw data is an important procedure for data filtering. It can effectively improve
model forecasting precision and result in a better wind speed forecast [11]. Decomposition techniques
such as Wavelet Decomposition (WD) [12] and Empirical Mode Decomposition (EMD) [13] are
often employed to eliminate noise sequences. However, some limitations that need to be noted
are that the WD method is sensitive to the threshold selection and the EMD method has an inherent
disadvantage in the frequent appearance of mode mixing [14]. The de-noising method of singular
spectrum analysis (SSA) used in this paper is somewhat different from de-noising techniques such as
Fourier decomposition (FD) and wavelet decomposition (WD). It is one of the principal component
analysis methods, which combine statistics and probability theory with concepts from dynamical
systems and signal processing [15]. The main concept of SSA is that the original time series is
decomposed into several components, which represent the trend, oscillatory behaviour (periodic or
quasi-periodic components) and noise [16]. One of the strengths of the SSA technique compared with
other non-parametric methods is that only two parameters are needed to reconstruct the original time
series. SSA is often used to extract signals from one-dimensional short time sequences such as wind
speed time series.

Individual artificial intelligence methods cannot always determine the link between each data
point and obtain accurate forecasts [17]. To obtain better performance, hybrid forecasts have been
presented using many approaches [18]. Hybrid forecasts have demonstrated significant improvement
in forecasting results compared with using a single forecasting method [19]. Nevertheless, hybrid
forecasting methods are based on just one or two optimization methods to improve individual models.
It becomes uncertain whether the strengths of different optimization methods are fully exploited
if more optimization methods are included. Thus, to avoid the above disadvantages, combination
forecasts have been proposed as a novel method.

The combination forecast proposed by Bates and Granger in 1969 has been considered an efficient
and simple way to improve forecasting stability [20]. The study of combination forecasts received
significant attention after the 1970s. A lot of researchers focused on combining different forecasting
methods and the application of combination forecasting models in their studies [21,22]. This paper
studies a combined method that incorporates three hybrid models: SSA-PSO-WNN, SSA-CS-WNN;
and SSA-GA-WNN. Generally, combined forecasting models are divided into the constant weight
combination forecast method and the variable weight combination forecast method [23]. This paper
based on the minimum mean absolute percentage error (MAPE), which belongs to the constant weight
combination method. The first step of the combination model is data filtering of the raw wind speed
by SSA. Then, we use Cuckoo Search (CS), Genetic Algorithm (GA); and Particle Swarm Optimization
(PSO) algorithms to optimize the WNN. Finally, the combined model SSA-PSO-DWCM is constructed
based on different weighting coefficients, which are calculated by the PSO algorithm. The simulations
demonstrate that the forecasting accuracy of the proposed combined model is superior to the models
used for comparison in this paper. As a forecasting method, SSA-PSO-DWCM can effectively account
for the periodicity and nonlinearity in the wind speed series and gives more accurate forecasts.
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The primary contributions of this study are described as follows:

(1) A model based on the SSA de-noising technique is utilized to decompose wind speed time series
and discard the noise. This procedure, by reducing the irregularity and instability of wind speed
sequences, can improve model forecasting precision effectively.

(2) Each algorithm has its own advantages. On the basis of an analysis of the structure and parameters
of a WNN, the CS (Cuckoo Search), PSO (Particle Swarm Optimization) and GA (Genetic
Algorithm) algorithms can be employed to determine the number of wavelet nodes and related
parameters such as initial values. These procedures give the optimized artificial neural network
higher stability, convergence speed and prediction accuracy.

(3) A novel combined model, the SSA-PSO-DWCM, is developed for the wind-speed forecasting
field that, for the first time, combines three hybrid models using an intelligent technique method.
The combined model integrates the advantages of its component models and breaks through the
limitations of traditional non-negative theory.

(4) Considering the randomness of the optimization method and the nonlinearity of the wind series,
every experiment was performed 10 times to ensure the reliability of the conclusions.

This paper’s structure is as follows; Section 2 introduces the individual optimization theories
(Cuckoo Search, Genetic Algorithm and Particle Swarm Optimization), the Wavelet Neural Network
prediction method and the Singular Spectrum Analysis de-noising method. Section 3 proposes the
combined approach. In Section 4, to illustrate the effectiveness of the proposed SSA-PSO-DWCM
combined model, several cases are simulated. Experimental design, results and discussion comprise
this section. Finally, Section 5 gives a comprehensive summary of this study.

2. Forecasting Theory

A combined model adopts advantage of its component models is superior to the individual
models or performs at least as well as the best one, as has been proven by many simulation results [24].
This work proposes a novel combined method to forecast wind speed which includes three hybrid
models: SSA-CS-WNN, SSA-GA-WNN and SSA-PSO-WNN. First, Singular Spectrum Analysis
(SSA) is applied to decompose and reconstruct the raw wind sequence. Then, three hybrid models
(SSA-CS-WNN, SSA-GA-WNN and SSA-PSO-WNN) are built to forecast wind speed. Finally, particle
swarm optimization (PSO) is employed to determine the weighting coefficients of these three hybrid
models, and a final combined model is proposed.

2.1. Cuckoo Search (CS) Algorithm

A cuckoo is a charming bird that makes a beautiful sound and has an aggressive reproduction
strategy. Numerous studies have described that many insects and animals exhibit the behavior of Lévy
flights [25]. A moving objective takes a stochastic step to alter the behavior of a system; this situation
can be described as a Lévy flights; a sketch is shown in Figure 1, part c.

The CS algorithm connects a local random process and a global search process in a perfect way,
all controlled by a transfer parameter. The primary procedures of the CS are illustrated by the pseudo
code shown in Figure 1, part (c). In our case, the selection of the number of neurons was based on a
method of trial and error. Many experiments were conducted to determine the number of neurons and
then the best trial results were selected. Tables 1–4 show the experimental parameters of all algorithms.
The experimental parameters of the CS algorithm in this study are shown in Table 1.
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CS the probability of host cuckoo discover outside egg  0.25 

CS the accuracy of the iteration termination  1.0e‐5 

   

Figure 1. Comprehensive presentation of three optimization algorithms and the forecasting method:
(a) Genetic Algorithm pseudo-code and flowchart; (b) Particle Swarm Optimization pseudo-code and
flowchart; (c) Cuckoo Search pseudo-code and flowchart; (d) structure of the WNN; (e) forecasting
results of three hybrid models for four quarters.

Table 1. CS experimental parameters.

Experimental Parameters Default Value

CS the scale of bird’s nest 20
CS the probability of host cuckoo discover outside egg 0.25

CS the accuracy of the iteration termination 1.0e-5
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Table 2. GA parameters.

