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Abstract: The purpose of this study is to examine how the collaboration structure among inventors
in an R and D organization affects its capability to create impactful innovations. Specifically, this
study is focused on examining whether a certain type of network mechanism found in collaboration
among inventors contributes more to enhancing the future impacts of collaboration outputs, which is
represented by the forward citations of their patents. To this end, co-invention networks for R and D
organizations are constructed from an inventor-patent database, and the three structural patterns
are measured by using network analytic constructs, namely, structural holes, strength of ties, and
centralization. The results show that the presence of structural holes and strong ties are positively
associated with the increasing forward citations, and that decentralized collaboration has also a
positive impact. The findings offer support for both structural hole and network closure perspectives
on social capital, which have been considered contradictive in the literature.

Keywords: co-invention networks; network analysis; patent citations; structural holes; strength of
ties; centralization

1. Introduction

Innovation is widely recognized as a process of identifying opportunities for unconventional
recombination of diverse technology options that have already existed [1-3]. The process of
recombination leads R and D personnel to search beyond their own boundaries for knowledge and
skills to complement their capabilities [4]. Typically, innovation processes involve teams of researchers
who work together on the same project. While exchanging ideas and sharing information, participants
of a research team carry over their knowledge to other members in the same team or other projects that
they are involved in. Whenever researchers collaborate with other coworkers, they create knowledge
spillovers. The quality and impact of outputs from collaboration processes are inextricably related
to who is working with whom; that is, how knowledge spills over among members in an R and D
organization. Therefore, knowledge spillover is a causal mechanism linking network structures to
organizational performance.

The innovation literature has reported empirical evidence on the relationship between
collaboration structures and organizational performance. They find that the transfer of knowledge
across boundaries within firms (example, [5]), the combination of technologies from heterogeneous
technological origins [3,6,7], and knowledge spillover amongst researchers with different roles
(example, [8]) are closely associated with organizational performance and output quality.

In particular, previous research repeatedly stressed the importance of inter-firm alliances and
networks for organizational learning and knowledge flows in knowledge-intensive industries. Indeed,
numerous previous studies found that R and D alliances are used as an instrument by firms to acquire
new skills and to source specialized know-how (see [9] for a nice review). However, these studies
were interested in the effects of collaborative R and D on subsequent innovation performance, without
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putting emphasis on micro-level interactions of how individual inventors collaborate and which
co-working structures are more productive. Rather, these previous studies were interested in the fact
that collaboration has taken place (as opposed to in-house R and D exclusively) in a certain network
structure and in some cases distinguished between the types of partner involved.

This study examines how individual inventors in an R and D organization collaborate with
other co-workers in the same organization. We focus on various network mechanisms identified in
intra-organizational collaborative invention based on social capital theories. Studies on social capital
suggest a variety of possible explanations for the empirically-observed relationship between various
network mechanisms and organizational performance. We combine these streams of literature and
extend previous research in at least two major ways.

First, we examine in-house R and D collaboration based on social capital theories and focus
on how micro-level R and D collaboration among individual inventors affects organizational
performance. Second, we explicitly separate three important network mechanisms of strength of
ties, dense connectivity, and network centralization and examine how they operate independently and
interactively. Although the effects of these network factors have been well studied in the literature,
little has been done to disentangle one mechanism from others [10]. Specifically, this study examines
whether a firm’s patent stock produced under a particular collaboration structure is more impactful
on subsequent innovations than other structures. To this end, co-invention networks for R and D
organizations are constructed from a patent database, and their structural patterns are examined by
using network analytic constructs. Based on the three distinct constructs that represent collaboration
patterns, our study seeks to disentangle the effects of two leading network mechanisms, structural
hole and tie strength, which have been considered to contradict each other in the extant literature.

2. Hypothesis Development

Although there has been a variety of interrelated definitions of social capital (for
differently-focused works, see e.g., [11-13]), most definitions have two elements in common: social
capital is embedded in some aspect of social structures, and it facilitates certain actions of actors within
the structure [14]. In this sense, social capital refers to the collective value of all social networks and
the inclinations that arise from these networks to do things for one other (e.g., [15,16]).

The importance of social capital as an antecedent of innovation has received much theoretical
attention over the last few years [17]. It has been shown that social capital and learning have a positive
relationship because social capital directly affects the combine-and-exchange process and provides
relatively easy access to network resources [18,19]. Relatedly, the overall hypothesis of the social
capital theory in the matter of innovation is that firms with a large stock of social capital will have
a competitive advantage to the extent that social capital help reduce many forms of communication
inefficiencies (e.g., transaction costs, bargaining costs, search costs, and policing costs, etc.), cause
agreements and cooperation to be honored, and enable employees to share tacit knowledge and place
negotiations on the same wavelength [20].

Social capital can take different forms, primarily trust, norm, and network. However, the most
distinguishable and relatively easily measurable form is the network structure of relations between
and among actors. It is not completely fungible nor exchangeable but may be specific to certain
organizations or activities. Depending on diverse organizational characteristics such as culture,
routines, and demographic compositions, social capital of organizations inheres in the distinctive
structures of collaboration among their members. Thus, the structural features of collaboration must
be closely associated with the organizational capability of creating innovations.

Although the contribution of social capital to innovation has been well recognized in the literature,
empirical support is scarce owing in the main to: (1) a lack of agreement regarding the content of the
concept of social capital and the appropriate way of measuring it [21,22], and (2) the lack of empirical
research in the area [23]. This paper aims to fill this research gap by focusing on two issues. First,
we separate different network mechanisms, particularly, distinguishing tie strengths (which is at the
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dyadic level) and density (which as ate the network level), and examines how they affect innovation
outputs both independently and interactively. Second, we provide empirical evidence in the context of
inventors’ collaboration based on a large scale analysis of co-patenting behaviors. In the following
sections, we will identify three network constructs that can characterize an R and D organization’s
social capital and develop hypotheses regarding the structure-performance relationship.

2.1. Structural Holes

The basic idea of a structural hole is that a lack of ties among alters in an ego’s social network
benefits the ego in terms of accessing diverse information. In a social capital theory, actors who develop
ties with disconnected groups are believed to gain access to a broader array of knowledge than those
who are connected to a cohesive one [24]. Actors who are in a position of bridging structural holes
or gaps between alters, have opportunities to access and assimilate different streams of knowledge
and, thus, are likely to play a key role in creating novel ideas [25]. Therefore, the presence of structural
holes in a collaboration network indicates that collaboration occurs among R and D personnel with
different knowledge backgrounds, providing a greater opportunity for knowledge brokerage that can
bring together more diverse knowledge streams and lead to richer contents [26].

