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Abstract: One of the serious concerns in network design is creating an efficient and appropriate
network capable of efficiently migrating the passenger’s mode of transportation from private to
public. The main goal of this study is to present an improved model for combining the feeder bus
network design system and the railway transit system while minimizing total cost. In this study,
the imperialist competitive algorithm (ICA) and the water cycle algorithm (WCA) were employed
to optimize feeder bus and railway services. The case study and input data were based on a real
transit network in Petaling Jaya, Kuala Lumpur, Malaysia. Numerical results for the proposed model,
including the optimal solution, statistical optimization results and the convergence rate, as well as
comparisons are discussed in detail.
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1. Introduction

Transportation is a multimodal, multi-problem and multi-spectral system, as it involves different
categories and activities, such as policy-making, planning, designing, infrastructure construction and
development. Currently, considering the significant developments in technology, economy and society,
an efficient transportation system plays a key role in passengers’ satisfaction and the reduction of costs.

Many people use public transportation systems to reach their destination; however, others employ
personal vehicles. Passengers are more likely to use a transit service that is highly reliable. Travelers
may switch to other transportation modes if a transit service does not provide the expected levels
of service [1]. To prevent the increase of private transport entering city centers, effective alternative
travel modes must be provided [2]. Nuzzolo and Comi [3] investigated methods of transit network
modelling that can be implemented in transit decision-making support system tools to improve their
performances, according to the latest innovations in information technology and telematics.

In addition, a good public transportation system has been recognized as a potential means of
reducing air pollution, decreasing energy consumption, increasing mobility and improving traffic
congestion. In order to improve complicated public transportation systems, a well-integrated transit
system in urban areas can play a crucial role in passengers’ satisfaction and reduce operating costs.
This system usually consists of integrated rail lines and a number of feeder routes connecting
transfer stations.
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In general, previous approaches to tackle transit network problems can be divided into two
major groups: analytic and network approaches. These approaches differ in their purposes and have
different advantages and disadvantages. They should be considered as complementary rather than
alternative [4]. Numerous studies have attempted to implement analytic models [5–10]. On the other
hand, some of the researchers adopted network approaches instead of analytical methods [2,11–14].
Many studies have been carried out to identify solutions using the aforementioned approaches.
These can be categorized into four groups, namely mathematical, heuristic, metaheuristic and hybrid
techniques [15].

Kuah and Perl [6] presented a mathematical method for designing an optimal feeder bus network
to access an existing rail line. Furthermore, Chang and Hsu [10] developed a mathematical model
to analyze the passenger waiting time in an intermodal station in which the intercity transit system
was served by feeder buses. They presented the analytic model for quantifying the relationships of
passenger waiting time to the reliability of feeder bus services and the capacity of intercity transit.

A large number of research papers has been published in recent years utilizing heuristic methods
due to their flexibility. Shrivastav and Dhingra [12] developed a heuristic algorithm to integrate
suburban stations and bus services, along with the optimization of coordinated schedules for feeder
bus services using existing schedules for suburban trains. Sumalee et al. [16] proposed a stochastic
network model for a multimodal transport network that considers auto, bus, underground and
walking modes. Chowdhury [9] proposed a model for better coordination of the intermodal transit
system. Furthermore, Steven and Chien [17] suggested the use of a specific feeder bus service to
provide shuttle service between a recreation center and a major public transportation facility. They
suggested an integrated methodology (i.e., analytical and numerical techniques) for the development
and optimization of decision variables, including bus headway, vehicle size and route choice.

In terms of metaheuristic methods, Kuan [13] applied genetic algorithms (GAs), ant colony
optimization (ACO), simulated annealing (SA) and tabu search (TS) to resolve a feeder network
design problem (FNDP) for a similar work conducted by Kuah and Perl [11], which improved
previously-proposed solutions.

In another study carried out by Shrivastava and O’Mahony [18], optimum feeder routes and
schedules for a suburban area were determined using GAs. Mohaymany and Gholami [19] suggested
an approach for solving multi-modal FNDP (MFNDP), whose objective was to minimize the total
operator, user and society costs. They used ACO for constructing routes and modifying the
optimization procedure in order to identify the best mode and route in the service area.

Hybrid methods are categorized as another type of solution method that combines the abilities
of different computational techniques to solve complex problems. Shrivastava and O’Mahony [20]
developed the Shrivastava–O’Mahony hybrid feeder route generation algorithm (SOHFRGA). The idea
was to develop public bus routes and to coordinate schedules in a suburban area.

Numerous researchers have attempted to design a more efficient feeder network and to provide
feeder services connecting major transportation systems and welfare facilities. The main target of
this paper is to represent an improved model and to present an efficient transit system to increase the
efficiency of feeder network designs in order to minimize costs.

The structure of this paper is organized as follows: Sections 2 and 3 present a brief description
and definition of the problem and explain the details of the mathematical model, respectively. Section 4
provides succinct representations of the applied ICA and WCA in order to optimize the transit system
problem considered. The computational optimization results obtained from the methods used along
with a discussion and comparisons are presented in Section 5. Finally, the concluding results and
suggestions for future research are given in Section 6.

2. Problem Definition and Assumptions

In large metropolitan areas, particularly those with high transit demand, an integrated transit
system consisting of rail lines and a number of feeder routes connected at different transfer stations is



Sustainability 2016, 8, 537 3 of 27

essential. Consequently, designing a proper feeder network that can provide access to an existing rail
system and coordinate the schedule of transit service can be a significant issue.

The development of improved integrated intermodal systems can result in a higher quality of
service and passenger satisfaction by providing better coverage, reduced access time, minimal delay
and shorter travel times. From the transit operators’ point of view, the operating costs may be reduced
by an overall coordination between different public transport modes. Profit can also be increased by
shorter route maintenance and eliminating the duplication of routes by trains and buses.

This study is focused on designing a set of feeder bus routes and determining operating frequency
on each route, such that the objective function of the sum of the operator, user and social cost is
minimized. The mathematical formulation of the improved model and the details of the constraints
are presented in the following sections.

An intermodal transit network consisting of a rail line and feeder bus routes connecting the
transfer stations is assumed to serve the examined area. The optimal transit system will be determined
based on an assumed route structure (i.e., one rail line and feeder bus routes are linked with straight
lines between nodes) and the peak hour demand situations in the entire service area. To formulate the
mathematical model for an intermodal transit system and its application in the case study, the following
assumptions are made:

(1) The transit network was designed with feeder buses and a fixed rail line.
(2) Transit demand is assumed to be independent of the quality of transit service (i.e., fixed demand).

The demand pattern for feeder bus routes is many-to-one.
(3) The location of nodes (i.e., bus stops and rail stations) is given. Some of the model parameters

(e.g., vehicle sizes, operating speed, cost) are specified.
(4) All feeder routes can be used in both directions for the transit service.

3. Model Formulation

To propose a mathematical formulation for the model based on the problem statement of this
study, the total cost function is expressed in Equation (1). The total cost function is the sum of the user,
operator and social costs, which can be formulated as follows:

CT = Cu + Co + Cs (1)

where CT, Cu, Co and Cs represent the total cost, user costs, operation costs and social costs, respectively.
The well-structured cost classification for the proposed model is shown in Figure 1. Table 1 tabulates
each cost mentioned more comprehensively later in this section.

For nomenclature and convenience purposes, all variables and parameters used for the modified
objective function are defined in Table 2.