Experimental Parameters Default Value

GA population scale 200
GA population scale 50

GA cross rate 0.8
GA mutation rate 0.05

Table 3. PSO parameters.

Experimental Parameters Default Value

PSO population scale 20
PSO maximum number of iteration times 20

PSO speed upper bound 1
PSO speed lower bound ´1

Table 4. WNN experimental parameters.

Experimental Parameters Default Value

the number of the input nodes 6
the number of the hidden nodes 6
the number of the output nodes 1

the learning velocity 1 0.01
the learning velocity 2 0.001

iteration time 20

2.2. Genetic Algorithm (GA)

The genetic algorithm was proposed by Professor Holland of the University of Michigan in
1962 [26]. This algorithm operates on a number of potential solutions, applying the principle of
survival of the fittest to produce better and better estimated values to a solution. Currently, genetic
algorithms are used to optimize neural nets to solve some complicated problems [27]. The basic
manipulations of GA contain six parts as described below [28].

Step 1: Generate the initial population in a random way.
Step 2: Compute and save each individual’s fitness.
Step 3: Based on different fitness values, the selection procedure chooses an individual for a new

group. The probability of being chosen is proportional to the individual fitness value.
Step 4: A crossover operation is carried out by selecting two matching parents in which two random

places are selected on each chromosome string and the string segments between these two
places are exchanged between the mates.

Step 5: Mutation randomly modifies elements in the chromosomes and is employed with low
probability, typically from 0.001 to 0.01.

Step 6: If the above steps have not found optimal solutions, i.e., the minimum objective function
value has not been obtained, the procedure goes back to Step 2.

In this paper, the simple genetic algorithm (SGA) which demonstrates the main principles of a
GA in a simple way [29] is applied to sketch the primary properties of GA and the pseudo-code is
shown in Figure 1, part a. Table 2 illustrates the experimental parameters of the GA used in this study.

2.3. Particle Swarm Optimization (PSO) Algorithm

Particle Swarm Optimization (PSO) is a type of optimized algorithm, which was inspired by
the characteristic of a flock of birds in flight to have random movement locally, but to be globally



Sustainability 2016, 8, 555 6 of 20

determined [30]. The purpose of the PSO algorithm is to look to the optimal solution of one
problem [31]. This paper uses the pseudo-code demonstrated in Figure 1, part b to describe the
basic steps of the PSO algorithm. The experimental parameters of the PSO algorithm in this study are
shown in Table 3.

2.4. Wavelet Neural Network (WNN)

The wavelet neural network (WNN) is a network which is based on the structure of the BP neural
network; Multiple-dimensions and feed-forward are characteristic of WNNs. The wavelet neural
network method regards the wavelet basis function as the transfer function of the hidden layer nodes.
The basic structure of WNN is a three-layer neural network which is shown in Figure 1, part (d).
There are m nodes in the input layer, while the hidden layer has n wavelet bases and only one output.
WNN not only converges quickly, but also can avoid local optima because of its strong learning and
generation capacity [32]. The experimental parameters of WNN in this study are shown in Table 4.

The structure of the wavelet neural network is always described by the following formula:

ŷ “
n
ÿ

t“1

wtyt

˜

m
ÿ

k“1

uktxk ´ bt

at

¸

(1)

In the formula, ŷ is the final predicted value and has just one element; x “ px1, x2, ¨ ¨ ¨ , xmq
T

represents the initial input vector; ukt is the weight of the connection from the input layer kth neuron
to the hidden layer tth neuron; the product of wt and ψt is the wavelet basis function; at is the stretch
factor of the wavelet basis function and bt is the translation vector of the wavelet basis function. In
this paper, the Morlet wavelet is adopted as an activation function in the hidden nodes because,
in comparison to the broader Mexico hat wavelet, orthogonal wavelet, and Gauss spine wavelet,
the Morlet wavelet has the smallest error and the best computational stability [33]. The formula is
given below:

y “ cosp1.75xqe´x2{2 (2)

2.5. Singular Spectrum Analysis (SSA)

Singular spectrum analysis (SSA) based on the dynamic reconfiguration of time series. It is a
statistical technique associated with the empirical orthogonal function. It is often used for analyzing
time series and extracting oscillatory components from the original data. SSA is often used to analyse
one-dimensional time series of the form x1, x2, x3, ¨ ¨ ¨ , xN . The trajectory matrix Y is constructed from
the primitive sequence X based on a window of length L. The procedure of SSA is described below:

(1) Embedding. Arrange a lag and choose a favorable “window” Lp2 ď L ď N{2q. Build the trajectory
matrix as below:

Y “

¨

˚

˝

x1 ¨ ¨ ¨ xL
...

. . .
...

xN´L`1 ¨ ¨ ¨ xN

˛

‹

‚

(3)

(2) Calculate the covariance matrix C of the trajectory matrix, with diagonals corresponding to
equal lags:

C “

¨

˚

˝

c0 . . . cL´1
...

. . .
...

cL´1 ¨ ¨ ¨ c0

˛

‹

‚

(4)

Calculate the eigenvalue λ1 ě λ2 ě L ě λL ě 0 of the eigenvector Ek, where
?
λ1 ě

?
λ2 ě

¨ ¨ ¨ ě
?
λL ě 0 is called the time series’ singular spectrum and Ek is called the temporal empirical

orthogonal function (T-EOF).
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(3) Divide the matrices into applicable groups and calculate the sum of each group after the
decomposition procedure. The projection of lagged series Y on Ek:

aik “

M
ÿ

j“1

xi`jEkj, p0 ď i ď N ´ L, 1 ď j ď Lq (5)

aik is called the time principle component (TPC).
(4) The most important procedure of SSA is the component reconstruction. Two parameters, L

(“window” length) and Y (the pattern of grouping the matrices), which are based on the
attributes of the primitive sequences and the final analysis’ objective, are vital for the final
decomposition result.

Reconstruction component Xk
i :

Xk
i “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1
i

i
ř

j“1
ai´j`1,kEk,jp1 ď i ď L´ 1q

1
M

L
ř

J“1
ai´j`1,kEk,jpL ď i ď m` 1q

1
N´i`1

i
ř

j“i´N`L
ai´j`1,kEk,jpN ´ L` 2 ď i ď Nq

(6)

SSA decomposes original data into m reconstructed series; the first reconstructed series X1 is
regarded as the most important one. Hence, the rest are discarded as noise.