Structural hole is also related to information efficiency. In frequent and intense interaction
among actors that forms a dense communication structure, much of the information circulating in the
system is redundant. Contrastingly, an inventor who spans a structural hole, benefits by brokering
and controlling the flow of information between unconnected inventors who have not previously
collaborated. Such an inventor is in a position of control since she or he is the only one connected to
the other actors in an efficient way, which economizes on the number of ties. This means that inventors
who value speed in their search for knowledge have to rely on the focal inventor. Consequently, the
presence of structural holes in a collaboration network implies that diverse and non-overlapping
knowledge is shared, and knowledge exchange occurs efficiently around the inventors who play the
role of knowledge brokers, which results in greater creativity and productivity. This leads to the
following hypothesis:

H1: All other things being equal, the presence of structural hole in an inventor collaboration network
will be positively associated with creating knowledge with a future impact.

2.2. Strength of Ties

The structural hole perspective focuses on the benefits of transferring and assimilating diverse
knowledge (example, [27]) but does not address the problematic nature of such transfers. Presumably,
people at opposite ends of a structural hole may have less experience than that of co-workers, which
can impede knowledge transfer. On the contrary, individuals who communicate with others frequently
or who have a strong emotional attachment to others are more likely to share knowledge than those
who communicate infrequently or who are not emotionally attached [28]. As an example, frequent
communication can be more effective through the development of relationship-specific heuristics [29].

This view, known as a closure view on social capital [30], focuses on the risks associated with
incomplete information in the presence of structural holes. Specifically, closure in a collaboration
network is argued to affect easy access to information, and to facilitate sanctions that make it less
risky for people in the network to trust each other. Research adopting this view have inferred the
network effect on knowledge transfer from the association between tie strength and knowledge
transfer [29,31-33]. They primarily focus on how the social dynamics within two-way interactions
(example, reciprocity, and commitment) influence knowledge transfer. The effect of tie strength on
knowledge transfer is also believed to facilitate the transfer of tacit knowledge [28,33]. Hansen [33]
argued that strong ties promote the transfer of complex knowledge than weak ties [29,33,34], because
they are more likely be embedded in a dense web of trustworthy relationships [11,20].

The closure and structural hole views have striking parallels in the literature on social capital.
Such disagreement originates from a lack of distinction between strong (weak) ties and a dense
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(sparse) network in the process of operationalization. In fact, research adopting the closure view
usually assumes that a dense network represents social cohesion in which most members communicate
frequently. Strong ties and social cohesion can be structurally correlated, but it is a mistake to equate
their effects because they are conceptually distinct. Burt [35] made a clear conceptual separation
between the strength and density of ties. It is very important to acknowledge this, since it is conceivable
that sparse ties may be strong, and dense ties may be weak [28]. Specifically, a strong tie can occur in
both a cohesive group or in a sparse group [35,36]. Therefore, only by investigating tie strength and
cohesion simultaneously, is it possible to dissolve the disagreement.

In this study, we clearly distinguish between tie strength and network closure. The former is
related to frequency, depth, or duration of collaboration within a pair of partners, while the latter is
associated with a degree or density of overall connectivity; the former then needs to be observed at the
dyadic level, but the latter at the network level. By separating them, the following hypothesis does not
contradict, but complement, the previous hypothesis:

H?2: All other things being equal, an inventor collaboration network with many strong ties will be
positively associated with creating knowledge with a future impact.

2.3. Centralization

The third hypothesis developed in this study is about the effects of network centralization.
In social network theories, researchers have used the concept of centrality to indicate the status,
power, and social capital captured by the location of an actor in a network [37-39]. Unlike centrality,
centralization is a network-level measure that examines the extent to which a whole network has a
centralized structure. Centralization can tell us whether a network, as a whole, is organized around its
most central points.

Centralization is related to cohesion, but provides more information than cohesion. In effect,
the concepts of cohesion and centralization refer to the differing aspects of the overall “compactness”
of a network. Cohesion describes the density of connections within a network, while centralization
describes the extent to which such dense connections are organized around particular focal points.
Centralization and cohesion, therefore, are important complementary measures.

As a result, in highly-centralized networks, there are a few clusters of inventors that form a
strongly cohesive relationship. Research has examined the effect of such central groups on others
within the same organization [38,40-42]. Centrality is often perceived as a signal of quality [41]; as a
result, central groups of inventors create an attraction for their knowledge to be selected by others in
their own inventive activities. Additionally, central groups have a topological advantage in that they
have greater access to other parts of the network than less centralized ones. The expanding effects of a
few central groups may weaken the activities of those that are local and independent, which mitigate a
firm’s capability to diversify its technology base and R and D portfolio.

In the innovation literature, the capability of technological diversification has been considered
as a critical dimension for impactful innovation creation of many R and D organizations [43—46].
Since many innovations are designed to solve unrelated problems, companies that are more
technologically-diversified, capture more opportunities and technical possibilities; as a result, they
benefit largely from their own research activities [47]. Organizational learning theory also suggests the
benefits of a diverse knowledge base. One such benefit is technological diversification that may play a
preventive role against core rigidities [48], by generating and renovating technological trajectories, and
taking advantage of cross-fertilization effects between different technologies [49,50].

Many empirical studies have provided evidence supporting these arguments. Ahuja and
Lampert [7] demonstrate that, for the chemical industry, experimenting with diverse emerging
technologies is a way for organizations to overcome core rigidities, and is associated with the
subsequent number of inventions. Katila and Ahuja [51] also reports empirical evidence from the
robotics industry, which shows that there is a linear and positive relationship between technological
search scope and product innovation. A study by Nicholls-Nixon and Woo [52] examines the



Sustainability 2016, 8, 295 5 of 25

relationship between the breadth of technological knowledge and technical output (number of
products and patents) in a sample of established pharmaceutical companies. Recently, Nesta and
Saviotti [53] state that the scope and coherence of the knowledge base contribute positively to
innovation performance, which is estimated by the number of patent applications.

Based on this review, we hypothesize that a highly centralized organization of R and D activities
hampers technological diversification, which leads to a weaker performance of knowledge creation.
This leads to the next hypothesis:

H3: All other things being equal, highly centralized organization of R and D activities will be
negatively associated with creating knowledge with a future impact.

2.4. Additional Test: Interaction Effects

The hypotheses we have developed so far assume that each network mechanism operates
independently. However, since we captured the three factors from a single network, it is likely
that they are structurally correlated and, thereby, operate interactively. Given the complexity of
interactions among the network factors, it is not easily predictable whether one network mechanism
boosts or weakens the others. A test for interaction effects between tie strength and two other factors
is particularly meaningful in that if we find significant interaction effects among them, this proves
that the effects of these factors have distinguishable network mechanisms and that they need to be
treated separately. For instance, it is possible that the effects of strong ties diminish as the density of a
network increases or the network becomes more centralized. Although we hypothesize that connection
strength, itself, will be positively associated with performance, when both clustering coefficient and
connection strength are high, the collaboration network becomes exceedingly cohesive, which has
negative effects on performance. In this situation, the strong connections at the dyadic level may
aggravate the negative effects of cohesive structure at the network level rather than compensate the
effects depending on the topological structure of collaboration networks. Similarly, although we
hypothesize that decentralized collaboration networks have a positive effect on innovation outputs, if
a collaboration network has many strong ties, the effects of decentralization may have diminishing
returns on performance. This leads to the following hypothesis:

H4: All other things being equal, the network factors will interact with each other as they affect the
firm’s capability of creating impactful knowledge.