Table 1. Illustration of the total cost with all terms in the proposed improved model.

Total Cost (CT)

User Cost (Cu) a Operating Cost (Co) b Social Cost (Cs) c

Feeder Bus and Train Feeder Bus and Train Feeder Bus

Access
cost

Waiting
cost

User
in-vehicle cost

Fixed
cost

Operating
in-vehicle cost

Maintenance
cost

Personnel
cost

Social
cost

CaF + CaT CwF + CwT CuiF + CuiT CfF + CfT CoiF + CoiT CmF + CmT CpF + CpT CsF

a Cu = Ca + Cw + Cui
b Co = Cf + Coi + Cm + Cp

c Cs = CsF
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Figure 1. The cost structure of the proposed improved model. 
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Co Operation cost ($/h) 
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Cp Personnel cost ($/h) 
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CruiF Feeder running user cost ($/h) 
CduiF Feeder dwell user cost ($/h) 
CruiT Train running user cost ($/h) 
CduiT Train dwell user cost ($/h) 
CroiF Feeder running operating cost ($/h) 
CdoiF Feeder dwell operating cost ($/h) 
CroiT Train running operating cost ($/h) 
CdoiT Train dwell operating cost ($/h) 
Cf Fixed costs ($/h) 
Cm Maintenance cost ($/h) 
Cs Social cost ($/h) 
CoF Feeder bus operation cost ($/h) 

Figure 1. The cost structure of the proposed improved model.

Table 2. Description of the parameters used in the proposed improved model.

Parameter Description Unit

CT Total system cost ($/h)
CTK Total cost function for route k ($/h)
Cu User cost ($/h)
Co Operation cost ($/h)
Ca Access cost ($/h)
Cw Waiting cost ($/h)
Cp Personnel cost ($/h)
Cui User in-vehicle cost ($/h)
Coi Operating in-vehicle cost ($/h)

CruiF Feeder running user cost ($/h)
CduiF Feeder dwell user cost ($/h)
CruiT Train running user cost ($/h)
CduiT Train dwell user cost ($/h)
CroiF Feeder running operating cost ($/h)
CdoiF Feeder dwell operating cost ($/h)
CroiT Train running operating cost ($/h)
CdoiT Train dwell operating cost ($/h)

Cf Fixed costs ($/h)
Cm Maintenance cost ($/h)
Cs Social cost ($/h)
CoF Feeder bus operation cost ($/h)
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Table 2. Cont.

Parameter Description Unit

CoT Train operation cost ($/h)
CaF Feeder access cost ($/h)
CaT Train access cost ($/h)
CwF Feeder waiting cost ($/h)
CwT Train waiting cost ($/h)
CuiF Feeder user in-vehicle cost ($/h)
CuiT Train user in-vehicle cost ($/h)
CoiF Feeder operating in-vehicle cost ($/h)
CoiT Train operating in-vehicle cost ($/h)
CmF Feeder maintenance cost ($/h)
CmT Train maintenance cost ($/h)
CpF Feeder personnel cost ($/h)
CpT Train personnel cost ($/h)
CfF Feeder fixed cost ($/h)
CfT Train fixed cost ($/h)
AF Average frequency of feeder bus system (veh-h)
TPK Total passenger-km (passenger-km)
TVK Total vehicle-km (vehicle-km)
µa Passenger access cost ($/passenger-h)
µw Passenger waiting cost for arrival of transit mode ($/passenger-h)
µI Passenger riding cost on transit mode ($/passenger-h)
λf Fixed cost of feeder bus ($/veh-h)
λl Vehicle operating cost of feeder bus ($/veh-km)
λI Vehicle operating cost of feeder bus ($/veh-h)
λlT Vehicle operating cost of train ($/veh-h)
λm Maintenance cost of feeder bus ($/veh-km)
λp Personnel cost of feeder bus ($/veh -h)
λs Social cost of feeder bus ($/veh-km)
V Average operating speed of feeder bus (km/h)
Skj Slack time route k at station j (h)
taF Average access time to reach the feeder station (h)
taTj Average access time to the rail station j (h)
tdT Dwell time for boarding and alighting from the train (h/passenger)
tTj Linked riding time between station j and the destination of the train (h)
tdF Dwell time for boarding and alighting from the feeder bus (h/passenger)
tih Linked in-vehicle time between nodes i and h of the feeder bus (h)

Fopt,k Optimum frequency of feeder bus on route (veh/h)
Freq,k Required frequency of feeder bus on route k (veh/h)

Fk Frequency of feeder bus on route k (veh/h)
FT Frequency of trains (veh/h)

fmin The minimum frequency (veh/h)
fmax The maximum frequency (veh/h)
N Total fleet size of feeder bus (veh)
LF Load factor of feeder bus (passenger/seat)
C Capacity of feeder bus (passenger/veh)

lmin The minimum length of one route (km)
lmax The maximum length of one route (km)
VT Average operating speed of train (km/h)
TT Train link travel time from node 56 to node 59 (h)
nk Number of stops in route k -
qi Demand of node i (passenger/h)
Qk Demand of route k (passenger/h)
lih Distance from node i to h (km)
Lijk Link travel distance from each stop i to station j in route k (km)
Lk Length of route k for the feeder bus (km)

Xihk Binary variable; value of 1 if stop i precedes stop h on bus route k -
Yij Binary variable; value of 1 if stop i is assigned to station j -
I Number of stops -
J Number of stations -
K Number of routes -
H All nodes containing stops and stations -
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3.1. User Cost (Cu)

The user cost is the expense imposed on passengers using the transit system (contains feeder and
train services). This cost is comprised of access, waiting and in-vehicle traveling costs, denoted by Ca,
Cw and Cui, respectively, in the following equation:

Cu = Ca + Cw + Cui (2)

In light of the user cost, which is the summation of feeder bus and train cost, Equation (2) can be
re-written as follows:

Cu “ pCaF ` CaTq ` pCwF ` CwTq ` pCuiF ` CuiTq (3)

Generally, all elements of the user cost can be formulated as the product of an hourly demand,
average time spent in each travel time category (i.e., access time, wait time and in-vehicle time) and the
users’ value of time, which are explained in the following subsections.

3.1.1. Access Costs (Ca)

Feeder and train passengers who have access to stops and stations mainly incur the access cost.
The access cost is generally experienced by local and train passengers accessing the transfer station.

The access cost for feeder bus passengers is the product of local demand, qi, with average access
time taF and the value of time µa, where taF can be estimated from the average distance divided by the
average access speed. The average access time for train passengers (taT) can be formulated similarly.
taT is dependent on the distance between the platforms of bus and train services and access speed.
Assume that access speed and the value of time for feeder bus and train passengers are identical. Thus,
the access cost for feeder route k can be formulated as follows:

Ca “ µa pQk ˆ taF `Qk ˆ taTq (4)

The users’ value of time (µa) is an important parameter in determining the user cost and is usually
dependent on the economic situation (e.g., annual income).