2.6. The Hybrid Models SSA-CS-WNN, SSA-GA-WNN, and SSA-PSO-WNN

It is difficult for a single WNN desirable wind speed forecasting results, though the WNN is
suitable for handling small samples or high-dimensional complex problems. What is worse, the
irregularity and nonlinearity of wind speed data cause more difficulties in the wind speed prediction
procedure. To address the shortcoming that an individual model cannot entirely integrate the
information contained in real problem records, three optimization methodologies (CS, GA and PSO)
are used to assign the number of wavelet nodes and related parameters such as initial values in this
study. We use SSA to reconstruct the original series to obtain the de-noising sequences because it has
been confirmed to be a promising method to extract the noise from the original wind speed series.
The applied models’ results after the SSA de-noising procedure have a higher accuracy than the same
models without the de-noising procedure.

3. Combined Model

Recent studies have predominantly focused on short-term wind speed forecasting ranging
from minutes to hours because of the importance of these forecasts for power systems. Various
attempts have been made to use hybrid methods for short-term wind forecasting. The combined
approaches most commonly seen in the literature are data pre-processing-based approaches,
parameter-optimization-based approaches and weighting-based approaches [34]. Combination
forecasts can be used to enhance the eventual prediction results because they can integrate signal
forecasting models and make use of component forecasts. Figure 2 shows the flowchart for the
weighting-based combined approaches. The main idea of the optimal mix forecasting method can be
expressed as the following mathematical programming problem:

maxpminqQ “ Qpw1, w2, ¨ ¨ ¨ , wmq (7)

where Qpw1, w2, ¨ ¨ ¨ , wmq represents the object function, and w1, w2, ¨ ¨ ¨ , wm are the weighting
coefficients in different models.
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3.1. Traditional Combination Forecasting Theory (Weighting-Based Combined Approaches)

Different individual models have different advantages for data forecasting, and each forecast
has some degree of significance. A more scientific approach is to combine these single models using
proportional weighting coefficients and then to utilize various methods to provide comprehensive
information. The traditional combination forecasting approach attempts to find the best weight for
each of the combined models based on minimizing MAPE. In this study

minJ “ LTEL “
T
ÿ

t“1

m
ÿ

j“1

m
ÿ

i“1

liljeitejt

#

RTL “ 1
L ě 0

(8)

where L “ pl1, l2, ¨ ¨ ¨ , lmqT is the weight vector, R “ p1, 1, ¨ ¨ ¨ , 1qT is a column vector where all elements
are 1 and Eij “ eT

i ej, where ei “ pei1, ei2, ¨ ¨ ¨ , eiNq. E “
`

Eij
˘

mˆm is the error information matrix;
J represents the MAPE, et “ xt ´ x̂t; eit is the error of the ith method at time t; and x̂t represents the
forecast value of the ith method at time t.

3.2. Artificial Intelligence Algorithms

In addition to the above traditional methods, an artificial intelligence optimization algorithm
has been used in many approaches [35]. To find the optimal forecasts, this study proposed using the
particle swarm optimization algorithm to determine the weighting coefficients. Combined forecasting
models can also be divided into variable weight combination forecasting methods and invariable
weight combination forecasting methods based on whether the weight changes over time. This
paper based on the minimum mean absolute percentage error (MAPE), which belongs to the constant
weight combination method. This section provides a weight-determined method that was assessed by
experimental simulation rather than a theoretical proof.

After repeated experiments, it was found that the sum of the weights is not precisely equal to
1, it approximates that value. In addition, the weights may calculate a negative value. The amended
method is expressed below:

minJ “ LTEL “
T
ÿ

t“1

m
ÿ

j“1

m
ÿ

i“1

liljeitejt

#

RTL « 1
´1 ď L ď 1

(9)

In Equation (9), the weight vector is not limited to the range [0, 1]. After repeated experiments,
we found that the weight vector has a value in the range [–1, 1] can generate desirable results.
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4. Experimental Design, Results and Discussion

In this section, several cases are presented to demonstrate the effectiveness of the proposed hybrid
approach through comparisons with other models. These studies are presented in four sequential
sections: data collection, forecast performance evaluation criteria, simulation forecast procedure and
comparison and discussion.

4.1. Data Set

The proposed SSA-PSO-DWCM combined model was tested by forecasting the wind speed (in
10-min increments) of wind turbine 5 located in the Penglai region of China. A simple map of the study
area is shown in Figure 3. In this section, several studies are presented to illustrate the effectiveness of
the proposed combined approach through comparisons with other models. To examine the stability of
the combined method, we present our analysis of four days of data from four quarters. Because the
wind speed time series includes some uncertainty and some parameters of the combined method have
no defined value, we make the following assumptions:

(1) Due to the highly random nature of wind speed processes, the experimental data have been
randomly selected from four quarters, and the experimental results are regarded as general results.

(2) For ease of plotting, T (the period of the time series) is 144.
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of accuracy for the predicted wind series and is sensitive to small changes in the data. 

Figure 3. Location of Penglai wind farm in China and statistical properties of the original data.

In the simulation, the size of the training data set is 3000 samples, ranging from 00:10, 6 June 2011
to 20:00, 26 June 2011. The testing data set includes four days from four different quarters of 2011, they
are: 21:10 on 26 March to 21:00 on 27 March; 21:10 on 6 June to 21:00 on 27 June; 21:10 on 26 September
to 21:00 on 27 September and 21:10 on 26 November to 21:00 on 27 November. Figure 3 shows the
properties of the raw data from Penglai wind farm. The prediction method is that the six previous
10-min data points are used to forecast the next step value and to replace the latest predicted value
with the actual value (see Figure 4, part (a)).
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Figure 4. Flowchart of the combined model SSA-PSO-DWCM: (a) a brief illustration of the prediction
method; (b) structure of the WNN and image of the Morlet wavelet function; (c) three hybrid models:
SSA-PSO-WNN, SSA-GA-WNN and SSA-CS-WNN.

4.2. Evaluation Indices for Forecasting Performance

Many performance measures have been applied in previous approaches to evaluate the forecast
accuracy, but no one single measure can be regarded as the common estimation criterion. For the above
reason, we should select several representative indicators to evaluate the quality of these algorithms.
In this paper, three evaluation criteria are used: mean absolute error (MAE), Equation (10); mean
square error (MSE), Equation (11); and mean absolute percentage error (MAPE), Equation (12).

MAE “
1
N

N
ÿ

n“1

|yi ´ ŷi| (10)

MSE “
1
N

N
ÿ

n“1

pyi ´ ŷiq

2

(11)

MAPE “
1
N

N
ÿ

n“1

ˇ

ˇ

ˇ

ˇ

yi ´ ŷi
yi

ˇ

ˇ

ˇ

ˇ

ˆ 100% (12)

In the above formulas, N is the scale of the test data; ŷi represents the forecast result for time
period i, whereas yi represents the actual wind speed for the same time period. Out of these three
criteria, MAPE is regarded as the main estimation index in this paper because it is a unit-free measure
of accuracy for the predicted wind series and is sensitive to small changes in the data.