3. Research Methodology

3.1. Research Sample

The research sample is constructed by using the patent database recently developed by Li et al. [54].
Unlike the original United States Patent and Trademark Office (USPTO) database, the patent database
by Li et al., includes unique inventor identifiers for patents granted from 1975 through 2010. For each
firm, which is identified by a unique assignee code in the inventor database, we first construct a
two-mode network consisting of two types of nodes, its patents and inventors. Following this, the
two-mode network is converted into a one-mode network of inventors, as shown in Figure 1. The nodes
of the converted network are distinct inventors, and there is a link between two different inventor
nodes, if they have filed at least one patent together within a given time window. Note that each link
may have a value if the pair of inventors has filed more than one patent jointly.

Each co-invention network represents a firm-year observation. Each network changes over time as
a firm’s patent stock accumulates. Time is needed for a co-invention network to grow to a meaningful
size, so that network analysis can be applied; as a result, it is necessary to set a sufficient time window
to obtain a single firm-level observation. In this study, a four-year time window has been set for
each network following Rappa and Garud (1992) [55]. More specifically, for each firm, co-invention
networks are constructed every four years by using patents granted within the last four years from the
end of the previous time window.
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Figure 1. Construction of a co-invention network. (a) Patent-Inventor Network (2-mode Network);
(b) Co-invention Network (1-mode Network).

The sample firms are selected by the following procedure. We first counted the total number of
patents of each firm during the total time window (35 years) and selected 500 firms in order of patent
counts. Then we built their co-invention networks and again sorted them in order of edge counts in the
networks. By examining the individual firm networks we excluded firms that have not filed patents at
least one year during the total time window. Specifically, a firm is included in the sample only when
the firm has a record of filing patents every year, which means that every firm in the sample has filed
at least one patent during the total time window. By doing this, we intend to narrow our focus on
firms whose propensity to patent is persistent during the sample period, and that have a sufficient size
for an R and D organization. In this way, we finally selected 50 firms that have filed patents more than
one patent during 1991-2010. Since we consider five time windows for each firm during the 20-year
period, the research sample consists of 250 observations. Information on the sample firms has been
included in Appendix A. The sample firms have filed 669,332 patents, which account for 21.4% of the
total patents during the period.

3.2. Construction of Measures

3.2.1. Dependent Variable: Patent Citations

The output quality of an R and D organization is measured by the forward citations that its
patents stock have received by subsequent inventions until 2010. Patent citations have been considered
as excellent measures for technological impact and performance [39,56,57]. We use the total number of
citations a patent receives from the time it is granted until the end of 2010 as an indicator of its impact
on future knowledge creation. These citations are received from the entire universe of patents, which
includes a sample of more than 4,000,000 patents used in this study.

3.2.2. Measures for Structural Holes: Average Degree and Clustering Coefficient

The size of structural holes is measured by average degree and clustering coefficient, which are,
in fact, measures for network cohesion. We associate network cohesion with dense connectivity among
inventors; as a result, network cohesion is opposite to a structural hole. Thus, more cohesive networks
spanned fewer structural holes, so a firm’s performance should have a negative association with
cohesion according to H1. A popular measure for cohesion is network density, which indicates directly
how densely inventors are connected each other. However, network density has a scale problem, in
that it underestimates cohesion when a network size is too large. To overcome this problem, average
degree is usually considered as a substitute measure of cohesion. Since the average degree does not
depend on network size, network cohesion can be compared to the networks of different sizes ([58],
p- 74). Clustering coefficient is calculated at both the network level (global) and the node level (local).
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A global clustering coefficient represents the number of closed triplets (complete triangles) over the
total number of triplets. The local clustering coefficient [59] is given by the proportion of links between
nodes within a focal node’s neighborhood divided by the maximum number of links that could exist
among them. In this study, we combine the two clustering coefficients into one index by using a
principal component analysis.

3.2.3. Measures for Centralization: Weighted Degree Centralization, Number of Components, and
Component Concentration

Centralization is a macro-level characteristic of a network, which is calculated by using each
node’s centrality, a node-level characteristic. Centralization indicates how unequal the distribution
of node centrality is in a network, or how much variance there is in the distribution of centrality in a
network. There are as many centralization measures as centrality measures. This study considers only
degree centralization. Note that we use weighted degree centralization (WDC) since a co-invention
network is a valued one. To calculate a WDC index, we first calculate the sum of the differences in
degree centrality between the most central actor, A, and all the other actors in the network. The sum
is then divided by its maximum under the largest possible centralization (that is, a star network).
Table 1 compares two co-invention networks with different WDC indices. At a glance, Table 1b looks
more centralized around a few inventors. However, the actual WDC index of Table 1a is greater than
Table 1b by 0.34. This is because WDC reflects the weights of links.

Table 1. Two co-invention networks with different weighted degree centralization.

(a) Firm A (1999-2002) (b) Firm B (2003-2006)

Network structure

Weighted degree centralization 0.54245058 0.20736274
Component concentration 0.50937952 0.59501442

# components 182 119

# inventors 1443 1851

Another important measure for centralization is the number of components. Components
represent a part of a network (that is, a sub-network) that is connected within, but disconnected
from other parts of a network. If a firm’s co-invention network has many components, this means that
its R and D is conducted by many independent groups of inventors.

The number of components does not take into account the differences in component sizes.
Given networks with the same number of components, the distribution of component sizes in each
network may vary significantly. Some networks may have a giant component and many small-sized
components, while others only have many components of a similar size. The former may be considered
centralized in that many inventors are connected to form a giant component. However, the network
can also be considered decentralized, because many small components conduct R and D activities
independent of the inventors in the largest component. To quantify this difference we use component
concentration, which is represented by Herfindahl-Hirschman index (HHI) for the number of inventors
in the components.

Given the number of components #, and the number of inventors I, in a co-invention network,
component concentration is calculated as follows:
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n

HHI = ) (Ci/I)? 1
1

In the Equation (1), C; represents the number of inventors in the i" component. The lower
component concentration implies that inventors are more evenly distributed over components in
the network. Contrastingly, if inventors are connected in a few large components within a network,
then component concentration becomes close to 1. In Table 2, the network in Table 2b has more
components, but its component concentration is smaller than the network in Table 2a in which there is

a giant component.

Table 2. Two co-invention networks with different component concentrations.

