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Abstract: Industry is a major contributor to carbon emissions in China, and industrial land is an
important input to industrial production. Therefore, a detailed analysis of the carbon emission
performance of industrial land use is necessary for making reasonable carbon reduction policies
that promote the sustainable use of industrial land. This paper aims to analyze the dynamic
changes in the total-factor carbon emission performance of industrial land use (TCPIL) in China
by applying a global directional distance function (DDF) and non-radial Luenberger productivity
index. The empirical results show that the eastern region enjoys better TCPIL than the central and
western regions, but the regional gaps in TCPIL are narrowing. The growth in NLCPILs (non-radial
Luenberger carbon emission performance of industrial land use) in the eastern and central regions
is mainly driven by technological progress, whereas efficiency improvements contribute more to
the growth of NLCPIL in the western region. The provinces in the eastern region have the most
innovative and environmentally-friendly production technologies. The results of the analysis of
the influencing factors show implications for improving the NLCPIL, including more investment
in industrial research and development (R&D), the implementation of carbon emission reduction
policies, reduction in the use of fossil energy, especially coal, in the process of industrial production,
actively learning about foreign advanced technology, properly solving the problem of surplus labor
in industry and the expansion of industrial development.

Keywords: industrial land; total-factor carbon emission performance of industrial land use (TCPIL);
non-radial Luenberger productivity index; non-radial Luenberger carbon emission performance of
industrial land use (NLCPIL); directional distance function (DDF); China

1. Introduction

China’s industrial economy has achieved remarkable progress since its reform and opening up
in the late 1970s. According to the China Statistical Yearbook 2013, in the past 30 years, the average
annual growth rate of the industrial gross domestic product (GDP) was approximately 16%, which
is an amazing number compared to the industrial GDPs of most other countries [1]. However, the
rapid industrial economic growth has been accompanied by an increased consumption of fossil
energy. The amount of fossil energy consumption for production was as high as 3.62 billion tons of
standard coal in 2012, and a large part of the coal consumption was used for industrial production [2].
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In addition, coal consumption accounts for the main part of the fossil energy consumption in China
and releases more harmful gases (e.g., carbon dioxide and sulfur dioxide) compared to some types of
clean energy (e.g., nuclear and wind power) for the same given amount [3]. In fact, China became the
largest energy consumer and carbon emitter in the world prior to 2010 [4], which indicate that China
must face considerable pressure to promote energy-saving and low carbon industrial production.
Although the famous Kyoto Protocol does not give China a mandatory carbon emissions reduction
task, as a responsible country that has been trying to achieve sustainable development for a long time,
China should pay more attention to optimizing its energy structure and effectively reducing its carbon
emissions [5].

Fortunately, the central government of China has already started to pay attention to this problem
and has tried to solve it. Many policies aimed at addressing excessive carbon emissions have been
launched in recent years, such as the Special Action of Response to Climate Change Science and Technology
issued in 2007, which sought to speed up the development of cleaner production technologies and
reduce carbon emissions in China [6]. In addition, the National Program on Addressing Climate Change
was released in the same year and sought to limit the total amount of greenhouse gas emissions and
punish enterprises and local governments that did not comply with those policies [7]. Two years
later, the central government of China promised a reduction of 45% in carbon emission intensity by
2020 compared to that in 2005, which was included in the long-term planning of national economic
and social development in China [8]. This promise has undoubtedly been conducive to the sustainable
development of China’s industries. However, whether those policies have achieved remarkable effects
remains unknown.

According to the China Urban Construction Statistical Yearbook, industrial land refers to land for
industrial production in built-up urban areas including factories and workshops [5–9]. As an important
input in the industrial production process, the amount of industrial land consumption has shown an
obvious increasing trend in recent years. In 2012, industrial land accounted for approximately 20% of
the total area of urban built-up zone in China [10]. However, the proportion of industrial land in most
developed countries is less than 10% (e.g., France and Japan). This implies excessive industrial land
use in China. In fact, the vigorous land expansion of recent years across China has led to a seriously
inefficient use of industrial land, and a large amount of industrial lands have not been used for many
years in some cities. The poor economic performance of industrial land is common in China [11].
In addition, industrial land is the main carrier of industrial production activities and suffers most from
industrial pollutants. That is to say, industrial land is constantly used to create industrial products,
but it also suffers serious problems of ecological environmental pollution. As the famous Outline of
the 12th Five-Year Plan for Economic and Social Development noted, improving land use efficiency was a
key problem of urban development [12]. Therefore, how to quantify and improve the economic and
environmental performance of industrial land use in China is a key issue to realize the sustainable
development of Chinese industry.

Regarding the research method, many previous studies of land efficiency preferred using single
factor indexes such as the economic output per km2 of land [13]. However, as noted in some previous
studies, land cannot produce products unless accompanied by other inputs such as labor and capital,
and land efficiency computed under the total factor framework is more reasonable [14]. Therefore, the
data envelopment analysis (DEA) model is widely adopted by current studies because the input and
output variables are incorporated into the model. Chen et al. [15] have analyzed industrial land use
efficiency in China using a DEA model at the provincial level and found that China’s eastern region
enjoys a higher industrial land use efficiency than in the central and western regions. Xiong et al. [16]
have reached a similar conclusion and suggested that excessive inputs of industrial land were the main
reasons for the inefficient use of industrial land. However, these studies consider only the economic
efficiency of industrial land use, and negative outputs were not included in the models. Therefore, they
can be considered as partial analyses because they ignored the negative impacts on the environment
caused by industrial production. Guo et al. [17] have incorporated three main negative outputs (i.e., the
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amounts of industrial sulfur dioxide, industrial wastewater, and industrial dust emissions) into a DEA
model to measure the combined efficiency of economy and environment for 33 typical cities in China.
They found that the values of efficiency computed from models that incorporated negative outputs
were always lower than those from models that ignored negative outputs. Xie et al. [18] have applied a
similar model to explore industrial land use efficiency at the city level in China, and they found that
cities located in economically-developed regions performed much better than those in economically
undeveloped regions. However, these results were based on contemporaneous production technology,
and they were in fact static analyses, which can be referred to as cross-sectional rather than time
series analysis. Therefore, the efficiencies in different years could not be compared. Zhang et al. [19]
have applied an advanced directional distance function (DDF) approach based on global benchmark
technology. Global technology enveloped all of the contemporaneous technologies, which indicated
that the model actually provides a dynamic analysis, and the results for different periods therefore
could be compared to one another. Moreover, Zhang et al. [20] noted that the traditional radial DDF
model had a limitation that reduced inputs and expanded outputs at the same rate. This is clearly not
consistent with reality, and they proposed a non-radial DDF to reduce inputs and expand outputs at
different rates. Therefore, their model was capable of providing a more reasonable assessment.

To obtain more insights into the dynamic changes in land use efficiency, two popular approaches,
the Malmquist and Luenberger indices, have been widely used in recent related studies. Both indices
can decompose productivity changes into efficiency and technological changes to explore the main
contributors to changes in productivity. Chung et al. [21] have proposed a relatively advanced approach,
the Malmquist-Luenberger (ML) index, to incorporate negative outputs. Many later studies adopted
this method to model environmentally sensitive productivity growth at the national level [22], regional
level [23] and industry level [24]. However, as Boussemart et al. [25] have noted, the Malmquist index
tends to overestimate productivity changes because it calculates the growth in productivity as a ratio.
The results measured by the Luenberger index seem more reasonable because they are calculated in an
additive way and are only half of those computed using the Malmquist index approach. The difference
in the two methods arises because the former adopts the geometric means of the distance functions,
whereas the latter uses the arithmetic means of the distances in two periods. Many recent studies
have noted that the results based on the Luenberger index are more robust than those based on the
Malmquist index [26], and Chang et al. [27] have made a further improvement by applying a non-radial
Luenberger index. This approach was widely applied in later studies to model environmentally
sensitive productivity [28].