Generally, the forecasting error is closely related to the purpose of the research and the
characteristics of the original series. The shorter the output length or the smoother the wind speed
series is, the smaller the forecasting errors. Otherwise, the forecasting errors will be larger [36].
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4.3. Forecasting Procedure

This paper employs 3000 samples ranging from 00:10 on 6 June to 20:00 on 26 June 2011 to simulate
the models and regards the raw data of the Penglai region as a random series. Then, the models are
employed to forecast the wind speed for four different days drawn from four different quarters. The
experimental process consisted of several steps as follows:

Step 1: Execute Wavelet Neural Network (WNN) method forecasts and collect the results (for four
quarters of wind turbine 5).

Step 2: Run three hybrid models PSO-WNN, CS-WNN and GA-WNN to forecast wind speed.
Step 3: Combine the three hybrid forecast models by using the traditional combination method.
Step 4: Combine the three hybrid forecast models based on the PSO-determined weighting

coefficient method.
Step 5: Use SSA to filter the raw wind speed data to decrease its non-stationarity. Then, use the

de-noised data to rerun the models following the above Steps 1–4. The flowchart of the
combined method SSA-PSO-DWCM is shown in Figure 4.

4.4. Analysis of Forecast Results and Comparisons of Different Models

Considering the randomness of the optimization methods, each program was executed 10 times.
The maximum and minimum values of the indexes for each quarter and all experiments are presented
in Tables 5 and 6. To facilitate the analysis and discussion of the proposed combined model, 10 other
models for short-term wind speed forecasting are employed for comparison and assessment of the
prediction performance in this subsection. From the first quarter’s simulation results, we can conclude
that the single WNN shows the largest fluctuation and the highest MAPE, which ranges from 15.52%
to 10.80%. After combining the three optimization algorithms, the MAPE becomes more steady and
decreases to some extent. The PSO-WNN ranges from 10.13% to 9.72%, CS-WNN ranges from 10.81%
to 9.87%, and GA-WNN ranges from 16.49% to 10.81%. In SSA-WNN, SSA-PSO-WNN, SSA-CS-WNN
and SSA-GA-WNN models, the MAPE decreased significantly. The three hybrid models’ forecast
results for four quarters are highlighted in Figure 1, part e. The final forecasting results illustrate that
decomposing the raw wind speed signals by SSA can not only improve the forecasting accuracy but
can also lower the fluctuation of the MAPE. The above conclusions can also be drawn from the results
for the other quarters in Tables 5 and 6.

Table 5. Maximum and minimum index values for the first and second quarters in all cases.

First Quarter Second Quarter

Indexes
WNN SSA-WNN

Indexes
WNN SSA-WNN

Max Min Max Min Max Min Max Min

MAE (m/s) 1.09 0.79 0.70 0.53 MAE (m/s) 0.91 0.66 0.58 0.42
MAPE (%) 15.52 10.80 9.74 7.75 MAPE (%) 16.47 10.55 10.26 6.74

MSE pm{sq2 2.06 0.99 0.73 0.50 MSE pm{sq2 1.14 0.68 0.52 0.29

PSO-WNN SSA-PSO-WNN PSO-WNN SSA-PSO-WNN

Max Min Max Min Max Min Max Min

MAE (m/s) 0.73 0.69 0.48 0.47 MAE (m/s) 0.56 0.55 0.39 0.39
MAPE (%) 10.13 9.72 6.79 6.62 MAPE (%) 8.87 8.81 5.97 5.82

MSE pm{sq2 0.87 0.84 0.39 0.36 MSE pm{sq2 0.55 0.52 0.25 0.25

CS-WNN SSA-CS-WNN CS-WNN SSA-CS-WNN

Max Min Max Min Max Min Max Min

MAE (m/s) 0.77 0.72 0.55 0.54 MAE (m/s) 0.67 0.63 0.46 0.44
MAPE (%) 10.81 9.87 7.75 7.37 MAPE (%) 11.42 10.37 7.95 7.50

MSE pm{sq2 0.97 0.88 0.51 0.44 MSE pm{sq2 0.71 0.61 0.34 0.31

GA-WNN SSA-GA-WNN GA-WNN SSA-GA-WNN

Max Min Max Min Max Min Max Min

MAE (m/s) 0.79 0.77 0.68 0.50 MAE (m/s) 0.81 0.64 0.46 0.41
MAPE (%) 11.60 10.81 10.46 7.09 MAPE (%) 16.49 9.15 9.15 6.51

MSE pm{sq2 1.04 0.97 0.76 0.4 MSE pm{sq2 0.99 0.35 0.35 0.28
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Table 6. Maximum and minimum index values for the third and fourth quarters in all cases.

Third Quarter Fourth Quarter

Indexes
WNN SSA-WNN

Indexes
WNN SSA-WNN

Max Min Max Min Max Min Max Min

MAE (m/s) 0.97 0.65 0.5920 0.4837 MAE (m/s) 0.94 0.74 0.63 0.43
MAPE (%) 16.46 11.10 10.19 7.97 MAPE (%) 13.37 10.65 10.08 6.27

MSE pm{sq2 1.56 0.71 0.56 0.37 MSE pm{sq2 1.45 0.83 0.57 0.30

PSO-WNN SSA-PSO-WNN PSO-WNN SSA-PSO-WNN

Max Min Max Min Max Min Max Min

MAE (m/s) 0.64 0.62 0.46 0.46 MAE (m/s) 0.59 0.57 0.42 0.41
MAPE (%) 10.96 10.61 7.83 7.73 MAPE (%) 8.75 8.47 6.12 5.93

MSE pm{sq2 0.71 0.68 0.35 0.35 MSE pm{sq2 0.56 0.52 0.27 0.27

CS-WNN SSA-CS-WNN CS-WNN SSA-CS-WNN

Max Min Max Min Max Min Max Min

MAE (m/s) 0.81 0.67 0.50 0.48 MAE (m/s) 0.60 0.56 0.43 0.42
MAPE (%) 14.24 11.43 8.37 8.13 MAPE (%) 8.54 8.10 6.31 6.14