(a) Firm A (1999-2002) (b) Firm B (2003-2006)

Network structure

Weighted Degree Centralization 0.25821562 0.22665832
Component concentration 0.62155889 0.34233211

# components 129 225

# inventors 1867 1329

3.2.4. Measure for Strength of Ties: The Ratio of Dyads with Multiple Links

Tie strength represents frequency, depth, and duration of the collaboration, and is measured by
the number of patents that two inventors have co-invented. Since tie strength is a value for each
dyad, it needs to be converted into a firm or network level index. We consider the ratio of dyads
with multiple links (that is, links having weight larger than 1) to the total number of links in a given
network. Specifically, it is calculated as follows:

The Number of Valued (Weighted) Edges
The Number of Total Edges

Strength of ties = 2)

3.2.5. Control Variables

To remove truncation effects due to different time horizons, we include period as a control variable.
As noted earlier, each period variable represents a four-year time window. For instance, period one
refers to the period from 1991 to 1995. The difference in propensity to patent, according to industry, also
needs to be controlled. We include an industry control that has one of the following six values based
on SIC classification codes: (1) construction; (2) manufacturing; (3) transportation, communication,
electric, gas, and sanitary services; (4) wholesale trade; (5) financial, insurance, and real estate; and
(6) services. Finally, we control for the effects of firm size by including the number of inventors and
patents as control variables.

4. Results

4.1. Descriptive Analysis

Descriptive statistics of variables along with a correlation matrix are presented in Table 3 below.
Each # Symbol in our paper means the number of variable (e.g., (9) in Table 3 is the number of patents).
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Table 3. Descriptive statistics and correlation matrix.

Variable Mean St. Dev. Min Max 1) ) 3) () (5) (6) (7) 8) 9)
(1)  Patentcitations 20,2347  26,650.1 2 192,870 1 —0.256*  —0.009 0.138 * —0.122 0.391 ** 0.116 0.491 ** 0.483 **
@) Clustering 0 1 2693 3553  —0.256* 1 ~0380*  —0516*  —0288*  —0.045  —0.637*  —0225%*  _0402*
coefficient
(3)  Average degree 458 1.68 1.143 10 0009  —0.380 ** 1 0.437 ** 0340  —0225*  0.766* 0.191 ** 0.145 *
(4)  Strength of ties 0.276 0.09 0 0.75 0.138*  —0516*  0.437* 1 0.545 ** ~0.088 0.551 ** 0.089 0.261 **
(5) Weigheddegree )\, 0.094 0002 0557 0122 —0.288*  0.340* 0.545 ** 1 ~0403*  0385*  —0320*  —0.179*
centralization
(6)  #components  501.652  466.634 2 2794 0.391~ —0.045  —0225*  —0.088  —0.403* 1 —0179%  0.722% 0.718 **
%) Component 0.278 0.202 0.001 0.749 0.116 —0.637% 0766 * 0.551 ** 0385%  —0.179* 1 0.236 ** 0.272 **
concentration
®) # inventors 2617.23 2452117 5 14,824  0491*  —0225%  (0.191* 0.089 0320 0.722% 0.236 ** 1 0.921 **
©) # patents 2677.33  2648.071 4 16338  0483*  —0402*  0.145* 0261  —0.179*  0.718* 0.272 0.921 ** 1

Note: *p <0.5;* p <0.01.
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The table shows that an average co-invention network has about 2600 inventors, and they file
a similar number of patents. The average degree is 4.58, which means that, on average, an inventor
collaborates with about 4.58 inventors. Notably, an average network has about 500 components,
implying that each component has about only 5-6 nodes on average. If we consider that component
concentration is rarely zero, most components would have an even smaller size. Finally, the ratio
of multi-valued edges is about 27.6% on average, which suggests that repeated collaboration is an
unusual event. Remarkably, the variables of network centralization have a much larger variation than
an average degree or connection strength. This suggests that network centralization is a more effective
factor that explains the differences in collaboration structures.

4.2. Estimation Result

The proposed hypotheses are tested by using negative binomial regression with time-dummies.
The dependent variable of citation counts takes on only whole number values. The use of a linear regression
model on such data can yield inefficient, inconsistent, and biased coefficient estimates. These data, like most
count data, exhibit over-dispersion—the variance is greater than the mean. Negative binomial regressions
explicitly accommodate this over-dispersion by enabling the variance to be greater than the mean.

We use a time-fixed effect estimation model without firm dummies, unlike typical fixed effects
estimations. Fixed effects estimation with firm dummies uses only within-firm differences (which have been
pooled in our case), essentially discarding information about differences between firms. In our application
where the within-firm variation is small relative to the between-firm variation, use of a negative binomial
model with only time-dummies is more suitable. Moreover, patenting behavior (thus, patent citations) is
often affected by unobserved time-related factors (which are universally affecting firms) like macro-economic,
sociological, or technological situations (e.g., IT bubbles in the late 1990s). By adding time-dummies only,
we can estimate between-firm variation by controlling such unobserved time-related factors.

Table 4 displays the regression results, where patent citations are regressed on variables for
co-invention network structures. Model 1 contains only the control variables. In the model, the negative
coefficients on period dummies show that truncation effects are effectively controlled. Remarkably,
industry dummies do not have significant effects on patent citations, implying that our sample shows
a consistent patenting behavior regardless of industry type.

Models 2 through 7 test the effects of independent variables individually. At first, the signs on
the clustering coefficient and average degree all have negative signs, but the effect of density is not
significant. However, in Models 8, 9, and 10, in which the effects of other variables are controlled
for, the two cohesion variables show negative and significant coefficients. Specifically, clustering and
density, which are associated with network cohesion, have a negative effect on creating inventions with
future impact. This offers support for H1, implying that a firm’s R and D performance is negatively
associated with the extent to which collaboration among inventors forms a dense or cohesive network
structure. Consequently, the presence of structural holes in a collaboration network is associated with
a much higher innovation performance than those in a dense collaboration structure.

Second, Model 4 shows that strength of ties has positive and significant effects on forward citation
frequency. The effect of tie strength is relatively strong and consistent throughout all models (in
Models 8 through 10) in which it is included. This offers support for H2, suggesting that frequent
and repetitive collaboration between previous partners can significantly improve the likelihood of
inventing patents with many citations. Specifically, once a collaboration relationship is established
between a particular pair of inventors, this needs to be sustained in the subsequent projects instead of
exploring and establishing a new partnership with other partners.