3.1.2. Waiting Cost (Cw)

The waiting time includes passengers waiting for the buses and trains. Additionally, it starts
counting when a passenger arrives at the bus stop or rail station and stops when the person boards the
vehicle [21]. The waiting cost is the product of average wait time, demand and the value of users’ wait
time (µw). Average wait time can be estimated by a fraction of the headway. In this model, the average
wait times for the feeder bus at the stops and for trains at the stations are assumed to be one half of the
headway. Hence, the user waiting cost can be represented using Equation (5) as follows:

Cw “ µw

„ˆ

1
2Fk

`
1

2FT

˙

ˆQk



(5)

3.1.3. User In-Vehicle Cost (Cui)

Similarly, the product of demand, in-vehicle time and the value of time can define the user
in-vehicle cost (Cui). The Cui is formulated based on the average journey time and is calculated in two
main parts: the run time and the dwell time. Running costs for all passengers (Crui) are equal to the
link travel distance from stop i to station j in route k (Lijk) divided by the average bus real speed (Vk).

The dwell time is the boarding and alighting time at the feeder bus stops (tdF) and rail stations
(tdT). The observation of feeder bus stops and rail stations revealed that the dwell time is an important
part of in-vehicle travel time. This time will increase the user, operation and social costs for both feeder
bus and train travel and consequently has a significant effect on the total cost of the transit network.



Sustainability 2016, 8, 537 7 of 27

Dwell time will increase user costs by increasing the in-vehicle time for a boarding passenger. In
addition, this time cost will increase operation costs by increasing fuel consumption, maintenance and
personnel costs. Accordingly, with the increase in pollution, noise, greenhouse gases, etc., the social
costs will also be higher.

Since the time spent on boarding and alighting has an important role in user in-vehicle time, we
tried to present a new concept for determining such costs. Moreover, because of the variation in the
time spent on boarding and alighting, which is dependent on the dwell time at each of the bus stops,
the geometric series equation was adopted to develop a more accurate model for distributing the dwell
cost of the bus stops along the routes.

The average cost of dwell time is determined by demand multiplied by the rate of passenger
boarding and alighting. The derivation of the dwell cost for feeder buses and trains is discussed in
detail in Appendix A. Therefore, the in-vehicle cost, including in-bus and in-train cost, for route k,
is given as follows:

Cui = Crui + Cdui (6)

where Crui is the running cost for all passengers, given as follows:

Crui “ µI

»

–

1
Vk

I
ÿ

i“1

»

–qi ˆ

¨

˝

J
ÿ

j“1

Lijk

˛

‚

fi

fl` pQk ˆ tTjq

fi

fl (7)

and Cdui is the average cost of dwell time as described in Appendix A, given in the following equation:

Cdui “ µI

„ˆ

1
2
pnk ` 1q ˆQk ˆ tdF

˙

` pQk ˆ tdTq



(8)

The first and second terms in Equations (7) and (8), respectively, denote the feeder bus and train
user costs. In Equation (6), Crui represents the running cost for all passengers, which is equal to the link
travel distance from stop i to station j in route k (Lijk) divided by the average bus speed on route k (Vk).
tTj denotes the riding time between station j and the destination of the train regardless of boarding and
alighting times.

3.2. Operating Cost (Co)

The operating cost (Co) is the summation of railway and feeder bus operation costs. It can be
described by the unit time or distance cost (in hours or km) in connection with the transit service
provided. Thus, Co can be formulated as the sum of Coi, Cm, Cp and Cf. These costs include the cost of
trains and buses; therefore, it can be formulated as follows:

Co “ pCoiF ` CoiTq ` pCmF ` CmTq ` pCpF ` CpTq ` pCfF ` CfTq (9)

3.2.1. Feeder Bus Maintenance Cost (CmF)

The feeder bus maintenance cost (CmF) consists of maintenance, repair and tire costs. This cost
depends on the fleet size and round trip distance, formulated as follows:

CmF “ λm p2Fk ˆ LKq (10)

3.2.2. Feeder Bus Personnel Cost (CpF)

The feeder bus personnel cost (CpF), including the drivers and administrative costs, is dependent
on the fleet size, hourly pay and insurance rate. Since the time for boarding and alighting (i.e., dwell
time), as well as bus slack time have important roles in spending time for personnel, in this study,
an effort has been made to represent the improved concept for the determination of these costs. Hence,
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in order to increase the accuracy of the cost function (objective function), adding slack time (Skj) into
the schedule of bus route k at station j and average rest time were considered for each bus at stations.

Moreover, on mathematical formulation, the dwell times were added into the calculation of
personnel costs with respect to the interrelationship among cost terms. The derivation of the CpF is
given in Appendix A. Therefore, CpF for feeder bus route k can be formulated as follows:

CpF “ λp

„ˆ

2Fk
Vk
ˆ LK

˙

` pQk ˆ tdFq `
´

Fk ˆ Skj

¯



(11)

The first and second terms in Equation (11) rely on the feeder running time and the dwell time in
route k, respectively. Accordingly, the third term denotes the personnel cost when drivers are in the
rest time or queue.

3.2.3. Feeder Bus Fixed Costs (CfF)

The feeder bus fixed cost contains initial fleet costs, such as vehicle ownership costs, license,
insurance and so forth. It is formulated according to the fleet size and hourly fixed cost for the vehicle
given for route k as follows:

C f F “ λ f

„

2Fk
Vk
¨ LK



(12)

3.2.4. Feeder Bus Operating In-Vehicle Cost (CoiF)

The feeder bus operating in-vehicle cost (CoiF) is dependent on the travel time and round trip
distance. Coi (for bus or train) is formulated based on the running cost (Croi) and the dwell cost (Cdoi).
The running cost for the bus is formulated according to the round trip distance against the rail, which
is the round trip time. It is assumed that the stop delay time incurred at bus stops and intersections
should be taken into consideration.

As explained in Section 3.1.3., the average cost of dwell time was defined by demand multiplied by
the passenger boarding and alighting rate. Furthermore, these costs were also determined similarly in
Section 3.1.3. Thus, the CoiF for feeder bus route k can be formulated as given in the following equations:

CoiF “ CroiF ` CdoiF (13)

CroiF “ λl p2Fk ˆ LKq (14)

CdoiF “ λI pQk ˆ tdFq (15)

The derivation of CdoiF is discussed later in Appendix A.

3.2.5. Train Operating Cost (CoT)

The operating cost for a rail system can be obtained through multiplying the fleet size by the
value of the train operating cost (λIT). The fleet size can be obtained from the trip time multiplied by
the train frequency (FT), and the rail trip time consists of running and dwell time. The train running
time is trip distance divided by average running speed (VT). In addition, the rail dwell time is the
product of the number of inflow or outflow passengers on the route and the average service time for
passengers boarding and alighting from a vehicle. Thus, the train operation cost can be formulated as
given in the following equation:

CoT “ λIT rpFT ˆ TTq ` pQk ˆ tdTqs (16)

where the first term in Equation (16) corresponds to the train running time and the second term denotes
the train dwell time. As a fixed rail line is assumed and operation cost depends on route station distance
and demand, one operating value for all operating costs is considered in order to simplify the model
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in this study. λIT represents all elements of operating cost, including fixed, maintenance, personnel
and in-vehicle costs ($/veh-h). The derivation of this cost is represented in Appendix A.