Unfortunately, there are no studies on the dynamic changes in the total-factor carbon emission
performance of industrial land use (TCPIL) in China. You et al. [29] have measured the carbon
emission efficiencies in China’s 30 regions by employing a traditional DEA model. However, they
treated the amount of carbon emissions as an input in the production process, which was inconsistent
with the actual production. Cui et al. [30] have modeled the carbon emission performance of urban
non-agricultural land for China using a Malmquist index. However, the study was actually a static
analysis because it was based on contemporaneous production technology, and it could not depict
dynamic changes in the carbon emission performance of land use. In addition, many previous studies
ignored carbon emission performance when exploring the negative impacts of pollutants on the
environment in the process of industrial production. However, considering the serious threat to human
health and socioeconomic development caused by greenhouse gases, which are mainly composed of
carbon dioxide, it is obviously meaningful to consider carbon emissions.

This paper aims to apply a global DDF and non-radial Luenberger productivity index to analyze
the dynamic changes in TCPIL for China. This total factor index can be referred to as the non-radial
Luenberger carbon emission performance of industrial land use (NLCPIL). We then explore the
main contributors to the growth in NLCPIL by decomposing the NLCPIL into two indices, i.e.,
efficiency change (EC) and technological change (TC), and we further find which provinces have
made innovations in carbon performance. Lastly, we explore the impacts on the NLCPIL of energy
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utilization, production technology and environmental policy factors in Chinese industry to present
some policy implications.

Therefore, this paper makes three main contributions to the relevant studies. Firstly, we compute
the TCPIL for each province in China under a global environmental technology framework. Secondly,
we compute the NLCPIL to measure the dynamic changes in the TCPIL and determine which NLCPIL
component index, i.e., EC and TC, is the main contributor to the growth of NLCPIL. Lastly, we learn
which provinces have provided innovation and leadership in environmentally friendly production
technologies as examples of provinces that have poor TCPILs.

The remainder of this paper is organized as follows: Section 2 introduces the methods and data,
Section 3 shows the results of the empirical analysis, and Section 4 concludes the paper with some
policy implications.

2. Methods and Data

2.1. Non-Radial Directional Distance Function (NDDF)

We assume that there are N provinces in our study and that each province has M inputs (x) to
produce J desirable outputs (y) and K undesirable outputs (b), and the production possibility set T(x)
can be expressed as

T pxq “ tpx, y, bq x can produce py, bq , x ě Xλ, y ď Yλ, b “ Bλ, λ ě 0u (1)

where the production possibility set T(x) is assumed to satisfy the production function theory [31].
This theory states that reducing undesirable outputs during the production process is costly, and
industrial production will inevitably bring about carbon dioxide emissions [32]. In addition, the
traditional radial DDF approach always assumes that the solution of the linear programming implies
an assumption that we should reduce the inputs (or undesirable outputs) and expand the outputs at
the same rate β, as expressed in Equation (2), and are g “

`

´gx, gy,´gb
˘

the direction vectors [33].
However, this is almost impossible in real production. To address this shortcoming, a NDDF approach
has been developed and is widely used in studies of resource efficiency evaluations [34]. In Equation (3),
wT “ px, y, bqT is the standard weight matrix of inputs and outputs. β “

`

´βx, βy,´βb
˘

refers to the
adjustment ratios of all inputs, outputs and undesirable outputs, and they are nonnegative numbers.
diag is the diagonal matrix. Using the NDDF, the adjustment ratios of the inputs and outputs can be
different, which is consistent with actual production. Equation (4) represents the linear programming
functions for the NDDF model.

Ñ

D px, y, b; gq “ sup tβ : ppx, y, bq ` gˆ βq P Tu (2)

Ñ

D px, y, b; gq “ sup
!

wT β : ppx, y, bq ` gˆ diag pβqq P T
)

(3)

Ñ

D px, y, b; gq “ max pwLDβLD `wY βY `wCO2βCO2q
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N
ř

n“1
λnKn ď K0 ,

N
ř

n“1
λnEn ď E0,

N
ř

n“1
λnYn ě p1` βYqY0 ,

N
ř

n“1
λnCO2n “ p1´ βCO2qCO20

βLD ě 0, βY ě 0, βCO2 ě 0,

n “ 1, 2, ..., N; t “ 1, 2, ..., T; λn ě 0,
N
ř

n“1
λn “ 1

(4)

In Equation (4), the superscripts LD, Y and CO2 represent the industrial land used for industrial
production, the industrial GDP, and the amount of carbon dioxide emissions during the industrial
production process, respectively. L and K refer to the industrial labor and industrial capital. It is worth
noting that we set the weight vector to (0, 0, 1/3, 1/3, 1/3) to remove the diluting effects of capital and
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labor from the constraints. The superscript 0 refers to the province under estimation. The symbols
βLD, βCO2 and βY are the reduction ratios of the industrial land and carbon dioxide emissions and the
expand ratio of the industrial GDP, respectively. λ is a non-negative vector, and we impose a constraint

of
N
ř

n“1
λ “ 1 according to the assumption of variable returns to scale (VRS). The superscript n refers to

the number of provinces in the sample. Thus, the TCPIL can be expressed as Equation (5)

TCPIL “
1´ 0.5ˆ

`

β˚LD ` β˚CO2
˘

1` β˚Y

“
0.5ˆ

`

1´ β˚LD
˘

1` β˚Y
`

0.5ˆ
`

1´ β˚CO2
˘

1` β˚Y
“ ECPIL` ENPIL

(5)

where β˚LD, β˚CO2 and β˚Y are the optimal solutions of inputs and outputs for the province under
estimation, and the province would be located along the production technology frontier in the g

direction if its β˚LD, β˚CO2 and β˚Y have zero values. That is to say, the
Ñ

D
˚

pLD, L, K, Y, CO2; gq = 0.
In addition, we decompose the TCPIL into two parts, the economic performance of industrial land
use (ECPIL) and the environmental performance of industrial land use (ENPIL), in order to find out
whether the ECPIL or the ENPIL is the main contributor to the imperfect TCPIL. The value for TCPIL
ranges from 0 to unity, while those for ECPIL and ENPIL range from 0–0.5.

2.2. Non-Radial Luenberger Productivity Index

Considering that Equation (5) only presents a static analysis for the TCPIL, we should employ
the non-radial Luenberger productivity index approach to perform a dynamic analysis. Because the
traditional Malmquist-Luenberger (ML) index has the problematic potential to provide no solutions
when dealing with extreme data, Oh [35] has combined the concept of productivity and the DDF
and constructed a global Malmquist-Luenberger (GML) index instead of the traditional ML index.
Therefore, the NLCPIL can be decomposed into two indices based on contemporaneous and global
environmental production technologies, which can be denoted as TC

n and TG
n . TC

n refers to the
environmental production technology of a given group Rn at time t, n =1, 2, . . . ., N, and TG

n envelopes
the technologies for all groups for the entire study period. Therefore, we can define the global NDDF
approach as in Equation (6):

Ñ

DG px, y, b; gq “ sup
!

wT βG :
´

px, y, bq ` gˆ diagpβGq
¯

P TG
n

)

(6)

To compute and decompose the NLCPIL, four different NDDFs should be solved:
Ñ

D
C
pxs, ys, bs; gsq and

Ñ

D
G
pxs, ys, bs; gsq, s = t, t + 1. Therefore, we can solve the four NDDFs based on

Equation (7):
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N
ř
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(7)

where the superscript d on
Ñ

D
d
pxs, ys, bs; gq refers to the type of NDDF, i.e., contemporaneous and global.

In addition, the symbol con under
ř

refers to the conditions for constructing the two environmental
production technologies. Thus, we can construct the contemporaneous NDDF by having d ” C and
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con = {nPRn} and the global NDDF by having d ” G, and con = {nPR1YR2Y...YRN, sP[1,2,...,t,...T]}. We
can then solve the four NDDFs using Equation (8)

TCPILd pxs, ys, bs; gq “

«

1´ 0.5ˆ
`

β˚LD ` β˚CO2
˘

1` β˚Y

ffs

(8)

where d ” (C, G) and s = t, t + 1. Then, we can define the NLCPIL as in Equation 9, which measures
the dynamic changes of TCPIL. In addition, values of NLCPIL greater than, equal to or less than
1 indicate that the province under estimation is moving toward the global environmental production
technology, is not changing, or is moving far away from the global environmental production
technology, respectively. The two decomposition indices of NLCPIL are efficiency change (EC) and
technological change (TC). During the period t and t + 1 if the EC is greater than, equal to or less than
0, this indicates that the technical efficiency has gained, has no change or has lost; and if the TC is
greater than 0, this indicates a technological progress, and vice versa. In addition, the method solves
the problem of infeasibility in linear programming whereby the results become circular.