The findings so far support both the structural hole and closure perspectives, as they are
operationalized in our terms and methods. The findings clearly show that tie strength and cohesive
connectivity have distinct effects (example, [28]). Cohesiveness represents redundancy and inefficiency
of knowledge acquisition, which has a negative performance implication, while tie strength reduces
coordination costs and facilitates the transfer of complex knowledge.
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Table 4. Negative binomial regression results (A sensitivity test for different time-windows is provided in Appendix B).
Dependent Variable:
Patent Citations
@ (2) 3) 4) (5) (6) (7) 8) ) (10)
Clustering coefficient —0.374 —0814™ —0.779 "
5 (0.050) (0.057) (0.057)
Average degree —0.042 —0.240 *** —0.065 *
gedes (0.028) (0.043) (0.039)
Streneth of ties 1.394 ** 2.919 *** 4.430 *** 3.224 ***
& (0.569) (0.608) (0.688) (0.612)
Weighed degree —0.782 —2.469 *** —1.453* 2378 ***
centralization (0.531) (0.539) (0.609) (0.540)
# components 0.0003 * 0.001 *** 0.0071 *** 0.0005 ***
P (0.0001) (0.0001) (0.0002) (0.0002)
Component concentration 0.254 —1.789 " 1.865 —1.391 "
P (0.240) (0.333) (0.374) (0.381)
Period 1995-1998 0.050 0.014 0.067 0.013 0.050 0.055 0.034 0.008 —0.064 0.009
(0.137) (0.129) (0.138) (0.136) (0.137) (0.137) (0.138) (0.113) (0.128) (0.114)
Period 1999-2002 —0.248 * —0.303 ** —0.213 —0.304 ** —0.239* —0.233* —-0.270 * —0.281 ** —0.318 ** —0.272 **
(0.140) (0.132) (0.141) (0.139) (0.139) (0.139) (0.140) (0.116) (0.132) (0.117)
. —1.296 *** —1.330 *** —1.253 *** —1.346 *** —1.297 *** —1.293 *** —1.320 *** —1.335 *** —1.363 *** —1.312 ***
Period 2003-2006 (0.141) (0.133) (0.144) (0.140) (0.141) (0.140) (0.142) (0.118) (0.136) (0.121)
Period 2007-2010 —3.558 *** —3.557 *#** —3.519 *** —3.589 *** —3.561 *** —3.561 *** —3.577 *** —3.469 *** —3.536 *** —3.439 ***
(0.141) (0.133) (0.145) (0.140) (0.141) (0.141) (0.142) (0.117) (0.138) (0.123)
Industry (1) Construction —0.394 —0.326 —0.432 —0.384 —0.407 —0.416 —0.350 —0.569 ** —0.300 —0.556 **
y (0.277) (0.261) (0.277) (0.275) (0.277) (0.276) (0.280) (0.232) (0.261) (0.231)
Industry (2) Manufacturin —0.249 —0.293 * —0.236 —0.282 * —-0.212 —0.286 * —0.246 —0.522 *** —0.334 ** —0.498 ***
y 8 (0.165) (0.155) (0.165) (0.165) (0.166) (0.167) (0.164) (0.143) (0.164) (0.145)
Industry (3) Transportation 0.293 0.401 ** 0.280 0.295 * 0.305 * 0.246 0.320 * 0.237 0.311* 0.256 *
y P (0.179) (0.168) (0.178) (0.177) (0.178) (0.180) (0.180) (0.150) (0.170) (0.151)
Industry (4) —0.261 —0.222 —0.237 —0.357 * —0.234 —0.281 —0.267 —0.338 ** —0.501 *** —0.337 **
Wholesale trade (0.185) (0.174) (0.185) (0.187) (0.187) (0.186) (0.185) (0.159) (0.179) (0.159)
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Table 4. Cont.

Dependent Variable:

Patent Citations

1) (2) (3) 4) (5) (6) (7) (8) 9) (10)

Industry (5) Financial efc —0.116 ~0.095 —0.131 0.018 —0.153 —0.126 —0.124 0.160 0.075 0.158
Sty clat et (0.270) (0.254) (0.269) (0.273) (0.270) (0.269) (0.270) (0.229) (0.257) (0.228)
Industry (6) Servi ~0.235 —0.214 ~0.189 —0.286 * ~0.202 —0.241 —0.264 * ~0.137 —0.397 ** ~0.132
ustry (o) services (0.151) (0.142) (0.155) (0.151) (0.154) (0.152) (0.154) (0.137) (0.156) (0.138)

¢ invent 0.00001 0.0002 *** 0.00002 0.0001 —0.00003 —0.00001 0.00001 0.0003 *** 0.0001*  0.0003 **
mnventors (0.00005) (0.00005) (0.00005) (0.0001) (0.0001) (0.00005) (0.00005) (0.0001) (0.0001) (0.0001)

4 oatents 0.0003 *** 0.0002 *** 0.0003 *** 0.0003 *** 0.0004 ** 0.0003 *** 0.0003 *# —0.0001 0.0001 —0.0001 *

P (0.00004) (0.00005) (0.00004) (0.00005) (0.00005) (0.00004) (0.00004) (0.00005) (0.0001) (0.0001)
Constant 9.583 *** 9.682 *** 9.721 *** 9.278 *** 9.645 *** 9.581 *** 9.539 *** 9.773 *** 9242+ 9.83] ***
onstan (0.188) (0.178) (0.205) (0.225) (0.191) (0.187) (0.192) (0.197) (0.222) (0.204)

Log Likelihood —2518477  -2500.825  —2517.558  —2516240  -2517.329  —2516.957  —2517.954  —2461589  —2494580  —2460.746
thet 2.128 *** 2.411 *** 2.142 *** 2.162 *** 2.145 *** 2.151 *** 2.136 *** 3.198 *** 2520 3216 %
et (0.179) (0.204) (0.180) (0.182) (0.180) (0.181) (0.179) (0.275) (0.214) (0.276)

Akaike Inf. Crit. 5062.953 5029.650 5063.115 5060.480 5062.657 5061.915 5063.908 4959.178 5025159  4959.492

Note: *p<0.1;* p<0.05; ***p <0.01.
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Finally, Models 5, 6, and 7 through 10 show the effects of three variables representing network
centralization, which are WDC, number of components, and component concentration. They have
an insignificant or marginally significant effect on forward citations in the models in which they
are considered individually. However, when other variables are included together as in Models 8
through 10 (that is, the effects of structural holes and tie strength are controlled), the coefficients
of all three centralization variables become significant. The sign of each variable offers consistent
support for H3, suggesting that a centralized structure of R and D collaboration has a negative effect
on the impact of inventions. Both WDC and component concentration that directly measure the extent
of network centralization, have significant and negative coefficients. On the contrary, the number
of components, which is a measure associated with decentralization, has a positive and significant
coefficient. Specifically, an R and D output has a weaker impact when there are highly centralized
groups of collaborating inventors. Contrastingly, the impact of the output increases with the number of
isolated groups. Supporting this interpretation, the coefficient of component concentration is significant
and positive, suggesting that when inventors are distributed evenly in many sub-networks of a similar
size, the overall performance of collaboration becomes much greater. Such a decentralized organization
of an R and D collaboration indicates that there are no leading groups that manage and control overall
inventive processes, and that inventors do not rely on particular groups of inventors. Rather, in
decentralized organizations, inventive activities are performed by various independent groups of
inventors and those independent groups are likely to have distinct expertise, and to proceed with their
own agenda, independent of interventions from central inventor groups. In sum, the findings so far
consistently support H1, H2, and H3, which suggest that while cohesive and centralized collaboration
structure is not desirable, frequent and repetitive collaboration between existing co-workers can
enhance patent quality.