3.3. Social Costs (Cs)

Social costs consist of many parameters that non-users pay indirectly. For instance, accident costs,
pollution costs, infrastructure costs, noise, greenhouse gases, and so forth. This cost is assumed to be
dependent on in-vehicle operating costs for feeder services and formulated as follows:

CS “ λS p2Fk ˆ LKq (17)

Each cost term consists of several parameters and items, which, consequently, have different effects
on total cost. Furthermore, determining some of the parameters and items requires the cooperation of
other organizations. Therefore, the interrelationship between some of the cost terms and other related
costs is considered. It is assumed that there is an interrelationship among some of the costs, such
as “social cost” and “feeder operating in-vehicle cost”. Thus, based on previous studies [19,22,23],
in order to simplify the proposed model, the social cost is assumed to be 20% of the “feeder operating
in-vehicle cost” in this study.

3.4. Total Cost for a Route (CTk)

After calculating all cost components for route k, the total cost function CTk for route k is expressed
as given in the following equation:

CTK “ µa pQk ˆ taF `Qk ˆ taTq ` µw

”´

1
2Fk
` 1

2FT

¯

ˆQk

ı

`

µI

«

1
Vk

I
ř

i“1

«

qi ˆ

˜

J
ř

j“1
Lijk

¸ff

` pQk ˆ tTjq `
´

1
2 pnK ` 1q ˆQk ˆ tdF

¯

` pQk ˆ tdTq

ff

`

λl p2Fk ˆ LKq ` λIT rpQk ˆ tdTq ` pFT ˆ TTqs ` λI pQk ˆ tdFq ` λm p2Fk ˆ LKq`

λp

”´

2Fk
Vk
ˆ LK

¯

` pQk ˆ tdFq `
´

Fk ˆ Skj

¯ı

` λ f

”

2Fk
Vk
ˆ LK

ı

` λs p2Fk ˆ LKq

(18)

3.5. Objective Function and Constraints of the Model

The total system cost of the intermodal transit model consists of user parameters (i.e., the value of
the time for user’s access, wait and in-vehicle cost, etc.), operation parameters, social parameters and
the number of decision variables (i.e., number of routes).

This transit network model must satisfy users, operators and social terms. Thus, the objective
function is defined as the sum of the user, operator and social costs, which is given in the
following equation:

Minimize CT “

K
ÿ

k“1

»

—

—

–

User
hkkkkkkkkikkkkkkkkj

pCa ` Cw ` Cuiq `

Operating
hkkkkkkkkkkkkkikkkkkkkkkkkkkj

´

C f ` Coi ` Cm ` Cp

¯

`

Social
hkkikkj

Cs

fi

ffi

ffi

fl

(19)

Therefore, the objective function can be formulated after substitution of all cost terms as
given follows:

Minimize CT “ µa

«

taF
I
ř

i“1
qi `

J
ř

j“1
taTj

I
ř

i“1
qi ˆYij

ff

` µw

„ K
ř

k“1

”´

1
2Fk
` 1

2FT

¯

ˆQk

ı



`

µI

«

K
ř

k“1

«

1
Vk

I
ř

i“1

«

qi ˆ

˜

J
ř

j“1
Lijk

¸ff

`

´

1
2 pnK ` 1q ˆQk ˆ tdF

¯

ff

`
J
ř

j“1

„ˆ I
ř

i“1
qi ˆYij

˙

ˆ
`

tdT ˆ pJ ´ j` 1q ` tTj
˘



ff

`

λ f

„

2
K
ř

k“1

Fk
Vk
ˆ Lk



` λl

„

2
K
ř

k“1
Fk ˆ LK



` λI

„ K
ř

k“1
Qk ˆ tdF



` λIT

„ˆ I
ř

i“1
qi ˆ tdT

˙

` pFT ˆ TTq



`

λm

„

2
K
ř

k“1
Fk ˆ LK



` λp

„ K
ř

k“1

”´

2Fk
Vk
ˆ LK

¯

` pQk ˆ tdFq `
´

Fk ˆ Skj

¯ı



` λs

„

2
K
ř

k“1
Fk ˆ LK



(20)



Sustainability 2016, 8, 537 10 of 27

subject to:
K
ÿ

k“1

H
ÿ

h“1

Xihk “ 1 i “ 1, . . . , I (21)

I
ÿ

i“1

H
ÿ

j“I`1

Xijk ď 1 k “ 1, . . . , K (22)

H
ÿ

h“1

Xihk ´

I
ÿ

m“1

Xmik ě 0 i “ 1, . . . , I k “ 1, . . . , K (23)

ÿ

iRH

ÿ

hPH

K
ÿ

k“1

Xihk ě 1 @H (24)

H
ÿ

h“1

Xihk`

I
ÿ

m“1

Xmik ´Yij ď 1 i “ 1, . . . , I j “ I ` 1, . . . , I ` J k “ 1, . . . , K (25)

lmin ď LK ď lmax k “ 1, . . . , K (26)

fmin ď Fk ď fmax k “ 1, . . . , K (27)

K
ÿ

k“1

„ˆ

2Fk
Vk
ˆ LK

˙

` pQk ˆ tdFq `
´

Fk ˆ Skj

¯



ď N (28)

QK
LFC

ď Fk k “ 1, . . . , K (29)

where decision variables contain two binary variables, called Yij and Xihk, which stand for the transit
network, and a continuous variable for the feeder bus frequency (Fk). The determination of Fk, as one
of the decision variables, depends on the transit network configuration. Thus, the optimal feeder bus
frequency using the analytical solution can be determined by setting the first derivative of the total cost
function (CTK) with respect to the feeder bus frequency, equating it to zero and solving it. Therefore,
the optimal bus frequency can be taken as:

Fopt,K “

g

f

f

e

µwQk

4lk
”

pλl ` λm ` λsq `
1

Vk

´

λ f ` λp

¯ı

` p2Skj ˆ λpq
(30)

Furthermore, the minimum required frequency for route k is given as follows:

Freq,K “
Qk

LFˆ C
(31)

Thus, the given frequency for route k is obtained by selecting the maximum value for the optimum
frequency (Fopt,K) and required frequency (Freq,K). Some limitations are considered for the proposed
improved model to represent an effective transit network model satisfying route feasibility, frequency,
and so forth. Equations (21)–(25) correspond to the route feasibility in the network design. Several
researchers used these constraints in their studies [2,11,13]. Equation (21) explains that each bus stop
should be placed in a single route (many-to-one pattern). Furthermore, Equation (22) ensures that each
generated route must be connected to only one railway station. Accordingly, in Equation (23), each
bus is assumed to pass all of the stops in its route node. Equation (24) describes how each feeder bus
route should be linked to only one railway station. The constraint given in Equation (25) specifies
that a bus stop can be assigned to a station in which the corresponding route terminates at one of
the rail stations. Constraints on the minimum and maximum length of feeder routes are given in
Equation (26). Similarly, limitations for the minimum and maximum frequencies are indicated in
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Equation (27). Equation (28) shows the allowable maximum number of vehicles in the fleet, and
Equation (29) represents the restriction for the minimum frequency in order to satisfy the demand.

4. Applied Optimization Methods

The transit network design problems are categorized as NP-hard problems with a nonlinear
objective function and constraints. Searching for the best feasible routes in order to minimize the cost
function is crucial in solving the feeder network design and scheduling problem (FNDSP). Therefore,
optimization approaches, which are mostly metaheuristics, are of great importance. There are many
methods being used to solve transit network design problems. Based on the literature, there are pros
and cons for all of these optimization methods [22].

WCA and ICA have shown great potential for solving optimization problems, as they have been
used for global stochastic searches [24–26]. These two metaheuristic algorithms were employed to
optimize the model for the case study considered in this paper. Brief explanations of each optimizer
are provided in the following subsections.