NLCPILd pxs, ys, bs; gq “ TCPILG `

xt`1, yt`1, bt`1˘´ TCPILG `

xt, yt, bt˘

“

”

TCPILt`1 `.t`1˘´ TCPILt `.t
˘

ı

`

!”

TCPILG `

.t`1˘´ TCPILt`1 `.t`1˘
ı

´

”

TCPILG `

.t
˘

´ TCPILt `.t
˘

ı)

“ EC` TC

(9)

In addition, by combining Equation (5) with Equation (9), we can explore whether the changes of
ECPIL or ENPIL as Equations (10) and (11).

TCPILd pxs, ys, bs; gq “ ECPILd pxs, ys, bs; gq ` ENPILd pxs, ys, bs; gq (10)

therefore,

NLCPILd pxs, ys, bs; gq “ NLCECPILd pxs, ys, bs; gq ` NLCENPILd pxs, ys, bs; gq
“ ECPILG `

xt`1, yt`1, bt`1˘´ ECPILG `

xt, yt, bt˘` ENPILG `

xt`1, yt`1, bt`1˘´ ENPILG `

xt, yt, bt˘ (11)

where NLCECPIL and NLCENPIL refer to the non-radial Luenberger economic performance of
industrial land use, and the non-radial Luenberger environmental performance of industrial land
use, respectively.

2.3. Data

According to geographical closeness and industrial development, we divided the provinces across
China into three regions: eastern (E), central (C) and western (W). The eastern region is composed
of three municipalities (Beijing, Tianjin, and Shanghai) and nine coastal provinces (Hebei, Liaoning,
Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Taiwan, and Hainan). This region enjoys the highest
level of industrial development in China, with advanced industrial production technology and most
of the foreign industrial enterprises in the whole country. The industrial GDP in this region accounted
for more than 55% of the national industrial GDP in 2012 [36]. The central region consists of eight
inland provinces (Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, and Hunan). This region
is the main base of heavy industry in China and is famous for its high resource consumption and large
pollutant emissions. The western region consists of one municipality (Chongqing) and eleven inland
provinces and autonomous regions (Inner Mongolia, Guangxi, Sichuan, Guizhou, Yunnan, Shaanxi,
Gansu, Qinghai, Ningxia, Xinjiang, and Tibet). This area covers more territory than the other two areas,
but the industry sectors in this area are less developed compared to the other two areas. Some regions
in this area have faced serious water shortages. Because complete data over the study period could
not be obtained, Tibet and Taiwan were not included in our sample.
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The TCPIL is affected by economic and environmental factors, and we should therefore account
for environmental outputs as well as economic outputs. We constructed an indicator system to evaluate
the TCPIL using the following input and output indicators.

(1) The inputs consist of industrial land, industrial capital and industrial labor according to
production function theory [32]. Industrial land refers to the area of industrial land, and industrial
labor refers to the number of workers in industrial sectors. The industrial capital data cannot be
obtained from the China Statistical Yearbook [36], and we can compute the data using the perpetual
inventory method according to Zhang et al. [37]

Kt “ p1´ δqKt´1 ` It (12)

where Kt, Kt´1, It and δ refer to industrial capital stock at times t and t ´ 1, It represents the investment
in industrial fixed assets, and δ refers to the rate of depreciation at time t. We used the industrial capital
stock in 2003 as the initial industrial capital stock, because 2003 was the first year in our study. The
investments in industrial fixed assets and depreciation rates can be obtained from the China Statistical
Yearbook 2004–2013 [36]. In addition, the rates of depreciation and capital stock numbers in this paper
are procured from Wu [38], and we estimate the data after 2006 using the perpetual inventory method
since they were not available.

(2) Regarding output indicators, we selected the industrial GDP as the desirable output, and
the amount of carbon emissions as the undesirable output. Because data on carbon emissions are
unavailable, we compute the carbon emissions for each province based on regional energy balance
tables and the IPCC guidelines [39,40]. The formula for computing carbon emissions is shown in
Equation (13)

CO2 “

n
ÿ

i“1

Aˆ CCFi ˆ HEi ˆ COFi ˆ

ˆ

44
12

˙

(13)

where A refers to the amount of carbonaceous fuel combusted during the process of industrial
production, which can be obtained from the China Energy Statistics Yearbook [36]. CCF, HE and COF
represent the carbon content factor, heat equivalent and carbon oxidation factor of the carbonaceous
fuel, which can be found in the IPCC guidelines. The number (44/12) refers to the ratio of weight
of carbon dioxide (44 atomic mass units) to the molecular weight of carbon (12 atomic mass units).
We selected representative carbonaceous fuels such as coal, petrol, kerosene, diesel, fuel oil and nature
gas. By doing so, the carbon emissions can be calculated. Moreover, to exclude the impact of price, the
GDP and capital variables were converted into year 2003 constant pieces with their deflators.

Additionally, to put forward effective advice for improving the NLCPIL, we selected influencing
indicators from the aspects of economy, society and policy. The econometric model is

Yit “ αit ` β1EIit ` β2ESit ` β3RIit ` β4FIit ` β5LSit ` β6 IS` β7POL` εit (14)

where i and t (t = 2003, ..., 2013) represent the i-th province and year t in each zone, respectively.
The term εit is the random error term. Y is the NLCPIL. Data on the influencing indicators were
obtained from the China City Statistical Yearbook 2004–2013 and China Energy Statistics Yearbook
2004–2013 [41,42], and are as follows.

(1) We selected two indicators for energy utilization, energy intensity (EI) and energy structure
(ES), which refer to the share of fossil energy used for industrial production in the total fossil energy
consumption in the country and the share of coal consumption in the total fossil energy consumption for
industrial production, respectively. It is generally accepted that less energy consumption used for the
same GDP is more suitable for sustainable development [23]. Therefore, to produce the same amount of
industrial product, smaller EIs always lead to better performance in TCPIL, and we can assume that the
coefficient is negative. In addition, coal is the most widely used and possibly the most polluting resource.
According to the China Energy Statistics Yearbook [42], the share of coal consumption in all fossil energy
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resource consumption has always exceeded 70% in recent years, which should be responsible for the
worsening air condition across China. Therefore, the coefficient is expected to be negative.

(2) According to previous studies, technology plays an important role in driving industrial economic
development, and more investment in research and development (R&D) could lead to obvious positive
impacts on industrial sustainable development by saving energy and reducing greenhouse gas emissions
(e.g., carbon dioxide) [43]. Therefore, we selected two indices, R&D intensity (R&D) and foreign funded
industrial enterprises introduction (FI), which refer to the share of industrial R&D investment in the
industrial GDP and the share of the GDP produced by foreign funded industrial enterprises in the
national industrial GDP, respectively. The coefficients of the two indices are expected to be positive.

(3) Regarding industrial structure, we selected two indices, industrial labor share (LS) and
industrial GDP share (IS), which refer to the share of workers in the industrial sectors to the total
number of workers nationwide and the share of GDP in industrial sectors to the total GDP, respectively.
According to previous studies, China has faced serious problems of labor surpluses, and the industrial
sector has also experienced these problems [44]. Thanks to inexpensive labor, most industrial
enterprises in China are labor-intensive and are engaged in low-tech production activities. However,
this inevitably impedes the large-scale use of new technologies and upgrading of China’s industries
and negatively impacts NLCPIL. Thus, we assumed that there is a negative relationship between LS
and NLCPIL. In addition, many studies have suggested that China has entered a middle and late
stage of industrialization, which implies that China’s industrial development will shift from a simple
emphasis on economic output to improvements in the quality of industrial development. This might
lead to a reduction of the share of GDP in industrial sectors in the total GDP. Thus, we can assume that
an increase in IS has a negative impact on the improvement of NLCPIL.

(4) Regarding environmental policies, the central government of China promised an ambitious
plan to reduce its carbon emissions per unit GDP by 40%–45% based on 2005 levels in late
2009 [36]. Subsequently, a series of policies aimed at saving energy and reducing carbon emissions
was introduced, and the central government of China also strengthened the supervision of local
governments to implement those policies [45]. Therefore, the environmental policy variable was
assigned a value of 1 from 2009 onward and a value of 0 before 2009.