4.3. Interaction Effects

Table 5 displays the results of the negative binomial regression models containing interaction
terms between each pair of network variables. In Model 11, it is found that WDC and clustering
coefficient have a negative interaction effect, as expected. The fact that both variables have negative
effects on performance, it can be naturally expected that one will boost the effect of the other. In Model
12, the interaction effect between WDC and connection strength is tested. The coefficient is significant
and positive, suggesting that connection strength, which has a positive effect on performance, also
alleviates the negative effect of a centralized collaboration structure. Finally, Model 13 tests the interaction
effect between the clustering coefficient and connection strength, and displays the result that connection
strength reinforces the negative effects of a cohesive structure. Although connection strength itself is
positively associated with performance, when both clustering coefficient and connection strength are high,
the collaboration network becomes exceedingly cohesive, which has negative effects on performance.
In consequence, the positive effects of connection strength may not be found depending on the topological
structure of collaboration networks. The previous findings show that in centralized collaboration networks,
strong connections can enhance performance. However, if a collaboration network is already cohesive, the
existence of many strong ties in the network may have an adverse effect on performance.

Table 5. Negative binomial regression results: Interaction effects.

Dependent Variable:
Patent Citations
11 (12) 13) (14)
Clustering coefficient —4792T 4787 —2.988 —0.745
(0.552) (1.263) (0.534) (1.893)

—0.475**  —0.781**  —0.567 ***  —0.604 ***

Average degree (0.072) (0.059) (0.087) (0.149)
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Dependent Variable:
Patent Citations
(11) (12) (13) (14)
. —0.067 * —0.053 —0.061 0.136
Strength of ties (0.037) (0.041) (0.039) (0.149)
. . 3.729 *** 2.486 *** 3.540 *** 3.254
Weighed degree centralization (0.600) (0.807) (0.676) (2.037)
# component 0.001 *** 0.0005 *** 0.001 *** 0.002 ***
components (0.0001)  (0.0002) (0.0002) (0.0004)
Component concentration ~0.733* —L312 A4l ~2.024
P (0.379) (0.381) (0.380) (1.438)
. —2.169 *** —4.554 ***
WDC : Component concentration (0.266) (0.708)
. 6.333 ** —10.489 **
WDC : Strength of ties (2.909) (4.263)
. . —1.027 *** 2.058 ***
Component concentration: Strength of ties (0.241) (0.551)
. —0.052 0.001 —-0.014 —0.121
Period 1995-1998 (0.105) (0.113) (0.112) (0.098)
. —0.367 ***  —0.296 ** —0.303 ***  —0.476 ***
Period 1999-2002 (0.108) (0.116) (0.115) (0.103)
. —1.349 **  —1.315** 1324 **  _—1.467**
Period 2003-2006 (0.111) (0.120) (0.118) (0.106)
. —3.483 ***+ 3457 **  _3455**  —3.606 ***
Period 20072010 (0.113) (0.122) (0.120) (0.108)
. —0.424 ** —0.526 ** —0.498 ** —0.490 **
Industry (1) Construction (0.213) (0.229) (0.227) (0.201)
. —0.446 ***  —0.494**  —0.491 **  —0.474**
Industry (2) Manufacturing (0.133) (0.144) (0.142) (0.135)
. 0.321 ** 0.272* 0.258 * 0.263 *
Industry (3) Transportation (0.139) (0.150) (0.147) (0.136)
—0.396 ***  —0.334 ** —0.348 ** —0.331 **
Industry (4) Wholesale trade (0.147) (0.158) (0.157) (0.148)
. . —0.007 0.087 0.103 —0.014
Industry (5) Financial efc. (0.210) (0.231) (0.223) (0.202)
. —0.220 * —0.146 —0.163 —0.290 **
Industry (6) Services (0.128) (0.138) (0.136) (0.139)
# inventors 0.0003 ***  0.0003 *** 0.0004 *** 0.0002 ***
(0.00005)  (0.0001) (0.0001) (0.0001)
# patents —0.0001 **  —0.0001 **  —0.0002 *** 0.00003
P (0.00005)  (0.0001) (0.0001) (0.0001)
Constant 9.726 *** 10.015 *** 9.776 *** 9.264 ***
(0.191) (0.233) (0.206) (0.534)
Log Likelihood —2437.466 —2458.617  —2455.058 —2412.744
theta 3.810 *** 3.266 *** 3.355 *** 4.558 ***
(0.329) (0.281) (0.289) (0.396)
Akaike Inf. Crit. 4914.932 4957.235 4950.115 4893.487

Note: *p < 0.1; * p < 0.05; *** p < 0.01.

5. Conclusions

This study offers empirical evidence to show that each firm has a distinctive R and D collaboration
structure, which affects the firm’s R and D performance and output quality. The findings are in line
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with the extant literature on the structural hole perspective, and at the same time, provide support
for the network closure perspective, by showing the positive impact of information brokerage and
efficiency, as well as recurring and intense collaboration. More importantly, our analysis consistently
reports the benefits of a decentralized collaboration regardless of the different operationalization of
centralized structures.

Our study makes several contributions. First, this is the first attempt to examine a collaboration
structure employing a large-scale sample of uniquely identified inventors and their patents data for
more than 20 years. Second, this study clearly separates the two structural concepts, tie strength and
connectivity, from the traditional closure perspective in which a clear distinction between them has
been rarely made. The results show that these two structural concepts examine different aspects of
network mechanisms in R and D collaboration and, thus, report that their effects on organization
performance are different with firms. As claimed in Reagans and McEvily [28], our findings suggest
that structural holes are the source of value added, and strength of ties is essential to realizing the value
buried in the holes. Finally, our study employs centralization and component structures, which are
rarely found in empirical studies based on social network theories. Taking into account components
structures was required from a methodological perspective, because each observation has many
isolates or components. Component structures also help to avoid the traditional dichotomous view of
social capital, the structural hole, and closure perspectives, by complimenting the two typical network
mechanisms in relation with the output quality.

The findings provide some implications for the management of R and D organizations. From
the perspective of individual R and D personnel, it is more effective to continue and strengthen
collaboration with currently working partners than finding new ones. If they want to find new
collaboration partners, it would be beneficial to find inventors who have not been cooperating much
with others. At the organization level, managers need to identify and empower distinct groups of
collaborators to maintain the decentralization of inventive activities. They need to understand that
the excessive reliance on “superstars” may inhibit the capability of creating new inventions, and
diversifying the knowledge base. More problematically, that may reduce the incentive to focus on new
ideas and cause inventors to maintain their status by relying on the idea of a few key players or the
organizational status quo.