4.1. Imperialist Competitive Algorithm

The imperialist competitive algorithm (ICA) is inspired by the social-political process of
imperialism and imperialistic competition. Similar to many optimization algorithms, the ICA starts
with an initial population. Each individual in the population is called a ‘country’. Some of the best
countries with minimal cost are considered imperialist states, and the rest are colonies of those
imperialist states. All of the colonies are distributed among the imperialist countries based on
their power.

To define the algorithm, first, initial countries of size NCountry are produced. Then, some of the best
countries (with the size of Nimp) in the population are selected to be the imperialist states. Therefore,
the rest of the countries with size Ncol will form the colonies that belong to the imperialists. Then, the
colonies are divided among the imperialists [24] in such a way that the initial number of each empire’s
colonies has to be proportional to its power. Hence, the initial number of colonies for the n-th empire
will be [27]:

NCn “ roundt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Costn
Nimp
ř

i“1
Costi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ Ncolu , n “ 1, 2, ..., Nimp (32)

where NCn is the initial number of colonies for the n-th empire and Ncol is the total number of initial
colonies. To divide the colonies, NCn of the colonies are randomly chosen and assigned to the n-th
imperialist [27]. After dividing all colonies among the imperialists and creating the initial empires,
these colonies start moving toward their relevant imperialist country. This movement is a simple
model for assimilation policy. Furthermore, the total power of an empire is defined by the sum of the
cost of the imperialist, and some percentage of the mean cost of its colonies, as given below [27]:

TCn “ Costpimperialistnq ` ξ tmeanpCostpcolonies o f empirenqqu (33)

where TCn is the total power of the n-th empire and ξ is a positive small number. After computing the
total power of empires, the weakest colony (or colonies) of the weakest empire is usually targeted by
other empires and competition begins on possessing this colony. Each imperialist participating in this
competition, according to its power, has a probable chance of possessing the cited colony.

To start the competition, at first, the weakest empire is chosen, and then, the possession probability
of each empire is estimated. The possession probability Pp is related to the total power of the empire
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(TC). In order to evaluate the normalized total cost of an empire (NTC), the following equation is
used [27]:

NTCn “ max
i
tTCiu ´ TCn n, i “ 1, 2, 3, ..., Nimp (34)

During the imperialistic competition, the weak empires will slowly lose their power and become
weaker over time. At the end of the process, only one empire will remain that governs all colonies [27].

4.2. Water Cycle Algorithm

The water cycle algorithm (WCA) is inspired by nature and is based on the observation of the
water cycle and how rivers and streams flow downhill towards the sea in the real world. Similar to
other metaheuristic algorithms, the WCA begins with an initial population called the population of
streams. First, we assume that we have rain or precipitation. The best individual (i.e., best stream) is
chosen as a sea [25].

Then, a number of good streams (Nsr) are chosen as rivers. Depending on their magnitude of flow
(i.e., cost/fitness function), rivers and the sea absorb water from streams. Indeed, streams flow into
rivers and rivers flow to the sea. Furthermore, it is possible that some streams directly flow to the sea.
Therefore, new positions for streams and rivers may be given as follows [26]:

Ñ

X
i`1

Stream “
Ñ

X
i

Stream ` randˆ Cˆ p
Ñ

X
i

River ´
Ñ

X
i

Streamq (35)

Ñ

X
i`1

Stream “
Ñ

X
i

Stream ` randˆ Cˆ p
Ñ

X
i

Sea ´
Ñ

X
i

Streamq (36)

Ñ

X
i`1

River “
Ñ

X
i

River ` randˆ Cˆ p
Ñ

X
i

Sea ´
Ñ

X
i

Riverq (37)

where rand is a uniformly-distributed random number between 0 and 1 (1 < C < 2). If the solution
given by a stream is better than its connecting river, the positions of the river and stream are exchanged.
Such an exchange can similarly occur for rivers and the sea, as well as for the sea and streams.

For the exploration phase, if the normal distances among rivers, streams and the sea are smaller
than a predefined value (dmax), new streams are generated flowing to the rivers and sea (i.e., evaporation
condition). A schematic view of the WCA is illustrated in Figure 2, where circles, stars and a diamond
correspond to the streams, rivers and the sea, respectively [25]. Detailed comparisons concerning
similarities and differences between the PSO and WCA, as well as other optimizers have been discussed
in the literature [28].
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5. Description of the Study Area

The mathematical formulation and optimization algorithms are applied to a real study area in
Petaling Jaya (PJ), Kuala Lumpur, Malaysia. PJ is a major Malaysian city originally developed as a
satellite township in Kuala Lumpur. The objective was to minimize the total cost of the feeder bus
network in the area. The case study region, shown in Figure 3, is an area of 5.5 km by 6.5 km in the
south of PJ in Malaysia and includes the Kelana Jaya Line of the Kuala Lumpur LRT. There are four
stations in the study region. The existing bus stops in each traffic zone are considered feeder bus stops
covered by a feeder line. A certain amount of demand corresponding to the traffic zone is assigned to
each of the bus stops in that particular zone.
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Data Collection

In order to execute the transit network problem, four important datasets must be available, namely
the list of all nodes (i.e., bus stops and rail stations), the network available connectivity list, the transit
demand matrix and the cost parameters. A total of 54 nodes is defined to describe the service area and
associated network connectivity. The list of locations associated with these 54 nodes is tabulated in
Tables 3 and 4.

Table 3. Location of rail stations and bus stops in the PJ study area.

Bus Stop No. X-Coordinate (km) Y-Coordinate (km) Bus Stop No. X-Coordinate (km) Y-Coordinate (km)

1 6.71 6.17 26 5.11 2.30
2 5.97 6.15 27 4.31 1.67
3 5.79 5.59 28 4.30 2.14
4 6.26 5.30 29 4.06 2.51
5 7.02 5.02 30 4.14 3.05
6 5.46 5.05 31 3.83 3.52
7 7.50 4.89 32 4.12 4.30
8 6.62 4.50 33 4.56 4.09
9 5.68 4.57 34 5.28 4.42

10 6.06 4.18 35 4.91 5.05
11 7.22 4.36 36 4.33 4.90
12 7.91 4.13 37 4.56 6.04
13 7.10 3.95 38 3.97 6.00
14 5.24 3.41 39 4.00 5.41
15 5.41 2.61 40 3.59 4.70
16 6.53 3.16 41 3.24 3.89
17 7.06 2.79 42 2.72 3.57
18 7.85 3.01 43 3.07 3.19
19 7.61 2.00 44 3.65 2.99
20 7.13 2.19 45 3.22 2.67
21 6.52 2.29 46 3.67 2.30
22 6.53 1.71 47 3.58 1.74
23 7.22 1.58 48 2.79 2.30
24 8.06 1.37 49 2.06 3.21
25 4.86 1.84 50 2.26 2.65

Table 4. Rail station locations.

Rail Station No. X-Coordinate (km) Y-Coordinate (km)

51 7.06 3.43
52 6.19 3.52
53 4.57 3.48
54 3.42 4.17

Network connectivity is generated from street links that connect these 54 nodes, and these are
suitable for bus operations. The generation of the demand matrix is based on a questionnaire survey
data collection. The demand matrix was determined by extracting the abstained results from the survey.