Table 1 shows the definitions, descriptions and expected impacts of the influencing indicators on
the NLCPIL.

Table 1. Descriptions of the influential factors.

Variable Definition Description Expected
Effect

EI Energy intensity The share of fossil energy used for industrial
production in the total consumption in the country Negative

ES Energy structure The share of coal consumption in the total fossil energy
consumption for industrial production Negative

RI Research and
development intensity

The share of investment in industrial research and
development in the industrial GDP Positive

FI Foreign funded industrial
enterprises introduction

The share of GDP produced by foreign funded
industrial enterprises in the national industrial GDP Positive

LS Industrial labor share The share of workers in industrial sectors in the total
number of workers nationwide Negative

IS Industrial GDP share The share of GDP in industrial sectors in the total GDP Negative

POL Carbon emission
reduction policy

The ambitious policies to reduce carbon emissions
since 2009 Positive

3. Empirical Results

In this section, we first show the status of the TCPIL during the study period. We then calculate
the NLCPIL and its decomposition indices to measure the dynamic changes in TCPIL at the national
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and regional levels. Lastly, we learn which provinces offer innovative examples for improving
environmentally-friendly production technologies.

3.1. TCPIL

Using Equations (4) and (5), we computed the TCPIL for the three regions across China. From
Table 2, we note that the average TCPIL was 0.4939. Thus, China has a large potential to improve its
TCPIL. As shown in Figure 1, the TCPIL showed an upward trend over the study period in China,
except for 2005 and 2009. This may be due to the rapid development of heavy industry in western
China approximately in 2005 and the economic stimulus plans introduced by the central government
of China that were aimed at reducing the negative impact on China’s industrial economy caused by
the international financial crisis in 2008 [46]. These two policies quickly achieved their expected effects,
but the amount of energy consumption and carbon emissions increased significantly. In addition,
according to Equation (5) the average values of ECPIL and ENPIL are 0.278 and 0.216, respectively.
The value of ENPIL for China is much lower than that of ECPIL in every year of the study period. Thus,
solving the environmental problems of excessive carbon dioxide emissions in industrial production
would be very helpful to improve the TCPIL. The results also prove that environmental policies,
especially those on the control of carbon dioxide emissions, are necessary.

At the regional level, all three regions shared trends similar to those at the national level.
The eastern region enjoyed the highest TCPIL over the study period, with an average value of 0.6143.
It was followed by the central and western regions, which had average values of 0.4371 and 0.4149,
respectively. We found that the eastern region had a much better TCPIL than the other two regions,
which may be due to the eastern region’s relatively developed industrial production technologies and
effective environmental protections. This is consistent with the observations of Xiong et al. [16]. At the
provincial level, Hainan had the highest average TCPIL, 0.9485, followed by Zhejiang, Guangdong and
Fujian, which had average TCPILs of 0.7483, 0.7359 and 0.7339, respectively. The four provinces are
located in the central region, but Ningxia, which suffered the poorest TCPIL, 0.2587, is in the western
region. Ningxia’s poor TCPIL may be the result of its relatively underdeveloped industry development,
which is in turn due to its lack of natural resources and relatively small industrial sector. According
to the China Statistical Yearbook 2013 [36], the industrial GDP in Ningxia only accounted for 0.35% of
the national industrial GDP. Thus, provinces with relatively underdeveloped industrial economies
(e.g., Ningxia and Gansu) and a preference for heavy industry (e.g., Liaoning, Jilin and Heilongjiang)
always suffered relatively poor TCPILs, whereas those with developed industrial economies (e.g.,
Zhejiang, Guangdong and Jiangsu) and better environments (e.g., Hainan and Fujian) always enjoyed
better TCPILs. To analyze the dynamic changes in TCPIL in detail, the NLCPIL for China and its three
regions is discussed in the next subsection.
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Figure 1. Trends in total-factor carbon emission performance of industrial land use (TCPIL) for China
and its three regions, 2003–2012.
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Table 2. TCPIL at the provincial level for all three regions, East (E), Central (C) and West (W) China 2003–2012.

Province Region 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Mean

Beijing E 0.2375 0.2977 0.3540 0.3288 0.3351 0.3523 0.3715 0.3861 0.8488 1.0000 0.4512
Tianjin E 0.3304 0.3692 0.4679 0.5151 0.5588 0.6391 0.6252 0.7452 0.9101 1.0000 0.6161
Hebei E 0.3073 0.3581 0.3366 0.3878 0.4301 0.4763 0.4631 0.5453 0.7900 1.0000 0.5095

Liaoning E 0.1875 0.2213 0.2634 0.2845 0.3519 0.5135 0.4135 0.4637 0.4915 0.5143 0.3705
Shanghai E 0.3483 0.3707 0.3654 0.3870 0.4048 0.4437 0.3991 0.4114 0.4031 0.3864 0.3920
Jiangsu E 0.5231 0.5041 0.4888 0.5245 0.5536 0.5939 0.6449 0.7138 1.0000 1.0000 0.6547

Zhejiang E 0.6141 0.5800 0.5879 0.6369 0.6854 0.7553 0.7469 0.8762 1.0000 1.0000 0.7483
Fujian E 0.5982 0.6607 0.5679 0.6494 0.6320 0.7354 0.7245 0.7974 1.0000 0.9730 0.7339

Shandong E 0.4153 0.4488 0.4458 0.4873 0.5401 0.5989 0.6309 0.7008 0.8207 0.8775 0.5966
Guangdong E 0.4588 0.5564 0.6241 0.6814 0.6880 1.0000 0.5039 0.8463 1.0000 1.0000 0.7359

Hainan E 1.0000 1.0000 1.0000 0.7651 0.7203 1.0000 1.0000 1.0000 1.0000 1.0000 0.9485
Shanxi C 0.1771 0.2325 0.3212 0.3230 0.3829 0.4618 0.4119 0.5212 0.6352 0.5856 0.4052

Jilin C 0.1762 0.2136 0.2225 0.2431 0.3049 0.3719 0.4037 0.4622 0.5313 0.6473 0.3577
Heilongjiang C 0.3026 0.3560 0.3111 0.3275 0.3193 0.3701 0.3336 0.4356 0.5379 0.5465 0.3840

Anhui C 0.2102 0.2574 0.2477 0.3283 0.3223 0.3787 0.4140 0.5077 0.4579 0.7501 0.3874
Jiangxi C 0.2588 0.3063 0.4082 0.5491 0.4559 0.5052 0.5356 0.6749 0.6810 0.7908 0.5166
Henan C 0.3156 0.3568 0.4097 0.4146 0.4917 0.6114 0.6066 0.8383 0.9934 1.0000 0.6038
Hubei C 0.2536 0.2733 0.2378 0.3190 0.3221 0.3628 0.4228 0.4351 0.4265 0.5471 0.3600
Hunan C 0.2628 0.2855 0.2794 0.3382 0.3839 0.5039 0.5009 0.6723 0.5973 1.0000 0.4824

Inner Mongolia W 0.1685 0.2226 0.2742 0.3109 0.3836 0.4766 0.4895 0.7098 1.0000 1.0000 0.5036
Guangxi W 0.2103 0.2557 0.2772 0.3131 0.3824 0.6516 0.4884 0.6788 0.8272 0.8775 0.4962

Chongqing W 0.1810 0.2193 0.1839 0.2195 0.2558 0.3081 0.3311 0.3727 0.4308 0.5373 0.3040
Sichuan W 0.1508 0.1801 0.2001 0.2660 0.3164 0.3351 0.3516 0.3745 0.4927 0.6646 0.3332
Guizhou W 0.1647 0.1746 0.2114 0.2384 0.2840 0.3540 0.3427 0.3987 0.3663 0.5419 0.3077
Yunnan W 0.3251 0.4284 0.3547 0.3830 0.3562 0.3984 0.3820 0.4672 0.5172 0.9554 0.4568
Shaanxi W 0.2476 0.2214 0.3429 0.4050 0.4049 1.0000 0.5325 0.6141 0.6956 1.0000 0.5464
Gansu W 0.1502 0.1841 0.1782 0.2064 0.2443 0.2810 0.2746 0.3620 0.3997 0.4253 0.2706