There are also some limitations worth noting. First, our findings are not generalizable in the
context of inter-firm R and D collaboration. Extending our research framework to the context of
inter-firm R and D alliances, it is necessary to examine inventor-level collaboration structures in which
each inventor belongs to different organizations. This is hardly considered in current studies on R and D
alliances mostly due to the lack of available data. In addition to disambiguating inventors” name in the
patent database, we need information on their affiliation. Second, like many other studies on network
structures, this study did not take into account demographic features of individual inventors. Detailed
information about inventors is typically hard to obtain [8]. If demographic information of inventors is
available, research incorporating both network structures and demographic information will provide
richer implications on the relationship among collaboration structure, individual characteristics, and
organizational performance. Finally, it is also worth noting that although measures of centralization we
used are popular, they are not perfect measures for clearly distinguishing centralized and decentralized
R and D organizations. For instance, centralization tells us only whether a network is organized around
its most central points, but they do not tell us whether these central points comprise of a distinct set
of points, which cluster together in a particular part of the network. The individual central points,
for example, may be distributed widely throughout the network, and in such cases, a measure of
centralization might not be especially informative. Although overcoming this limitation may require
new methods and wide empirical tests, reexamining the proposed hypotheses with more sophisticated
measures on centralization will be a worthwhile extension to the present study.
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Appendix A. List of Sample Firms (1991-2010)

Firm Founded # Links # Inventors # Patents # Citations
INTERNATIONAL BUSINESS MACHINES 1911 167,637 54,594 53,106 571,419
MATSUSHITA ELECTRIC INDUSTRIAL 1918 136,702 53,932 48,037 333,169
HITACHI LTD 1910 91,468 33,105 22,156 191,322
CANON KABUSHIKI KAISHA 1937 89,595 21,945 33,652 224,142
SAMSUNG ELECTRONICS CO LTD 1969 83,176 25,930 33,425 144,455
KABUSHIKI KAISHA TOSHIBA 1875 61,256 22,612 24,200 193,944
GENERAL ELECTRIC CO 1892 56,337 24,146 20,248 138,294
FUJITSU LTD 1935 54,477 24,053 22,166 146,758
MICROSOFT CORPORATION 1975 52,364 16,238 16,692 111,714
HEWLETT PACKARD COMPANY 1939 48,964 18,551 20,579 166,622
SONY CORPORATION 1946 45,787 21,361 25,569 153,434
INTEL CORPORATION 1968 45,093 15,378 18,577 156,438
MOTOROLA INC 1928 40,186 17,055 15,713 239,520
EASTMAN KODAK COMPANY 1881 36,055 11,087 14,388 105,916
MICRON TECHNOLOGY INC 1978 34,893 4422 18,587 201,065
XEROX CORPORATION 1906 34,322 10,058 11,768 126,900
HONDA GIKEN KOGYO KABUSHIKI KAISHA 1946 33,930 15,015 11,402 50,398
NEC CORPORATION 1899 33,733 16,390 22,541 161,485
BASF AKTIENGESELLSCHAFT 1865 33,651 10,413 7794 28,008
SHARP KABUSHIKI KAISHA 1912 31,048 11,481 11,566 80,433
FUJI PHOTO FILM CO LTD 1934 29,585 8872 14,104 55,910
SIEMENS AKTIENGESELLSCHAFT 1847 29,493 15,909 13,260 60,040
ROBERT BOSCH GMBH 1886 28,931 12,732 10,348 45,856
TEXAS INSTRUMENTS INCORPORATED 1930 28,748 11,184 13,085 150,345
RICOH COMPANY LTD 1936 28,629 8,924 10,052 73,649
BAYER AG 1863 27,444 8109 6622 28,504
SEIKO EPSON CORPORATION 1942 26,542 7796 12,390 53,712
3M INNOVATIVE PROPERTIES COMPANY 1902 25,702 10,443 8744 108,195
THE PROCTER GAMBLE COMPANY 1837 23,943 8784 7385 68,355
ADVANCED MICRO DEVICES INC 1969 22,720 4583 9019 93,482
LG ELECTRONICS INC 1958 19,830 6929 8645 26,866
TOYOTA JIDOSHA KABUSHIKI KAISHA 1937 19,264 8668 6836 41,132
APPLIED MATERIALS INC 1967 18,567 5292 5121 56,430
E 1 DU PONT DE NEMOURS AND COMPANY 1802 18,219 7875 7697 49,023
MERCK PATENT GMBH 1668 17,646 6422 4427 22,547
SUN MICROSYSTEMS INC 1982 17,279 6390 7579 83,501
THE REGENTS OF THE UNIVERSITY
OF CALIFORNIA 1868 16,801 11,357 6075 53,749
SANYO ELECTRIC CO LTD 1947 16,308 7291 5599 25,476
KONINKLIJKE PHILIPS ELECTRONICS N V 1891 16,114 7996 7483 19,943
AT&T CORP 1874 15,764 7389 6368 129,418
HONEYWELL INC 1906 15,454 7484 6502 32,909
TAIWAN SEMICONDUCTOR
MANUFACTURING COMPANY 1987 15,372 5834 5317 31,461
GENERAL MOTORS CORPORATION 1908 14,746 7948 6101 47,719
NOKIA CORPORATION 1865 14,350 6968 6917 42,434
FUJI XEROX CO LTD 1962 14,137 5362 4545 24,498
NISSAN MOTOR CO LTD 1933 11,676 5384 4718 30,425
MINOLTA CO LTD 1928 11,049 3383 3994 26,428
BRISTOL MYERS SQUIBB COMPANY 1887 9913 3882 2690 12,702
SUMITOMO CHEMICAL COMPANY LIMITED 1913 9255 3982 2884 9475

THE DOW CHEMICAL COMPANY 1897 7649 3369 2659 29,045
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Appendix B. Negative Binomial Regression Results for Different Time Windows

We conducted additional tests to see if changing time windows affect the regression results. In addition to the four-year time window, two additional time
windows, three- and five-year, are considered and the regression results are provided in the following tables. The results are not significantly different from the
results in the text and they still offer support of our hypotheses.

Table B1. Regression Results for Three-Year Time Window.