MSE pm{sq2 1.03 0.74 0.39 0.38 MSE pm{sq2 0.60 0.53 0.30 0.28

GA-WNN SSA-GA-WNN GA-WNN SSA-GA-WNN

Max Min Max Min Max Min Max Min

MAE (m/s) 0.77 0.70 0.47 0.47 MAE (m/s) 0.98 0.69 0.44 0.42
MAPE (%) 12.97 11.93 8.09 8.02 MAPE (%) 15.78 10.30 6.64 6.01

MSE pm{sq2 0.94 0.81 0.38 0.37 MSE pm{sq2 1.31 0.74 0.29 0.28

4.4.1. Forecast Results without De-Noising Procedure

The evaluation index results for different forecasting methods are compared in Tables 7–10;
the first six rows of these four tables present the forecasts without decomposition. MAE, MSE and
MAPE are used to monitor the forecasting accuracy. Wind speed in every quarter was forecast using
10 models to compare the forecasting accuracy; comparisons of MAPE for different models are shown
in Figure 5, part a. From the first six rows of Tables 7–10, we can see that the individual WNN has the
lowest accuracy, better performance is provided by the three hybrid optimization models PSO-WNN,
CS-WMN and GA-WNN. However, we find that the forecasting accuracy of the Traditional Combined
Method is low compared with the three hybrid optimization models. This situation occurs because the
Traditional Combined Method cannot integrate all of the advantages of the hybrid models. In Table 7,
the MAPE of the PSO-DWCM model is 9.30%, which is 3.00%, 0.42%, 0.57% and 1.64% lower than
the WNN, PSO-WNN, CS-WNN and GA-WNN models, respectively. These data indicate that the
PSO-DWCM is a viable method to exploit the advantages of different models. The other three quarters
also support the above conclusions.

Table 7. Evaluation indices of different models in the first quarter for wind turbine 5.

Training Algorithm Estimation Indexes Predict Value Actual Value

MSE pm{sq2 MAE (m/s) MAPE (%) Min Max Min Max

WNN 1.22 0.88 12.30 3.82 13.91 2.10 12.80
PSO-WNN 0.84 0.69 9.72 3.37 12.82 2.10 12.80
CS-WNN 0.88 0.72 9.87 2.15 12.91 2.10 12.80
GA-WNN 0.98 0.78 10.94 2.93 12.81 2.10 12.80

Traditional Combined Method 0.85 0.71 9.89 2.81 12.85 2.10 12.80
PSO-DWCM Combined Method 0.83 0.68 9.30 2.87 12.42 2.10 12.80

SSA-WNN 0.52 0.58 8.04 2.63 12.01 2.10 12.80
SSA-PSO-WNN 0.36 0.47 6.62 3.09 12.08 2.10 12.80
SSA-CS-WNN 0.44 0.54 7.37 3.11 12.36 2.10 12.80
SSA-GA-WNN 0.62 0.63 9.13 3.96 11.98 2.10 12.80

SSA-Traditional Combined Method 0.41 0.51 7.15 3.34 12.02 2.10 12.80
SSA-PSO-DWCM Combined Method 0.37 0.47 6.52 2.88 12.10 2.10 12.80
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Table 8. Evaluation indices of different models in the second quarter for wind turbine 5.

Training Algorithm
Estimation Indexes Predict Value Actual Value

MSE pm{sq2 MAE (m/s) MAPE (%) Min Max Min Max

WNN 0.97 0.76 13.78 2.85 11.94 1.50 11.70
PSO-WNN 0.55 0.56 8.810 1.73 10.67 1.50 11.70
CS-WNN 0.61 0.63 10.37 2.05 11.65 1.50 11.70
GA-WNN 0.35 0.46 9.15 2.87 11.21 1.50 11.70

Traditional Combined Method 0.40 0.50 8.60 2.29 11.13 1.50 11.70
PSO-DWCM Combined Method 0.35 0.46 7.81 2.48 10.69 1.50 11.70

SSA-WNN 0.32 0.44 7.18 1.25 11.59 1.50 11.70
SSA-PSO-WNN 0.25 0.39 5.97 1.37 11.27 1.50 11.70
SSA-CS-WNN 0.34 0.46 7.95 1.73 11.40 1.50 11.70
SSA-GA-WNN 0.28 0.41 6.51 2.30 11.14 1.50 11.70

SSA-Traditional Combined Method 0.25 0.39 6.12 1.93 11.24 1.50 11.70

SSA-PSO-DWCM Combined Method 0.24 0.38 5.74 1.54 11.21 1.50 11.70

Table 9. Evaluation indices of different models in the third quarter for wind turbine 5.

Training Algorithm
Estimation Indexes Predict Value Actual Value

MSE pm{sq2 MAE (m/s) MAPE (%) Min Max Min Max

WNN 1.24 0.84 14.61 3.7 11.40 2.70 10.60
PSO-WNN 0.71 0.64 10.96 3.05 10.24 2.70 10.60
CS-WNN 0.74 0.67 11.43 2.97 9.70 2.70 10.60
GA-WNN 0.81 0.70 11.93 3.46 10.95 2.70 10.60

Traditional Combined Method 0.72 0.65 11.17 3.16 10.08 2.70 10.60
PSO-DWCM Combined Method 0.70 0.62 10.23 3.27 10.52 2.70 10.60

SSA-WNN 0.50 0.54 9.29 3.29 10.27 2.70 10.60
SSA-PSO-WNN 0.34 0.46 7.73 3.54 10.03 2.70 10.60
SSA-CS-WNN 0.38 0.48 8.13 2.86 9.84 2.70 10.60
SSA-GA-WNN 0.47 0.37 8.02 3.50 10.06 2.70 10.60

SSA-Traditional Combined Method 0.35 0.46 7.78 3.34 9.98 2.70 10.60

SSA-PSO-DWCM Combined Method 0.34 0.46 7.63 3.44 9.98 2.70 10.60

Table 10. Evaluation indices of different models in the fourth quarter for wind turbine 5.