Qinghai W 1.0000 1.0000 0.4277 0.4128 0.5240 0.5242 0.5125 0.6008 1.0000 1.0000 0.7002
Ningxia W 0.0959 0.1445 0.1357 0.1576 0.3069 0.2305 0.2730 0.3990 0.4322 0.4120 0.2587
Xinjiang W 0.1410 0.1507 0.2041 0.2069 0.2211 0.3713 0.2427 0.3238 1.0000 1.0000 0.3862

East 0.4564 0.4879 0.5002 0.5134 0.5364 0.6462 0.5930 0.6806 0.8422 0.8865 0.6143
Central 0.2446 0.2852 0.3047 0.3554 0.3729 0.4457 0.4536 0.5684 0.6076 0.7334 0.4371

West 0.2577 0.2892 0.2536 0.2836 0.3345 0.4483 0.3837 0.4819 0.6511 0.7649 0.4149

China 0.3271 0.3610 0.3577 0.3870 0.4188 0.5202 0.4791 0.5778 0.7095 0.8011 0.4939

3.2. NLCPIL and Its Decompositions

As shown in Figure 2 and Table 3, the values of NLCPIL were above zero in most years in the
study period for China, and the average value was 0.0527, which indicated that the NLCPIL increased
by approximately 5.27% per year over the study period. This implies an obvious improvement in
TCPIL. The NLCPIL was less than zero only for the periods 2004–2005 and 2008–2009, and had values
of ´0.0033 and ´0.0411, respectively. This indicates that the TCPIL decreased by approximately 0.33%
and 4.11% in the two periods, respectively. With regard to the decomposition indices of the NLCPIL,
Table 3 shows that the average EC and TC were 0.0258 and 0.0268 under the NLCPIL framework.
This indicates that the environmental efficiency for provinces in China increased by approximately
2.58% per year during the study period, and the contemporaneous technology frontier moved toward
the global technology frontier at an annual average rate of approximately 2.68% per year for the same
period. It is worth noting that the NLCPIL and TC shared trends, that of EC, especially after 2009.
In addition, the EC values were greater than zero prior to the period 2008–2009 and were higher than
those of TC. However, the TC values noticeably increased and remained above zero after 2008–2009,
whereas the EC values sharply decreased in the period 2010–2011. Therefore, we have found that the
growth in NLCPIL was mainly driven by EC before 2009 and by TC afterwards. This may have been
due to increased production costs caused by increasing investments in R&D as a result of environmental
regulations and the use of expensive clean energy (e.g., electricity), but it would promote technological
progress and improve the enterprise competitiveness in the long run. Thus, this result demonstrates
the effectiveness of carbon emission reduction policies since 2009, and it is consistent with the findings
of Zheng et al. [47]. The results also provide evidence for the Porter hypothesis, which states that strict
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environmental regulation is conducive to the improvement of enterprise competitiveness and resource
use efficiency [48]. Additionally, according to Equations (10) and (11), we have found that during
the study period, the average values of NLCECPIL and NLCENPIL for China are 0.0273 and 0.0254,
respectively. Thus, the ECPIL makes faster progress than the ENPIL, which implies more effective
policies and regulations on industrial carbon emission reduction need to be issued urgently.
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Figure 2. Trends in non-radial Luenberger carbon emission performance of industrial land use
(NLCPIL) and its decomposition indices for China, 2003–2013, including efficiency change (EC) and
technological change (TC).

Table 3. NLCPIL and its decomposition indices for the three regions.

NLCPIL EC TC

E 0.0478 0.0122 0.0356
C 0.0543 0.0187 0.0357
W 0.0563 0.0446 0.0117

China 0.0527 0.0258 0.0268

Tables 3–6 provide detailed information. As Table 3 shows, at the regional level, the NLCPIL
and its two decomposition indices were greater than zero in the three regions, which indicates that
the three regions enjoyed continuous progress in NLCPIL, EC and TC as a whole during the study
period. Specifically, the western region enjoyed the highest NLCPIL with a value of 0.0563, and it
was followed by the central and eastern regions, which had values of 0.0543 and 0.0478, respectively.
This indicates that the annual average growth rates of NLCPIL for the three regions were 5.63%,
5.43% and 4.78%, respectively. This is in contrast with the TCPIL’s results; because the eastern region
enjoyed the best TCPIL and the western region suffered the poorest TCPIL. This may because NLCPIL
measures dynamic changes in TCPIL, and the central and western regions were trying their best to
catch up with the eastern region. Therefore, the regional gaps in TCPIL seem to be narrowing, which
is helpful for realizing the balanced and sustainable utilization of industrial lands in China. This is
consistent with the findings of Xie et al., which reached a similar conclusion at both the provincial and
city levels [9].

Specifically, as shown in Table 4, the average NLCPIL for the provinces were greater than zero,
with the exception of Hainan and Qinghai, whose values were equal to zero. This implies that the
TCPIL remained unchanged for the two provinces over the study period as a whole. In addition,
Xinjiang enjoyed the best performance of NLCPIL, with an average value of 0.0954; it was followed by
Inner Mongolia (0.0924) and Beijing (0.0847). This may be partly because the industrial land input in
those places showed obvious reductions during the last few years of the study period, which implies
that the local governments there successfully blocked the blind expansion of industrial lands and
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improved land utilization efficiency. In addition, Beijing, which is a large emitter of industrial carbon
emissions, has best endeavored to reduce carbon emissions, and it has achieved notable success in
carbon emission reductions since the Olympic Games by limiting the number of motor vehicles and by
moving heavily polluting enterprises out of the city. Moreover, Xinjiang and Inner Mongolia have been
committed to the development of industries with high economic output and low carbon emissions in
recent years, such as wind power technology. This is consistent with the findings of Zhang et al. [28].

With regard to the decomposition indices of NLCPIL, Table 3 shows that the western region
ranks first in average EC with the value of 0.0446, followed by the eastern and central regions, which
have values of 0.0187 and 0.0122, respectively. This indicates that the western region enjoyed the
best “catch-up” effect in terms of changes in the efficiency of carbon emissions for industrial land use.
In addition, as shown in Table 5, Xinjiang had the highest EC, 0.072, and it was followed by Inner
Mongolia (0.0701) and Guizhou (0.0687). Heilongjiang, Shanghai and Shandong suffered relatively poor
ECs of´0.0264,´0.0186 and´0.0123, respectively, which indicates that efficiency receded in those places.
This may be due to the promotion of environment-friendly industrial production technologies that have
brought additional costs to industry. Regarding TC, the central region shows the highest average TC of
0.0357, followed by the eastern (0.0356) and western regions (0.0117). Because TC measures technological
progress over time, the results therefore imply that the production frontiers of the central, eastern and
western regions are moving toward global low carbon production technology by approximately 3.57%,
3.56% and 1.17% per year, respectively. Henan had the highest TC, 0.076, following by Yunnan and
Jiangxi, which had values of 0.07 and 0.0677, respectively. Ningxia suffered the poorest performance in
TC, ´0.0289, which implies a noticeable regression in environmental production technology.

Interestingly, the western region had relatively high ECs, whereas the eastern and central regions
had relatively high TCs. Therefore, the growth in NLCPIL in the western region was mainly driven by
improved efficiencies, and the eastern and central regions were more dependent on technological progress.

Table 4. Changes in the NLCPIL at the provincial level, 2003–2012. Positive values are marked grey.