The questionnaire is designed to collect a respondent’s origin and destination. Targeted
respondents are LRT passengers that queue up at bus stops and LRT stations in different locations
in the study area. Generally, larger sample sizes provide more accurate survey results. Nonetheless,
due to the constraints of limited resources and time, the sample size for transit service is confined to
20 percent of passengers counted in each LRT station using public buses.

The random sampling technique is employed in this survey to make sure that each member of the
population has an equal chance of being selected as a respondent. The locations of LRT stations in
the PJ area used for conducting the questionnaires, which widely covers the study area, are shown in
Table 5.

The data for normal weekdays were applied in the research. The survey time slot was for the
three-hour morning peak period from 6:30 a.m. to 9:30 a.m. and was designed to capture the feeder
bus passengers of morning peak times.
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Table 5. Selected LRT stations for public transit passenger questionnaires.

Location Survey Date Survey Time

Taman Jaya 8–9 April 6:30 to 9:30 a.m.
Asia Jaya 10–11 April 6:30 to 9:30 a.m.

Taman Paramount 15–16 April 6:30 to 9:30 a.m.
Taman Bahagia 17–18 April 6:30 to 9:30 a.m.

To determine some of the data and the value of parameters in the proposed mathematical
model, the observation method was used in this research. In this section, the design and procedures
employed for conducting the observation in train stations and bus stops are presented. Observations
are conducted based on the LRT stations and existing feeder bus routes. Observations are categorized
into two types of questions. The first question was about the time spent boarding and alighting at the
LRT station and bus stops based on time per passenger. The second question was about the average
feeder bus speed in existing routes. The cost parameters are based on data collection for the current
study, as well as ridership and financial reports publicized by Barton and Valley Metro [29,30].

6. Results and Discussions

The presented model, explained in detail in Section 3, was applied to the transit services, including
bus feeder services connecting the rail stations in the case study (i.e., PJ area). The locations of nodes
(i.e., bus stops and rail stations) are given in Tables 3 and 4. Furthermore, the demand of each bus stop
is listed in Table 6. The values for the model parameters (e.g., vehicle sizes, operating speed and costs)
are specified in Table 7.

Table 6. Passenger demand at bus stops in the Petaling Jaya study area.

Bus Stop No. Demand (Passenger/h) Bus Stop No. Demand (Passenger/h)

1 235 26 20
2 25 27 15
3 35 28 5
4 10 29 5
5 25 30 5
6 85 31 45
7 5 32 40
8 85 33 20
9 15 34 70
10 135 35 10
11 5 36 15
12 25 37 20
13 15 38 55
14 5 39 15
15 70 40 15
16 70 41 10
17 70 42 15
18 40 43 25
19 10 44 15
20 5 45 25
21 20 46 10
22 25 47 15
23 55 48 55
24 30 49 105
25 5 50 20
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Table 7. Selected values for the parameters used in the Petaling Jaya study area.

Parameter Unit Value

µa RM/passenger-h 28
µw RM/passenger-h 28
µI RM/passenger-h 14
λf RM/veh-h 50.30
λl RM/veh-km 1.30
λI RM/veh-h 40
λm RM/veh-km 2.62
λp RM/veh-h 35.70
λs RM/veh-km 0.25
V km/h 32
Skj min 15
taF min 7.5
taTj min 4
tdT min/passenger 0.03
tdf min/passenger 0.096
VT km/h 40
FT veh/h 20

fmin veh/h 2
fmax veh/h 20
N veh 100
LF pass/seat 1
C pass/veh 36

lmin km No constraint
lmax km 5
λlt RM /veh-h 630

The WCA and ICA techniques have demonstrated their viability as powerful optimization
tools with great potential for solving optimization problems [31–34]. The proposed model and
the corresponding optimization methods were coded and run in MATLAB programming software.
The optimization procedure for the transit service model involved 50 independent runs, which were
performed for each of the considered optimizers.

After performing sensitivity analyses for both optimizers with 50 independent runs, initial
parameters for the WCA were a population size of 100, Nsr of eight and dmax of 1 ˆ 10´5. Accordingly,
for the ICA, the initial parameters consisted of a country population of 100, a number of imperialist
country of eight and a revolution rate of 0.4.

The application of different optimization algorithms resulted in solutions with diverse precision
values. In fact, the solutions state the accuracy of the applied methods and the method’s ability
to determine the optimum results. There is a close relationship between the number of function
evaluations (NFEs) and the best solutions obtained.

This means that the ideal situation contains the least number of NFEs and is a more accurate
solution. With regard to the convergence trend of optimization algorithms and in order to draw a
fair comparison between the optimizers, a maximum of 100,000 NFEs was considered the stopping
condition for both optimizers.

The number of generated routes is also considered a design variable and varies in a generated
population. In fact, the total number of design variables can be changed in this problem in each
iteration. Having numerous and changeable design variables can be considered a special feature that
can categorize this model as a dynamic optimization model.

The optimization results for the presented optimization algorithms are compared and discussed
in this section. Table 8 shows the comparison of the best solutions attained for all cost terms using the
applied optimization engines for the improved model. The obtained total cost (CT) is highlighted in
bold in Table 8 for the two reported algorithms.
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Table 8. Comparison of the best solutions obtained for the transit service model using the reported
methods. All cost values are based on Malaysian Ringgit (RM).

Method CW Cui CfF CmF CpF Cu Co Cs CT AF TPK

ICA 5042.0 2333.6 688.6 1150.1 1420.3 16,761.3 6815 107.3 23,683.5 5.8 3179.6
WCA 4922.2 2384.7 634.2 1059.2 1497.6 16,692.6 6704 98.8 23,494.8 6.2 3062.4

The best solution obtained in the PJ area is provided by the WCA, as shown in Table 8.
Additionally, the main costs are illustrated graphically in Figure 4. A total cost of RM 23,494.8 per hour
is achieved, with an average service frequency of 6.2 trips per hour (buses on average arriving at
intervals of 9.67 min). Accordingly, Table 9 demonstrates the comparison of the statistical optimization
results obtained for the two reported optimizers for the FNDSP.
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Table 9. Comparison of statistical results gained by the optimizers under consideration.

Optimizers Best Solution Average Solution Worst Solution SD

ICA 23,683.45 24,145.10 24,889.90 242.55
WCA 23,494.80 24,024.00 24,354.05 220.50

Table 9 shows that the WCA obtained the best cost (minimum cost) for the FNDSP. The WCA
performed better compared to the ICA, having better solution stability. The detailed statistical
optimization results associated with each term in the modified cost function using the applied
algorithms are presented in Table 10.

As shown in Table 10, it can be concluded that the WCA is superior over the ICA optimizer for
finding all cost terms (except the CP) with minimum statistical optimization results. Figure 5 shows the
deviation percentage associated with the corresponding optimization algorithms for 50 independent
runs. Acceptable stability can be seen in the results among different runs.

In fact, Figure 5 confirms the reliability of the presented optimization methods. The stochastic
nature of the method applied to produce the initial values for each iteration makes it natural not to
obtain the same results through different independent runs. However, the final results (CT) are similar
for various runs, with about 0.92% and 1% for the WCA and ICA, respectively. The ICA is only about
0.08% worse than the WCA. Both methods are comparable. The convergence rate and cost history
(i.e., cost reduction) of the applied optimization algorithms have been compared and are illustrated in
Figure 6.
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Table 10. Statistical optimization results for each cost term. All cost values are in RM.