Training Algorithm
Estimation Indexes Predict Value Actual Value

MSE pm{sq2 MAE (m/s) MAPE (%) Min Max Min Max

WNN 1.07 0.83 12.39 4.58 11.22 4.40 10.50
PSO-WNN 0.53 0.57 8.47 4.45 9.12 4.40 10.50
CS-WNN 0.53 0.56 8.10 4.27 9.53 4.40 10.50
GA-WNN 0.74 0.69 10.30 4.85 10.84 4.40 10.50

Traditional Combined Method 0.51 0.56 8.30 4.56 9.66 4.40 10.50
PSO-DWCM Combined Method 0.50 0.54 8.72 4.27 9.35 4.40 10.50

SSA-WNN 0.55 0.58 9.29 4.06 9.99 4.40 10.50
SSA-PSO-WNN 0.27 0.42 6.12 4.21 9.77 4.40 10.50
SSA-CS-WNN 0.30 0.43 6.31 4.18 9.63 4.40 10.50
SSA-GA-WNN 0.28 0.42 6.34 4.22 9.69 4.40 10.50

SSA-Traditional Combined Method 0.27 0.41 5.96 4.21 9.70 4.40 10.50

SSA-PSO-DWCM Combined Method 0.27 0.41 5.93 4.27 9.79 4.40 10.50

4.4.2. Forecast Results with SSA De-Noising Procedure

The only two parameters in the SSA that we must select are L and Y. The range of L is 2 ď L ď N{2,
the number of elements in the decomposed series is N = 3150. After repeated experiments, we found
that the final results change little for different values of L. To define the value of Y, we use information
from the previous wind speed time series data. First, we divide the original data (3150 elements)
into two sets: the first set (containing 3000 points) is used to train the model and the second set
(containing 150 points) is used to forecast. Second, the WNN forecasting accuracy is obtained for
many experiments by adjusting the Y value in increments of 10 interval. Finally, we obtain the value
of Y that provides the best performance. Based on the above simulations, L = 1000 and Y = [1:180]
were chosen. The procedure is shown in Figure 6. This paper used the Correlation Coefficient (R)
Equation (13) to depict the relationship between the original series and the decomposed series and the
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Relative Error (RE) Equation (14) and the Root Mean Square Error (RMSE) Equation (15) to measure
the deviation between the observed values and the true values. Larger R and smaller RE and RMSE
indicate a similar connection between the de-noised data and the original data.

R “
covpyt, yq

σyt σy
(13)

RE “
|y´ yt|

y
(14)

RMSE “

g

f

f

e

1
N

N
ÿ

i“1

pyt ´ yq2 (15)

where yt and y represent the de-noising data and the original data, respectively, covpyt, yq is the
covariance between yt and y. σyt and σy represent the variance of yt and y, respectively.
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Figure 6. First quarter forecasting results obtained using SSA.

The correlation coefficient between the decomposed data and the original data is more than 98%,
the relative error and the root mean square error are only approximately 0.6% and 0.42% as shown in
Table 11. These results illustrate that SSA is an effective method for extracting information.
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Table 11. Correlation index between the de-noise data and the original data.

Quarter
Data Set Correlate Index

Original De-Noising R RE (100%) RMSE (100%)

First quarter 3150 3150 0.9849 0.58% 0.42%
Second quarter 3150 3150 0.9846 0.60% 0.42%
Third quarter 3150 3150 0.9841 0.61% 0.41%

Fourth quarter 3150 3150 0.9844 0.59% 0.42%

Rows 7–12 of Tables 7–10 represent the forecasts obtained using the decomposed samples. It clearly
shows that the models reconstructed by SSA perform better than the models using the original
data. The largest improvement in forecasting accuracy is determined by the de-noising procedure.
Finally, the MAPE of the SSA-PSO-DWCM method in the first quarter is 6.52%, which is a decrease
of 5.78% compared to the single model WNN. This value illustrates a great reduction in forecasting
accuracy. The simulation results for the other three quarters also support the above views. Furthermore,
SSA-PSO-DWCM shows stronger forecasting capability compared to the SSA-Traditional combined
method, because the novel combination method is more reasonable, more scientific, and more applicable
to practical problems than no negative constraint theory combination models. A comparison of
forecasting results between WNN and SSA-PSO-DWCM for four quarters is shown in Figure 5, part (b).

4.4.3. Analysis of Different Weighting Coefficients

In this paper, the traditional method and the PSO optimization method are employed to optimize
the weighting coefficients. Different hybrid models’ weighting coefficients were calculated according
to different weighting coefficient determination methods and the results are shown in Table 12. We can
conclude that the weighting coefficients determined by the traditional combined method have two
characteristics: the sum of the three weights is equal to the value 1 and each of the weighting coefficients
is larger than 0. In contrast, the sum of these three weighting coefficients when optimized by the
artificial intelligence algorithm PSO is close to 1 and the weighting coefficients range from ´1 to 1. The
results illustrate that the intelligence algorithm PSO can enlarge advantages and avoid drawbacks in
an effective way to estimate the performance of different models.

Table 12. Different weighting coefficients determined by traditional method and PSO method.

Quarter Weighting Coefficients Determined Method Hybrid Models’ Weighting Coefficients

First quarter

PS0-WNN CS-WNN GA-WNN
Traditional Combined Method 0.3481 0.3427 0.3092

PSO-DWCM Combined Method 0.5327 0.2548 0.1796

SSA-PS0-WNN SSA-CS-WNN SSA-GA-WNN
SSA-Traditional Combined Method 0.3812 0.3424 0.2764

SSA-PSO-DWCM Combined Method 1.0000 0.1867 ´0.1985

Second quarter

PS0-WNN CS-WNN GA-WNN
Traditional Combined Method 0.3556 0.3021 0.3424

PSO-DWCM Combined Method 0.4913 ´0.1081 0.5998

SSA-PS0-WNN SSA-CS-WNN SSA-GA-WNN
SSA-Traditional Combined Method 0.3748 0.2815 0.3437

SSA-PSO-DWCM Combined Method 0.8560 0.1669 ´0.0296

Third quarter

PS0-WNN CS-WNN GA-WNN
Traditional Combined Method 0.3475 0.3332 0.3193

PSO-DWCM Combined Method 0.1480 ´0.2000 0.9863

SSA-PS0-WNN SSA-CS-WNN SSA-GA-WNN
SSA-Traditional Combined Method 0.3431 0.3262 0.3307

SSA-PSO-DWCM Combined Method 1.0000 ´0.1953 0.1916

Fourth quarter

PS0-WNN CS-WNN GA-WNN
Traditional Combined Method 0.3487 0.3646 0.2867

PSO-DWCM Combined Method 0.2596 ´0.1325 0.8730

SSA-PS0-WNN SSA-CS-WNN SSA-GA-WNN
SSA-Traditional Combined Method 0.3407 0.3304 0.3289

SSA-PSO-DWCM Combined Method ´0.0906 0.5851 0.5199
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5. Conclusions