Province Region 03–04 04–05 05–06 06–07 07–08 08–09 09–10 10–11 11–12 Mean
Beijing E 0.0601 0.0563 ´0.0252 0.0063 0.0172 0.0191 0.0147 0.4627 0.1512 0.0847
Tianjin E 0.0388 0.0987 0.0472 0.0437 0.0803 ´0.0139 0.1201 0.1648 0.0899 0.0744
Hebei E 0.0508 ´0.0215 0.0512 0.0423 0.0462 ´0.0132 0.0822 0.2447 0.2100 0.0770

Liaoning E 0.0338 0.0421 0.0211 0.0674 0.1616 ´0.1000 0.0503 0.0277 0.0229 0.0363
Shanghai E 0.0224 ´0.0053 0.0216 0.0177 0.0390 ´0.0447 0.0123 ´0.0083 ´0.0167 0.0042
Jiangsu E ´0.0190 ´0.0152 0.0357 0.0290 0.0403 0.0510 0.0689 0.2862 0.0000 0.0530

Zhejiang E ´0.0341 0.0079 0.0490 0.0485 0.0700 ´0.0084 0.1292 0.1238 0.0000 0.0429
Fujian E 0.0624 ´0.0927 0.0814 ´0.0174 0.1034 ´0.0109 0.0729 0.2026 ´0.0270 0.0416

Shandong E 0.0335 ´0.0029 0.0415 0.0528 0.0588 0.0320 0.0699 0.1199 0.0568 0.0514
Guangdong E 0.0976 0.0677 0.0573 0.0066 0.3120 ´0.4961 0.3424 0.1537 0.0000 0.0601

Hainan E 0.0000 0.0000 ´0.2349 ´0.0448 0.2797 0.0000 0.0000 0.0000 0.0000 0.0000
Shanxi C 0.0553 0.0887 0.0018 0.0599 0.0789 ´0.0499 0.1094 0.1140 ´0.0496 0.0454

Jilin C 0.0374 0.0089 0.0206 0.0618 0.0670 0.0318 0.0585 0.0691 0.1161 0.0524
Heilongjiang C 0.0534 ´0.0450 0.0165 ´0.0082 0.0508 ´0.0365 0.1020 0.1023 0.0087 0.0271

Anhui C 0.0472 ´0.0097 0.0806 ´0.0061 0.0565 0.0353 0.0937 ´0.0498 0.2922 0.0600
Jiangxi C 0.0475 0.1019 0.1408 ´0.0931 0.0492 0.0304 0.1393 0.0061 0.1099 0.0591
Henan C 0.0412 0.0529 0.0049 0.0770 0.1197 ´0.0048 0.2317 0.1551 0.0066 0.0760
Hubei C 0.0197 ´0.0355 0.0812 0.0032 0.0407 0.0600 0.0123 ´0.0086 0.1206 0.0326
Hunan C 0.0227 ´0.0061 0.0589 0.0457 0.1199 ´0.0030 0.1714 ´0.0750 0.4027 0.0819

Inner Mongolia W 0.0541 0.0516 0.0367 0.0727 0.0931 0.0129 0.2204 0.2902 0.0000 0.0924
Guangxi W 0.0454 0.0215 0.0359 0.0693 0.2692 ´0.1632 0.1903 0.1484 0.0503 0.0741

Chongqing W 0.0382 ´0.0353 0.0356 0.0363 0.0523 0.0230 0.0415 0.0581 0.1065 0.0396
Sichuan W 0.0293 0.0200 0.0660 0.0504 0.0187 0.0165 0.0229 0.1182 0.1719 0.0571
Guizhou W 0.0099 0.0368 0.0270 0.0457 0.0700 ´0.0113 0.0560 ´0.0323 0.1756 0.0419
Yunnan W 0.1033 ´0.0737 0.0282 ´0.0268 0.0421 ´0.0163 0.0851 0.0501 0.4382 0.0700
Shaanxi W ´0.0262 0.1215 0.0621 0.0000 0.5951 ´0.4675 0.0816 0.0815 0.3044 0.0836
Gansu W 0.0339 ´0.0059 0.0282 0.0379 0.0366 ´0.0064 0.0874 0.0377 0.0256 0.0306

Qinghai W 0.0000 ´0.5723 ´0.0149 0.1112 0.0002 ´0.0117 0.0883 0.3992 0.0000 0.0000
Ningxia W 0.0486 ´0.0088 0.0219 0.1492 ´0.0764 0.0425 0.1260 0.0333 ´0.0202 0.0351
Xinjiang W 0.0097 0.0534 0.0027 0.0142 0.1502 ´0.1286 0.0811 0.6762 0.0000 0.0954

China 0.0339 ´0.0033 0.0294 0.0317 0.1014 ´0.0411 0.0987 0.1317 0.0916 0.0527
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Table 5. EC component of the NLCPIL at the provincial level, 2003–2012. Positive values are marked grey.

Province Region 03–04 04–05 05–06 06–07 07–08 08–09 09–10 10–11 11–12 Mean
Beijing E 0.5551 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0617
Tianjin E 0.0510 0.2648 ´0.0650 0.0650 0.0000 0.0000 0.0000 0.0000 0.0000 0.0351
Hebei E 0.4358 0.0000 0.0000 0.0000 0.0000 ´0.1740 0.1740 0.0000 0.0000 0.0484

Liaoning E 0.0540 0.0712 ´0.0247 0.0879 0.1145 ´0.0513 0.0157 ´0.0547 ´0.0304 0.0202
Shanghai E 0.3374 ´0.3715 0.3715 0.0000 0.0000 0.0000 ´0.2716 ´0.3185 0.0849 ´0.0186
Jiangsu E 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Zhejiang E 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Fujian E 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Shandong E 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ´0.1107 ´0.0123
Guangdong E 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Hainan E 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Shanxi C 0.0485 0.2033 ´0.0450 0.1234 0.0357 ´0.0596 0.0758 ´0.0042 ´0.0950 0.0314

Jilin C 0.0916 0.0117 ´0.0008 0.0794 0.0726 0.0613 0.0103 ´0.0989 0.1426 0.0411
Heilongjiang C 0.0000 0.0000 0.0000 ´0.4554 0.2494 0.0903 0.1157 ´0.4130 0.1757 ´0.0264

Anhui C 0.1039 0.0045 0.0937 ´0.0437 0.0879 0.0718 0.0004 ´0.1860 0.2657 0.0442
Jiangxi C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ´0.0775 ´0.0086
Henan C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Hubei C 0.0183 ´0.0316 0.0774 ´0.0065 0.0070 0.0817 ´0.0252 ´0.0974 0.0920 0.0129
Hunan C 0.0578 ´0.0119 0.2200 0.0403 0.0091 0.0568 0.0506 0.0686 0.0000 0.0546

Inner Mongolia W 0.1012 0.0827 0.0296 0.4176 0.0000 0.0000 0.0000 0.0000 0.0000 0.0701
Guangxi W 0.4709 ´0.3778 0.0224 0.0650 0.2904 0.0000 0.0000 0.0000 0.0000 0.0523

Chongqing W ´0.0714 ´0.0459 0.0296 0.0382 0.0398 0.1453 ´0.0147 ´0.1052 0.1447 0.0178
Sichuan W 0.0346 0.0453 0.0600 0.0922 0.0201 0.0352 ´0.0728 0.5161 ´0.2993 0.0479
Guizhou W 0.0395 0.0481 0.0905 ´0.0196 0.2370 0.2228 ´0.1448 ´0.4628 0.6076 0.0687
Yunnan W 0.0000 0.0000 0.0000 ´0.3476 0.1191 ´0.0536 0.0953 ´0.2426 0.4294 0.0000
Shaanxi W ´0.0678 0.2546 0.0561 0.0040 0.3034 0.0000 0.0000 ´0.1822 0.1822 0.0611
Gansu W 0.0366 0.0471 0.0146 0.0517 0.0815 ´0.0034 0.0951 ´0.1739 0.1836 0.0370

Qinghai W 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ningxia W ´0.1353 0.0473 0.0475 0.2812 0.3359 0.0000 0.0000 ´0.4636 0.4636 0.0641
Xinjiang W 0.6477 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0720

China 0.0936 0.0081 0.0326 0.0158 0.0668 0.0141 0.0035 ´0.0739 0.0720 0.0258

Table 6. TC component of the NLCPIL at the provincial level, 2003–2012. Positive values are marked grey.