Parameter
Best Solution Average Solution Worst Solution SD 1

WCA ICA WCA ICA WCA ICA WCA ICA

CT 23,494.8 23,683.5 24,024.0 24,145.1 24,354.1 24,889.9 220.5 242.6
Cu 16,692.6 16,761.2 16,917.3 17,027.9 17,174.5 17,503.2 123.9 160.7
Co 6703.6 6814.9 6993.4 7002.5 7208.6 7259.4 110.3 91.7
Cw 4922.1 5042.1 5217.8 5232.2 5385.5 5506.6 104.0 95.2
Cui 2168.3 2293.2 2313.9 2409.8 2494.5 2694.7 79.8 103.6
CfF 634.2 680.1 727.7 737.1 792.4 817.3 34.0 28.7
CmF 1059.1 1135.8 1215.6 1231.3 1323.4 1365.4 56.7 48.0
CpF 1412.6 1406.3 1463.0 1439.2 1557.5 1481.9 37.5 17.9
Cs 98.7 106.1 113.4 114.8 123.6 127.4 5.3 4.6
AF 5.1 4.9 5.6 5.4 6.3 5.9 0.3 0.2

TVK 403.49 432.7 463.07 469.1 504.15 520.1 21.65 18.22
TPK 3062.38 3140.62 3350.81 3386.80 3623.83 3867.35 137.96 186.42

1 “SD” stands for standard deviation, and the values are in RM.
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Considering the trend of convergence for each method, the WCA is capable of determining faster
optimum solutions with a higher level of precision in comparison with the ICA, as can be seen in
Figure 6. It can be observed that the convergence rate for the WCA is faster than the ICA at earlier
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iterations. Figure 7 illustrates the location and variation of the total cost (CT) and its main components,
namely Cu, Co and Cs, or 50 independent runs of each optimization algorithm.

It can be observed that the lowest levels for the average cost terms are 24,023.97, 16,917.10, 6993.46
and 113.45, respectively, for CT, Cu, Co and Cs with the WCA. The differences between the cost terms
of both algorithms for the average cost values are 121, 110.6, 8.9 and 1.5, respectively, for CT, Cu, Co

and Cs.
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It can be highlighted that the lowest level of the average cost in terms of both algorithms becomes
nearly the same. However, the ICA shows minimal variation in levels between the first and third
quartiles compared to the WCA. In terms of CT for the ICA, the second and third quartile boxes
are approximately the same size. The box plot for that dataset would look like one for a normal
distribution, however, with a number of outliers beyond one whisker. Table 11 provides the best
solution obtained by the WCA among all of the runs, which is illustrated in Figures 8–10.

Table 11. Best solution obtained by the WCA. All cost values are in RM.

Route No. Route Structure
Route

Demand
(Passenger/h)

Route Length
(km)

Route
Frequency

(Trip/h)

1 51, 1, 2 260 3.50 13.85
2 51, 8, 10 220 1.80 9.59
3 51, 12, 7 30 1.97 3.43
4 51, 13, 11, 5, 4, 3 90 3.01 5.03
5 51, 18, 19, 24 80 2.71 4.95
6 52, 9, 6 100 1.69 6.62
7 52, 16, 17 140 1.14 8.96
8 52, 21, 22, 23, 20 105 3.17 5.31
9 53, 14, 15, 26, 25 100 2.44 5.77
10 53, 29, 28, 27 25 2.00 3.11
11 53, 32, 36, 35 65 2.17 4.87
12 53, 33, 34 90 1.40 6.71
13 54, 31, 30 50 1.33 5.08
14 54, 40, 39, 38, 37 105 2.56 5.80
15 54, 41, 42, 49, 50 150 2.30 7.23
16 54, 43, 45, 48 105 2.15 6.21
17 54, 44, 46, 47 40 2.46 3.63

CT = 23,494.8 Cu = 16,692.6 Co = 6703.4 Cs = 98.8 Cw = 4922.2 Cui = 2384.7
CfF = 634.2 CmF = 1059.2 CpF = 1497.6 AF = 6.24 TPK = 3062.4
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As shown in Table 11, the transit network consists of 17 feeder bus routes with an average
service frequency of 6.24 trips per hour (the average headway is 9.61 min). The case solution includes
3062.4 passenger-km of travel. The provided total cost consists of 71.05% user, 28.53% operator and
0.42% social costs, which is illustrated graphically in Figure 8. It can be observed that the main costs
are ranked as user, operator and social costs, respectively, from the maximum to minimum.
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Furthermore, all costs based on RM for each of the cost terms are shown in Figure 9. It is obvious
from Figure 9 that the maximum cost of RM 16,692.6 belongs to CU, while Cs has the minimum cost of
RM 98.8. Furthermore, the best transit network obtained by the WCA is given graphically in Figure 10.
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The application and optimization of the proposed model to the PJ transit network provided more
accurate and efficient solutions for various conditions in the transit systems by employing additional
terms and constraints in the objective function. In other words, an effort was made to widen the
scope of the research by considering all aspects of satisfaction (i.e., user cost satisfaction, operation cost
satisfaction and social cost satisfaction).

Taking into consideration the proposed objective function and imposed constraints, which have
already been explained in Section 3, deriving these levels of cost terms shows that the proposed model
can be considered a potentially feasible model to overcome current difficulties in the public transit
system. This model may lead to the creation of a more realistic model for simulating real-life problems
by providing fresh empirical data for future works.
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The results of the application and optimization of the transit network design problem in the
study area provided more accurate and efficient solutions for various conditions in transit systems.
The outputs of these solutions have demonstrated that the presented model has been verified, and
the applied optimizers (i.e., WCA and ICA) are considered suitable for obtaining moderate quality
solutions under certain computational cost. This confirms the reliability of the presented methodology.
Therefore, this model could be considered an alternative model for real transit networks.

7. Conclusions

In this paper, an improved model was suggested for transit network problems, including rail
system and feeder bus network designs, as well as frequency setting problems. The main purpose
of this paper was to develop a real-life model (actualizing the cost function and adding additional
constraints) for handling the feeder bus design and frequency setting problems.

The case study for the research was based on the actual transit network in the Petaling Jaya
area, in Kuala Lumpur, Malaysia. Finding the optimum feasible routes in order to reduce the cost
function is a vital and difficult task for solving the transit network design problem, which is classified
as an NP-hard problem. For this reason, the importance of optimization techniques, particularly
metaheuristics, is understood.

Therefore, two recent optimization algorithms, namely the water cycle algorithm (WCA) and the
imperialist competitive algorithm (ICA), were considered. The analysis of the objectives shows that
the obtained statistical optimization results acquired by the WCA were superior to those attained by
the ICA. In terms of solution stability, the WCA also slightly outperformed the ICA.

The optimum number of routes obtained using the WCA was 17, with an average frequency of
6.2 feeder buses per hour in the network. Applying the optimum network resulted in the lowest level
of total cost at RM 23,494.8 using the WCA, whereas the corresponding costs obtained by the ICA were
about 0.8 percentage points greater than found by the WCA. This confirms the trustworthiness of the
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presented system. Therefore, the proposed improved model could be considered an alternative model
for real transit networks.