Wind speed forecasting plays an indispensable role in wind-related engineering studies and is
important in the management of wind farms. Accurate forecasts have a significant influence on the
economy and energy-saving measures. However, properties such as nonlinearity and non-stationarity
are great challenges for wind speed prediction. Many studies have made efforts to understand and
successfully implement a forecasting procedure. However, many of these studies are not suitable
to apply to various wind speed time series. This study provides a comprehensive presentation of
the combined theories and then proposes a novel combined forecasting model (SSA-PSO-DWCM)
to forecast future wind speed. Data from four quarters were used to validate the stability of the
model. The first step of the combined model is SSA filtering of the original wind speed data. Then, the
WNN model, improved by the GA, PSO and CS optimization algorithms is used to forecast the set of
new wind speeds. Finally, the combined model is integrated using different weighting coefficients
calculated by the PSO algorithm. Based on the criteria index MAPE in all cases of this study, several
conclusions are presented as follows: (a) the SSA de-noising procedure demonstrates a remarkable
decrease in MAPE; (b) improving the WNN with the PSO, GA and CS algorithms shows a better
forecasting performance than the individual WNN model; (c) in different comparisons, the combined
model SSA-PSO-DWCM obtains the highest forecasting accuracy and is the least sensitive compared
with other models proposed in this paper. Therefore, the proposed combined model has integrated the
advantages of different models and is very useful for the wind energy sector, such as management
of large wind farms, avoiding power grid collapse and reducing production costs. In addition, this
combined model can be generalized to other areas, such as electric load forecasting, product demand
forecasting and traffic flow forecasting. Moreover, as a new type of optimization strategy, the combined
method has excellent prospect. A series of assumptions can be proposed to improve the accuracy and
instability, for instance, an intersection optimal algorithm.

Acknowledgments: This work was financially supported by the National Natural Science Foundation of
China (71171102).

Author Contributions: Feiyu Zhang and Yuqi Dong conceived and designed the experiments; Feiyu Zhang
performed the experiments; Feiyu Zhang and Yuqi Dong analysed the data; Kequan Zhang contributed
reagents/materials/analysis tools; Feiyu Zhang wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. China’s Wind Power Industry and Market Development Situation Analysis. Available online: http://www.
51report.com/2015/hot-research_0108/3057577.html (accessed on 3 February 2016). (In Chinese)

2. Zhao, J.; Guo, Z.H.; Su, Z.Y.; Zhao, Z.Y.; Xiao, X.; Liu, F. An improved multi-step forecasting model based on
WRF ensembles and creative fuzzy systems for wind speed. Appl. Energy 2015, 162, 808–826. [CrossRef]

3. Wang, J.J.; Zhang, W.Y.; Li, Y.N.; Wang, J.Z.; Dang, Z.L. Forecasting wind speed using empirical mode
decomposition and Elman neural network. Appl. Soft Comput. 2014, 23, 452–459. [CrossRef]

4. Jaramillo-Lopez, F.; Kenne, G.; Lamnabhi-Lagarrigue, F. A novel online training neural network-based
algorithm for wind speed estimation and adaptive control of PMSG wind turbine system for maximum
power extraction. Renew. Energy 2016, 86, 38–48. [CrossRef]

5. Andreini, P.; Bonechi, S.; Bianchini, M.; Garzelli, A.; Mecocci, A. Automatic Image Classification for the
Urinoculture Screening. Comput. Biol. Med. 2016, 39, 1–15. [CrossRef] [PubMed]

6. Traorea, S.; Luoa, Y.F.; Fippsa, G. Deployment of artificial neural network for short-term forecasting of
evapotranspiration using public weather forecast restricted messages. Agric. Water Manag. 2016, 163,
363–379. [CrossRef]

7. OlivaTeles, L.; Fernandes, M.; Amorim, J.; Vasconcelos, V. Video-tracking of zebra fish (Daniorerio) as a
biological early warning system using two distinct artificial neural networks: Probabilistic neural network
(PNN) and self-organizing map (SOM). Aquat. Toxicol. 2015, 165, 241–248. [CrossRef] [PubMed]

http://www.51report.com/2015/hot-research_0108/3057577.html
http://www.51report.com/2015/hot-research_0108/3057577.html
http://dx.doi.org/10.1016/j.apenergy.2015.10.145
http://dx.doi.org/10.1016/j.asoc.2014.06.027
http://dx.doi.org/10.1016/j.renene.2015.07.071
http://dx.doi.org/10.1016/j.compbiomed.2015.12.025
http://www.ncbi.nlm.nih.gov/pubmed/26780249
http://dx.doi.org/10.1016/j.agwat.2015.10.009
http://dx.doi.org/10.1016/j.aquatox.2015.06.008
http://www.ncbi.nlm.nih.gov/pubmed/26122721


Sustainability 2016, 8, 555 19 of 20

8. Saraiva, F.O.; Bernardes, W.M.S.; Asada, E.N. A framework for classification of non-linear loads in smart
grids using Artificial Neural Networks and Multi-Agent Systems. Neurocomputing 2015, 170, 328–338.
[CrossRef]

9. ErdemGünay, M. Forecasting annual gross electricity demand by artificial neural networks using predicted
values of socio-economic indicators and climatic conditions: Case of Turkey. Energy Policy 2016, 90, 92–101.

10. Lu, Y.; Zeng, N.Y.; Liu, Y.R.; Zhang, N. A hybrid Wavelet Neural Network and Switching Particle Swarm
Optimization algorithm for face direction recognition. Neurocomputing 2015, 155, 219–224. [CrossRef]

11. Wang, J.Z.; Qin, S.S.; Zhou, Q.P.; Jiang, H.Y. Medium-term wind speeds forecasting utilizing hybrid models
for three different sites in Xinjiang, China. Renew. Energy 2015, 76, 91–101. [CrossRef]

12. Chau, K.W.; Wu, C.L. A Hybrid Model Coupled with Singular Spectrum Analysis for Daily Rainfall
Prediction. J. Hydroinform. 2010, 12, 458–473. [CrossRef]

13. Guo, Z.H.; Zhao, W.G.; Lu, H.Y.; Wang, J.Z. Multi-step forecasting for wind speed using a modified
EMD-based artificial neural network model. Renew. Energy 2012, 37, 241–249. [CrossRef]

14. Hu, J.M.; Wang, J.Z.; Zeng, G.W. A hybrid forecasting approach applied to wind speed time series.
Renew. Energy 2013, 60, 185–194. [CrossRef]

15. Golyandina, N.; Nekrutkin, V.; Zhigljavsky, A. Analysis of Time Series Structure: SSA and Related Techniques;
Chapman & Hall/CRC: New York, NY, USA; London, UK, 2001.

16. Claudio, M.; Rocco, S. Singular spectrum analysis and forecasting of failure time series. Reliab. Eng. Syst. Saf.
2013, 114, 126–136.