Province Region TC TC TC TC TC TC TC TC TC Mean
Beijing E ´0.4949 0.0563 ´0.0252 0.0063 0.0172 0.0192 0.0146 0.4627 0.1512 0.0230
Tianjin E ´0.0122 ´0.1661 0.1122 ´0.0213 0.0803 ´0.0139 0.1200 0.1649 0.0899 0.0393
Hebei E ´0.3850 ´0.0215 0.0512 0.0423 0.0462 0.1608 ´0.0918 0.2447 0.2100 0.0285

Liaoning E ´0.0202 ´0.0291 0.0458 ´0.0205 0.0471 ´0.0487 0.0345 0.0825 0.0532 0.0161
Shanghai E ´0.3150 0.3662 ´0.3499 0.0178 0.0389 ´0.0446 0.2839 0.3102 ´0.1016 0.0229
Jiangsu E ´0.0190 ´0.0153 0.0357 0.0291 0.0403 0.0510 0.0689 0.2862 0.0000 0.0530

Zhejiang E ´0.0341 0.0079 0.0490 0.0485 0.0699 ´0.0084 0.1293 0.1238 0.0000 0.0429
Fujian E 0.0625 ´0.0928 0.0815 ´0.0174 0.1034 ´0.0109 0.0729 0.2026 ´0.0270 0.0416

Shandong E 0.0335 ´0.0030 0.0415 0.0528 0.0588 0.0320 0.0699 0.1199 0.1675 0.0637
Guangdong E 0.0976 0.0677 0.0573 0.0066 0.3120 ´0.4961 0.3424 0.1537 0.0000 0.0601

Hainan E 0.0000 0.0000 ´0.2349 ´0.0448 0.2797 0.0000 0.0000 0.0000 0.0000 0.0000
Shanxi C 0.0069 ´0.1146 0.0468 ´0.0635 0.0432 0.0097 0.0335 0.1182 0.0454 0.0140

Jilin C ´0.0542 ´0.0028 0.0214 ´0.0176 ´0.0056 ´0.0295 0.0482 0.1680 ´0.0266 0.0113
Heilongjiang C 0.0534 ´0.0449 0.0164 0.4472 ´0.1986 ´0.1268 ´0.0137 0.5153 ´0.1671 0.0535

Anhui C ´0.0567 ´0.0142 ´0.0131 0.0377 ´0.0315 ´0.0365 0.0933 0.1362 0.0265 0.0157
Jiangxi C 0.0475 0.1019 0.1409 ´0.0932 0.0493 0.0304 0.1393 0.0061 0.1873 0.0677
Henan C 0.0412 0.0529 0.0049 0.0771 0.1197 ´0.0048 0.2317 0.1551 0.0066 0.0760
Hubei C 0.0014 ´0.0039 0.0038 0.0096 0.0337 ´0.0217 0.0375 0.0888 0.0286 0.0198
Hunan C ´0.0351 0.0058 ´0.1612 0.0054 0.1109 ´0.0598 0.1208 ´0.1436 0.4027 0.0273

Inner Mongolia W ´0.0471 ´0.0311 0.0071 ´0.3449 0.0930 0.0129 0.2203 0.2902 0.0000 0.0223
Guangxi W ´0.4255 0.3993 0.0135 0.0043 ´0.0212 ´0.1632 0.1904 0.1484 0.0503 0.0218

Chongqing W 0.1097 0.0105 0.0060 ´0.0019 0.0125 ´0.1223 0.0563 0.1633 ´0.0382 0.0218
Sichuan W ´0.0053 ´0.0253 0.0059 ´0.0418 ´0.0014 ´0.0187 0.0957 ´0.3979 0.4712 0.0092
Guizhou W ´0.0296 ´0.0113 ´0.0635 0.0652 ´0.1670 ´0.2341 0.2008 0.4304 ´0.4320 ´0.0268
Yunnan W 0.1033 ´0.0737 0.0283 0.3208 ´0.0769 0.0372 ´0.0101 0.2926 0.0088 0.0700
Shaanxi W 0.0416 ´0.1331 0.0060 ´0.0041 0.2917 ´0.4675 0.0816 0.2637 0.1222 0.0225
Gansu W ´0.0027 ´0.0530 0.0136 ´0.0138 ´0.0448 ´0.0030 ´0.0077 0.2116 ´0.1580 ´0.0064

Qinghai W 0.0000 ´0.5723 ´0.0149 0.1112 0.0002 ´0.0117 0.0883 0.3992 0.0000 0.0000
Ningxia W 0.1839 ´0.0561 ´0.0256 ´0.1319 ´0.4123 0.0425 0.1260 0.4968 ´0.4838 ´0.0289
Xinjiang W ´0.6380 0.0534 0.0028 0.0142 0.1502 ´0.1286 0.0811 0.6762 0.0000 0.0235

China ´0.0597 ´0.0114 ´0.0032 0.0160 0.0346 ´0.0552 0.0953 0.2057 0.0196 0.0268

To establish good examples of environmentally friendly production technology across China, we
try to find provinces that have made outstanding progress in the carbon emission performance of



Sustainability 2016, 8, 336 14 of 19

industrial land use and have pushed the technology frontier outward. We used three conditions to
distinguish the innovators [35,49]:

TCt,t`1 ą 0 ,
Ñ

D
t
`

xt`1 , yt`1 , bt`1˘ ă 0,
Ñ

D
t`1

`

xt`1 , yt`1 , bt`1˘ “ 0.

(15)

Equation (15) suggests that to become an innovator, the contemporaneous environmental
technology frontier should move toward the global environmental technology frontier. In addition,
the industrial production activity of an innovative region in period t + 1 should be outside of the
contemporaneous environmental technology frontier in period t, and the region under estimation
should be located on the contemporaneous environmental technology frontier in period t + 1. We have
listed the innovators in the eastern, central and western regions in Table 6.

As shown in Table 7, it was found that provinces from the eastern region were determined to
be innovators 50 times during the study period, whereas those in the western and central regions
appeared 24 and 18 times, respectively. Specifically, Henan ranked first and was registered as an
innovator 8 times. Beijing, Guangdong, Jiangxi and Shandong each appeared 7 times. Jiangsu, Xinjiang
and Zhejiang each appeared 6 times. Fujian and Hebei appeared 5 times. Inner Mongolia and Tianjin
appeared 4 times. Guangxi, Qinghai, Shaanxi and Yunnan appeared 3 times. Heilongjiang, Ningxia
and Shanghai appeared 2 times, and Hainan and Hunan each appeared only 1 time. The result is
consistent with that of Zhang et al. [28] and implies that the eastern region should be referenced as a
benchmark for the low carbon utilization of industrial land. Moreover, provinces that are not listed
in Table 6 should benchmark the innovating provinces and strive to improve their clean production
technologies by learning from the innovators. In addition, the central government of China should
actively create opportunities for provinces to communicate with each other to narrow regional gaps in
low carbon industrial production technology and realize the balanced utilization of industrial land in
the country.

Table 7. Innovators in the eastern, central and western regions, 2003–2012.

Period East Central West

2003–2004 Shandong, Fujian, Guangdong Henan, Jiangxi,
Heilongjiang Yunnan

2004–2005 Zhejiang, Beijing, Guangdong Henan, Jiangxi Xinjiang

2005–2006 Jiangsu, Shandong, Zhejiang, Hebei,
Guangdong, Fujian

Henan, Heilongjiang,
Jiangxi Xinjiang, Yunnan

2006–2007 Beijing, Guangdong, Shanghai,
Jiangsu, Hebei, Zhejiang, Shandong Henan Xinjiang, Qinghai

2007–2008
Beijing, Shanghai, Jiangsu, Hebei,

Shandong, Zhejiang, Tianjin, Fujian,
Hainan, Guangdong

Jiangxi, Henan Inner Mongolia,
Xinjiang, Shaanxi

2008–2009 Beijing, Shandong, Jiangsu Jiangxi Inner Mongolia, Ningxia

2009–2010 Beijing, Jiangsu, Shandong, Fujian,
Tianjin, Zhejiang, Guangdong Jiangxi, Henan

Xinjiang, Shaanxi, Qinghai,
Ningxia, Guangxi,

Inner Mongolia

2010–2011 Shandong, Zhejiang, Guangdong,
Tianjin, Fujian, Hebei, Jiangsu, Beijing Jiangxi, Henan Guangxi, Inner Mongolia,

Qinghai, Xinjiang

2011–2012 Tianjin, Beijing, Hebei Henan, Hunan Guangxi, Shaanxi, Yunnan

3.3. Determinants of the NLCPIL

Based on Equation (12), we explored how the influencing factors impacted the NLCPIL using
a regression analysis. We introduce the influencing factors from each aspect (e.g., energy utilization,
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technology, industrial structure and environmental policy) successively to enhance the robustness of
the regression results. The results of a Hausman test showed that the fixed effect model was better
than the random effect model and that the fixed effect model was able to remove the effects of regional
disparity, and we therefore adopted the fixed effect model. The estimation results are shown in Table 8.