Future research may extend the model to consider the stochasticity of the transit and road
networks, such as demand uncertainty and variable network performance [3,16,35,36].
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Appendix A. Derivation of the Proposed Cost Terms

Appendix A.1. Feeder Dwell User Cost (CduiF)

The average cost of dwell time (CduiF) is determined by the demand of route k multiplied by the
passenger boarding and alighting rate. Therefore, the average dwell cost is derived as follows:

CduiF “ µI pQk ˆ tdFq (A1)

Since the time spent on boarding and alighting differs for each bus stop, the number of passengers
and the dwell cost will be different. Figure A1 shows the real situation for passenger demand in each
feeder bus route connected to the rail station. As can be seen in Figure A1, qi denotes the demand at
bus stop i. Thus, at bus stop i + 1, the boarding and alighting time will be subject to the demand of the
i-th bus stop (qi) and to the demand of previous bus stops (q1 ´ qi-1). Accordingly, the dwell time will
be increased by increasing demand in subsequent bus stops.

The algebraic proof for the geometric series, as well as a detailed derivation of the feeder dwell
user cost is presented as follows:

CduiF “ µI rpq1q ` pq1 ` q2q ` pq1 ` q2 ` q3q ` ........` pq1 ` q2 ` .....` qnqs ptdFq (A2)

To simplify the model, the average demand was assumed for each of the bus stops along the route
as shown in the following equation:

Qk
n
“

n
ř

i“1
qi

n
(A3)
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where n is the number of feeder bus stops in route k. Therefore, the dwell cost is formulated as follows:

CduiF “ µI

„ˆ

npn` 1q
2

ˆ
Qk
n

˙

ptdFq “ µI

ˆ

1
2
pnk ` 1q ˆQk ˆ tdF

˙

(A4)
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Appendix A.2. Train Dwell User Cost (CduiT)

Similar to Appendix A.1, the average cost of dwell time for the train (CduiT) for each feeder bus
route is determined by the demand in the rail station multiplied by the passenger boarding and
alighting rate. Therefore, the average dwell cost is derived as follows:

CduiT “ µI pQk ˆ tdTq (A5)

Similar to the user feeder bus dwell time, the time spent on boarding and alighting at each rail
station is different. Accordingly, the number of passengers and the dwell cost would be different.
Figure A2 shows the actual passenger demand at each rail station in the transit system.Sustainability 2016, 8, 537 24 of 27 
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where qi and Yij are, respectively, the demand of the bus stop and a binary variable: a value of one if 
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In Appendix A.1, the geometric series equation was adopted to develop a more accurate model for
distributing the dwell cost of the train stations along the rail line. The algebraic proof of the geometric
series used, as well as the detailed derivation of the feeder dwell cost are presented below:

CduiT “ µI
“

pQ1q ` pQ1 `Q2q `
`

Q1 `Q2 `Q3 ` ....`Qj
˘‰

ptdTq , j “ 1, 2, ..., J (A6)
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This can be re-written as follows:

CduiT “ µI
“`

JQ1 ` pJ ´ 1qQ2 ` pJ ´ 2qQ3 ` .....` pJ ` 1´ jqQj
˘‰

ptdTq , j “ 1, 2, ..., J (A7)

Passenger demand at rail station j can be defined as:

Qj “

I
ÿ

i“1

qi ˆYij (A8)

where qi and Yij are, respectively, the demand of the bus stop and a binary variable: a value of one
if stop I is assigned to station j. For the algebraic proof from Equation (A7), we have T (J) written
as follows:

T pJq “ J ` pJ ´ 1q ` ...` 3` 2` 1 (A9)

where the j-th term is now J + 1 ´ j for j from one to J. Thus, we will have:

TpJq “
j“J
ÿ

j“1

pJ ` 1´ jq (A10)

Therefore, the dwell cost can be formulated as follows:

CduiT “ µI

J
ÿ

j“1

«˜

I
ÿ

i“1

qi ˆYij

¸

ˆ ptdT ˆ pJ ´ j` 1qq

ff

(A11)

Appendix A.3. Feeder Personnel Cost (CpF)

The feeder personnel cost, which includes the drivers and administrative costs, is dependent
on the fleet size, hourly pay and insurance rate. The literature review reveals that in some of the
studies, it was assumed that this cost is calculated based only on the fleet size [14,19]. As explained in
Section 3.2.2, the dwell time and bus slack time also have important roles in the time spent by personnel.

This study attempts to present an improved concept for determining such costs. Hence, in order to
increase the accuracy of the cost function, slack time (Skj) and dwell time were added to the calculation
of the cost. The personnel cost includes three main parts. The first part is defined as the number of
feeder buses multiplied by running time and personnel cost value in the transit service presented in
Equation (A12) as follows:

CpF “ λp

«

K
ÿ

k“1

ˆ

2Fk
Vk
ˆ LK

˙

ff

(A12)

The second part is defined as the entire passenger demand multiplied by the dwell time and
personnel cost value in the transit service, as can be seen in Equation (A13):

CpF “ λp

«

K
ÿ

k“1

pQk ˆ tdFq

ff

(A13)

The third part depends on the average rest time, which is considered for each bus at each station.
This cost is determined by the frequency of all feeder buses multiplied by the slack time at each station
and the personnel cost value in the transit service as follows:

CpF “ λp

«

K
ÿ

k“1

´

Fk ˆ Skj

¯

ff

(A14)
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Consequently, the proposed personnel cost can be formulated as follows:

CpF “ λp

«

K
ÿ

k“1

„ˆ

2Fk
Vk
ˆ LK

˙

` pQk ˆ tdFq `
´

Fk ˆ Skj

¯



ff

(A15)

Appendix A.4. Feeder Dwell Operating Cost (CdoiF)

As explained in Sections 3.1.3 and 3.2.4, the average cost of the dwell time (Cdoi) was determined
by the demand multiplied by the passenger boarding and alighting rate. Similarly, the feeder bus
operating dwell cost was also determined. Thus, this cost for each feeder bus in route k is formulated
as follows:

CdoiF “ λI pQk ˆ tdFq (A16)

This cost for all transit systems can be formulated as shown:

CdoiF “ λI

«

K
ÿ

k“1

Qk ˆ tdF

ff

(A17)

Appendix A.5. Train Operating Cost (CoT)

The train operating cost (CoT) is defined based on the rail trip time. This cost can be calculated
by the rail trip time multiplied by the value of the operating cost for the rail system (λIT). In order
to simplify the model, this study considered one operating value for all operating costs. Thus, λIT
represents all elements of operating cost, including fixed, maintenance, personnel and in-vehicle costs
($/veh-h). In this study, the rail trip time consisting of running and dwell time was determined.

The train running time (TT) is defined as the trip distance divided by the average running speed
(VT). Furthermore, the rail dwell time was the product of the number of inflow or outflow passengers
on the route and the average service time for passengers boarding and alighting from a vehicle. The
operation cost of the rail system based on the dwell time for each feeder bus route and all rail systems
is represented in Equations (A18) and (A19), respectively, as given in the following equations:

CoT “ λIT pQk ˆ tdTq (A18)

CoT “ λIT

˜

I
ÿ

i“1

qi ˆ tdT

¸

(A19)

Therefore, the operating cost for all rail systems based on the running time can be formulated
as follows:

CoT “ λIT pFT ˆ TTq (A20)

Accordingly, based on Equations (A19) and (A20), CoT for the transit system can be formulated as
in the following equation:

CoT “ λIT

«˜

I
ÿ

i“1

qi ˆ tdT

¸

` pFT ˆ TTq

ff

(A21)
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