17. Wu, C.L.; Chau, K.W.; Li, Y.S. Methods to improve neural network performance in daily flows prediction.
J. Hydrol. 2009, 372, 80–93. [CrossRef]

18. Chen, X.Y.; Chau, K.W.; Busari, A.O. A comparative study of population-based optimization algorithms
for downstream river flow forecasting by a hybrid neural network model. Eng. Appl. Artif. Intell. 2015, 46,
258–268. [CrossRef]

19. Wang, J.Z.; Hu, J.M.; Ma, K.L.; Zhang, Y.X. A self-adaptive hybrid approach for wind speed forecasting.
Renew. Energy 2015, 78, 374–385. [CrossRef]

20. Xiao, L.Y.; Wang, J.Z.; Hou, R.; Wu, J. A combined model based on data pre-analysis and weight coefficients
optimization for electrical load forecasting. Energy 2015, 82, 524–549. [CrossRef]

21. Qin, S.S.; Liu, F.; Wang, J.Z.; Song, Y.L. Interval forecasts of a novelty hybrid model for wind speeds.
Energy Rep. 2015, 1, 8–16. [CrossRef]

22. Guo, Z.; Wu, J.; Lu, H.; Wang, J. A case study on a hybrid wind speed forecasting method using BP neural
network. Knowl. Based Syst. 2011, 24, 1048–1056. [CrossRef]

23. Chen, H. The Validity of the Theory and Its Application of Combination Forecast Methods; Science Press: Beijing,
China, 2008. (In Chinese)

24. Wang, J.Z.; Xiao, L.; Shi, J. The Combination Forecasting of Electricity Price Based on Price Spikes Processing:
A Case Study in South Australia. Abstr. Appl. Anal. 2014, 2014, 172306. [CrossRef]

25. Wang, J.-Z.; Wang, Y.; Jiang, P. The study and application of a novel hybrid forecasting model—A case study
of wind speed forecasting in China. Appl. Energy 2015, 143, 472–488. [CrossRef]

26. Hu, J.M.; Wang, J.Z.; Zeng, G.W. A hybrid forecasting approach applied to wind speed time series.
Renew. Energy 2013, 60, 185–194. [CrossRef]

27. Guo, Z.; Zhao, W.; Lu, H.; Wang, J. Multi-step forecasting for wind speed using a modified EMD-based
artificial neural network model. Renew. Energy 2012, 37, 241–249. [CrossRef]

28. Dong, Y.; Wang, J.Z.; Jiang, H.; Shi, X.M. Intelligent optimized wind resource assessment and wind tubines
selection in Huitengxile of Inner Monglia, China. Appl. Energy 2013, 109, 239–253. [CrossRef]

29. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison Wesley Publishing
Company: Boston, MA, USA, 1989.

30. Zhang, J.; Chau, K.W. Multilayer Ensemble Pruning via Novel Multi-sub-swarm Particle Swarm
Optimization. Comput. Inform. Sci. 2009, 1, 1362–1381.

31. Taormina, R.; Chau, K.W. Neural Network River Forecasting with Multi-objective Fully Informed Particle
Swarm Optimization. J. Hydroinform. 2014, 17, 99–113. [CrossRef]

32. Huang, H.-X.; Li, J.-C.; Xiao, C.-L. A proposed iteration optimization approach integrating back propagation
neural network with genetic algorithm. Expert Syst. Appl. 2015, 42, 146–155. [CrossRef]

http://dx.doi.org/10.1016/j.neucom.2015.02.090
http://dx.doi.org/10.1016/j.neucom.2014.12.026
http://dx.doi.org/10.1016/j.renene.2014.11.011
http://dx.doi.org/10.2166/hydro.2010.032
http://dx.doi.org/10.1016/j.renene.2011.06.023
http://dx.doi.org/10.1016/j.renene.2013.05.012
http://dx.doi.org/10.1016/j.jhydrol.2009.03.038
http://dx.doi.org/10.1016/j.engappai.2015.09.010
http://dx.doi.org/10.1016/j.renene.2014.12.074
http://dx.doi.org/10.1016/j.energy.2015.01.063
http://dx.doi.org/10.1016/j.egyr.2014.11.003
http://dx.doi.org/10.1016/j.knosys.2011.04.019
http://dx.doi.org/10.1155/2014/172306
http://dx.doi.org/10.1016/j.apenergy.2015.01.038
http://dx.doi.org/10.1016/j.renene.2013.05.012
http://dx.doi.org/10.1016/j.renene.2011.06.023
http://dx.doi.org/10.1016/j.apenergy.2013.04.028
http://dx.doi.org/10.2166/hydro.2014.116
http://dx.doi.org/10.1016/j.eswa.2014.07.039


Sustainability 2016, 8, 555 20 of 20

33. Abiyev, R.H.; Kaynak, O.; Kayacan, E. A type-2 fuzzy wavelet neural network for system identification and
control. J. Frankl. Inst. 2013, 350, 1658–1685. [CrossRef]

34. Xiao, L.; Wang, J.Z.; Dong, Y.; Wu, J. Combined forecasting models for wind energy forecasting: A case study
in China. Renew. Sustain. Energy Rev. 2015, 44, 271–288. [CrossRef]

35. Zhang, W.; Deng, Y.-C. Short-Term Wind Speed Prediction Based on Combination Model. Power Syst.
Clean Energy 2013, 29, 83–87, 91. (In Chinese)

36. Wang, J.J.; Wang, J.Z.; Li, Y.N.; Zhu, S.L.; Zhao, J. Techniques of applying wavelet de-noising into a combined
model for short-term load forecasting. Electr. Power Energy Syst. 2014, 62, 816–824. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jfranklin.2013.04.020
http://dx.doi.org/10.1016/j.rser.2014.12.012
http://dx.doi.org/10.1016/j.ijepes.2014.05.038
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Forecasting Theory 
	Cuckoo Search (CS) Algorithm 
	Genetic Algorithm (GA) 
	Particle Swarm Optimization (PSO) Algorithm 
	Wavelet Neural Network (WNN) 
	Singular Spectrum Analysis (SSA) 
	The Hybrid Models SSA-CS-WNN, SSA-GA-WNN, and SSA-PSO-WNN 

	Combined Model 
	Traditional Combination Forecasting Theory (Weighting-Based Combined Approaches) 
	Artificial Intelligence Algorithms 

	Experimental Design, Results and Discussion 
	Data Set 
	Evaluation Indices for Forecasting Performance 
	Forecasting Procedure 
	Analysis of Forecast Results and Comparisons of Different Models 
	Forecast Results without De-Noising Procedure 
	Forecast Results with SSA De-Noising Procedure 
	Analysis of Different Weighting Coefficients 


	Conclusions 