Table 8. Regression results. *** p < 0.001, ** p < 0.05, * p < 0.01.

Model 1 Model 2 Model 3 Model 4

EI ´0.0164 *** (´2.5946) ´0.0173 *** (´2.6929) ´0.0227 *** (´2.9775) ´0.0144 ** (´1.9460)
ES ´0.0013 *** (´3.4321) ´0.0012 *** (´3.2012) ´0.0019 *** (´4.7769) ´0.0019 *** (´4.5950)
RI 0.0034 *** 3.7902) 0.0134 *** (3.0684) 0.0122 *** (2.6954)
FI ´0.0001 ** (´2.2041) ´0.0001 ** (´2.0582) ´0.0001 ** (´2.0997)
LS ´0.0024 *** (´7.3504) ´0.0025 *** (´7.2698)
IS 0.0014 ** (2.3019) 0.0015 ** (2.3484)

POL 0.0266 *** (3.1863)
Constant 0.0696 *** (6.5035) 0.0656 *** (4.3790) 0.0935 *** (2.7554) 0.0813 ** (2.3186)

Adjusted R2 0.0674 0.0487 0.2843 0.2329
F-statistic 17.3950 15.4415 7.1233 5.6660

Prob. 0.0000 0.0000 0.0000 0.0000

The results show that the coefficients of the variables were statistically significant at the national
level, which implies that the determinant analysis is quite robust and that the results can well explain
the model. With regard to the coefficients of EI and ES, they were significantly negative for models 1–4,
shown in Table 8, which is consistent with our assumptions in Section 2.3. As shown in model 4, the
NLCPIL decreased by approximately 1.44% and 0.19% with 1% increases in EI and ES. This indicates
that energy intensity had an obvious negative impact on NLCPIL, which corresponds to many previous
studies [50]. This may be because higher EIs mean that more fossil energy is used in industrial
production, which would lead to an obvious increase in carbon emissions. In addition, the development
oriented towards heavy industry and heavily dependent on coal, has exerted a reverse impact on
NLCPIL in China, which may be because coal releases more carbon dioxide than other forms of clean
energy (e.g., natural gas) for the same given amount and could easily cause increases in temperature
and pose threats to human health [51].

RI and FI, which were introduced in models 2–4, represent industrial production technology and
showed different relationships with the NLCPIL. The RI coefficient was significantly positive, whereas
the FI coefficient was significantly negative. This implies that a greater investment in industrial
R&D was indeed helpful for saving energy, reducing carbon emissions and realizing environmentally
friendly industrial development. However, the impact of FI is inconsistent with our assumptions in
Section 2.3, which states that both of RI and FI have positive impacts on NLCPIL in China. As model 4
shows, the NLCPIL increased by 1.22% with a 1% increase in RI, and it decreased by 0.01% with a 1%
increase in FI. A possible explanation may be that the introduction of foreign industrial enterprises
has not played the expected role because of the lack of scientific planning. In fact, most Chinese
local governments prefer short–term economic benefits rather than learning about and developing
advanced clean production technologies. Some previous studies have even noted that autonomous
product development is not only a necessary condition for industrial innovation but is also the best
way to learn foreign technology, and the blind introduction of foreign industrial enterprises can be
counterproductive [52].

In addition, LS and IS were introduced in models 3–4. The coefficient of LS is significantly negative,
which indicates that an increase in LS could give rise to a decrease in NLCPIL. This is consistent with
our expectations and may be due to the industrial labor surplus across the country caused by the
continued migration of rural surplus labor forces into the cities. The industrial enterprises prefer
low-tech production activities because of inexpensive labor, and they do not have enough enthusiasm
to improve production technology, which is not helpful for improving NLCPIL [53]. In contrast, the IS
showed a significantly positive impact on NLCPIL, which defied our expectations. A possible reason
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may be that China has not yet fully entered the period of post industrialization, and increases in the
scale of industrial development are beneficial for improving NLCPIL.

Lastly, we introduced (carbon emission reduction policy (POL) in model 4, and its coefficient was
significantly positive, which indicates that policies on carbon emission reductions since 2009 have
obviously contributed to the growth in NLCPIL. Therefore, strengthening environmental regulations
on local governments and enterprises, developing low carbon industries and promoting the use
of clean energy would be helpful to improve the NLCPIL. This is consistent with the findings of
Xie et al. [9].

4. Conclusions

China has become the world’s largest energy consumer and carbon emitter, and industrial
production is the primary contributor to carbon emissions. Industrial lands bear most of the industrial
production activities and industrial pollutants, and the serious problems of environmental pollution in
areas surrounding industrial land caused by industrial production therefore deserve more attention.
Fortunately, the central government of China has already accepted the importance of improving the
environmental and economic performance of industrial land use. However, the above polices cannot
achieve the desired effects unless accompanied by an overall understanding of the actual situation.
Therefore, modeling the dynamic changes in carbon emission performance of industrial land use in
recent years and forwarding constructive policy implications are urgently needed.

In this study, we employed a global DDF approach to compute the TCPIL, and we then used a
NLCPIL index to model the dynamic changes in the TCPIL. The results are as follows:

Firstly, the TCPILs for China and its three regions showed rising trends over the study period, and
the eastern region performed much better in TCPIL than the central and western regions. However, all
three regions have a large potential for improving their TCPILs. Most of the provinces in the eastern
region (e.g., Hainan, Zhejiang and Guangdong) enjoyed better TCPILs, whereas those from the central
and western regions (e.g., Gansu and Ningxia) suffered worse TCPILs.

Secondly, the NLCPILs for China were greater than zero in most years of the study period, and
their growth was mainly driven by ECs before 2009 and by TC subsequently. The eastern and central
regions showed higher TCs, whereas the western region had a better EC performance. Many provinces
with poor TCPILs had higher NLCPILs, which indicates that the regional gaps in TCPIL clearly
showed a narrowing trend. In addition, most of the provinces that were identified as innovators of
environmentally friendly industrial production technologies were in the eastern region (e.g., Beijing,
Guangdong and Shandong).

Lastly, the results of the influencing factor analysis showed that the carbon emission reduction
policies since 2009 have performed as expected, and they are helpful to improve the NLCPIL, which
recommends the environmental protection policies. The EI, ES and LS indicators had expected
significantly negative impacts on the NLCPIL, which means that the NLCPIL could be improved by
saving more fossil energy, optimizing the energy structure by reducing the use of coal and properly
solving the problem of surplus labor in the industrial sectors. The RI had an expected significantly
positive impact on the NLCPIL, which implies that more investment in industrial R&D is needed.
However, the FI and IS indices influenced the NLCPIL opposite the expected impacts, which had
negative and positive signs, respectively. This may due to incomplete learning of foreign advanced
production technologies and the fact that China has not yet fully entered into the stage of middle and
late industrialization.

Based on the empirical analysis, we put forward some policy implications. Firstly, the central
government of China should issue more policies on low-carbon and energy-saving industrial
production to effectively protect the environment given rapid industrial economic development.
In addition, the central government should strictly regulate local governments to fully implement
those policies. Therefore, severe punishments for local government officials such as removing
administrative duties or cutting their powers are necessary. Secondly, industrial enterprises should
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further optimize energy structures by reducing the use of coal and increasing the use of clean energy
such as nuclear and wind power. The government should spend more money on the R&D of clean
energy, subsidize enterprises that use clean energy, and promote cooperation between enterprises and
research institutes. Third, we should carefully study advanced industrial production and management
technologies by introducing foreign investment and industrial enterprises and by trying to develop
our own technologies, especially for the regions with underdeveloped environmentally friendly
industrial production technology. Lastly, the regional gaps in industrial production technology and
environmental protection deserve more attention, and the central government of China should create
more opportunities for underdeveloped provinces to communicate with developed provinces and
introduce necessary technologies and talent. This study also has some limitations. Firstly, we only
adopted a ten-year sample period because of the unavailability of data. We will try to obtain more data
to extend the study period to produce more convincing and meaningful results. Secondly, some factors
that play important roles in determining the efficiency of industrial land use were not considered in
this paper for the same reason, such as the price of industrial land, carbon emissions trading costs and
human capital. We will make these improvements in future studies.
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