Negative Binomial Regression Results (Polling of Data in the Three-Year Time Window)

Dependent Variable: Patent Citations

@ 2) 3) 4) (5) (6) (7) (8) ) (10
Clustering coefficient — 1,507 —3.794 ™ —3.405
(0.363) (0.442) (0.439)
Average degree —0.063 ** —0.216 ***  —0.116 ***
(0.029) (0.042) (0.040)
Strength of ties 1.127 ** 1.945 *** 3.404 *** 2.409 ***
(0.452) (0.469) (0.495) (0.492)
Weighted degree —13.738 *** —19.018 ***  —16.861 ** —18.167 ***
centralization (1.775) (1.993) (1.939) (1.979)
# component 0.0004 ** 0.001 *** 0.001 *** 0.001 ***
(0.0002) (0.0002) (0.0002) (0.0002)
Component concentration 0.083 —0.189 2.249 0.444
(0.236) (0.344) (0.350) (0.375)
Industry (1) Construction —0.381 —0.314 —0.431* —0.383 —0.466 * —0.410 —0.366 —0.436 ** —0.305 —0.411*
(0.261) (0.258) (0.261) (0.259) (0.248) (0.260) (0.265) (0.222) (0.231) (0.221)
Industry (2) Manufacturing —0.267 * —0.281 * —0.240 —0.318 ** —0.246 * —0.308 * -0.271* —0.600 ***  —0.567 ***  —(0.579 ***
(0.155) (0.152) (0.155) (0.156) (0.147) (0.157) (0.155) (0.138) (0.145) (0.139)
Industry (3) Transportation 0.230 0.299 * 0.215 0.216 0.205 0.171 0.237 0.151 0.172 0.177
(0.168) (0.165) (0.167) (0.167) (0.159) (0.170) (0.169) (0.144) (0.150) (0.143)
Industry (4) Wholesale —0.278 —0.251 —0.252 —0.363 ** —0.200 —-0.317* —0.280 —0.376 ** —0.504 *** —0.382 **
(0.174) (0.171) (0.173) (0.176) (0.166) (0.176) (0.174) (0.154) (0.160) (0.153)
Industry (5) Financial efc. —0.108 —0.091 -0.133 0.034 —0.242 —0.108 —0.110 0.035 0.023 0.033
(0.254) (0.250) (0.253) (0.257) (0.242) (0.253) (0.254) (0.219) (0.228) (0.218)
—0.263 * —0.247 * —0.201 —0.322 ** —0.279 ** —0.278* —-0.273* —0.450 ***  —0.645 **  —(.447 ***

Industry (6) Services (0.142) (0.139) (0.145) (0.144) (0.134) (0.142) (0.145) (0.133) (0.140) (0.135)
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Negative Binomial Regression Results (Polling of Data in the Three-Year Time Window)

Dependent Variable: Patent Citations

&) @ ®) @ (5) 6 @ ®) 9 (10)
Period 19961998 0.035 0.012 0.055 —0.028 —0.037 0.048 0.030 —0208*  —0269*  —0213*
(0.142) (0.139) (0.141) (0.142) (0.135) (0.141) (0.142) (0.120) (0.125) (0.119)
Period 19999001 —0.191 —0.252 % —0.146 —0.272 % —0.255 * —0.163 —0.199  —0520%*  —0503**  —0.507 ***
(0.143) (0.141) (0.143) (0.144) (0.136) (0.142) (0.144) (0.122) (0.127) (0.122)
Period 20022004 —0.828**  —0.878**  —0780**  —0.889**  —0908**  —0.807** —0.834** —1.146**  —1052**  —1.105**
(0.144) (0.143) (0.145) (0.145) (0.137) (0.143) (0.145) (0.123) (0.129) (0.123)
Period 20052007 —2.016**  —2.052%*  —1960**  —2.096**  —2.056** —1.994**  _2022%%  _DDE5M* D209 ®*  _DDD4
(0.144) (0.142) (0.146) (0.145) (0.137) (0.144) (0.145) (0.122) (0.129) (0.123)
Period 20082010 —4.405 %% _4435%% 4385 4466  —4.505%% 4418 4429 457 _4560**  —4.550
(0.145) (0.142) (0.147) (0.144) (0.137) (0.144) (0.145) (0.123) (0.130) (0.125)
¢ inventor 0.00000 0.0001 0.00003 0.0001 —0.0001*  —0.00001 0.00000 0.0001 0.0001 * 0.0001 **
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
4 patent 0.0004**  0.0004 **  0.0004**  0.0004**  0.0005**  0.0004**  0.0004 *** 0.0001 0.0001 0.00004
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Constant 9357+ 10293 ** 9561 ** 9099 **  9909** 9354  9349% 12169 **  9779%* 12086 **
(0.181) (0.295) (0.199) (0.206) (0.188) (0.181) (0.183) (0.369) (0.208) (0.370)
Observations 300 300 300 300 300 300 300 300 300 300
Log Likelihood —2893224  —2886.954 —2891.187 —2890.627 —2873.980 —2891.297 —2893.166 —2828.017 2841271 —2825.414
theta 1997+ 2073%%  2021**  2028*%*  2232%*  2020**  1.998**  2910**  2692** 2953 %
(0.154) (0.160) (0.156) (0.156) (0.173) (0.156) (0.154) (0.228) (0.210) (0.231)
Akaike Inf. Crit. 5814.447 5803907 5812374 5811253 5777961 5812593 5816333  5694.033 5720542  5690.827

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table B2. Regression Results for Three-Year Time Window (interaction effects).

Negative Binomial Regression Results (Polling of Data in the Three-Year Time Window

Dependent Variable: Patent Citations

1) ) 3) @)
Clustert ficiont —0.321 2791 ** —3.735 *** —1372%
usterng coethcien (0.642) (0.433) (0.719) (0.751)
Averase dest —0.151 *** —0.116 *** —0.115* —0.138 %
crage degree (0.041) (0.041) (0.040) (0.042)
. 2.131 *** 1.020 1.694 ~0.520
Strength of ties (0.475) (0.683) (1.509) (1.513)
Weighted degree 18.269 *** —30.562 *** —18.036 *** 18.786 **
centralization (5.965) (3.784) (1.981) (7.631)
¢ component 0.001 *** 0.001 *** 0.001 *** 0.0004 **
P (0.0002) (0.0002) (0.0002) (0.0002)
Component 0.887 ** 0.549 0.445 0.838 **
concentration (0.384) (0.376) (0.375) (0.399)
—59.698 *** —61.241 **+*
CC:WDC ©.712) (9.460)
46.146 *** 3.461
STWDC (10.501) (10.473)
1.130 3.824 %
CCST (2.046) (2.105)
Industry (1) —0.436 ** —0.405* —0.417* —0.457 **
Construction (0.208) (0.217) (0.221) (0.207)
Industry (2) —0.556 *** —0.580 *** —0.565 *** —0.503 ***
Manufacturing (0.131) (0.137) (0.143) (0.135)
Industry (3) 0.195 0.181 0.183 0213
Transportation efc. (0.135) (0.141) (0.144) (0.135)
Industry (4) —0.388 **+ —0.407 *** —0.373* —0.355 *
Wholesale trade (0.145) (0.151) (0.156) (0.147)
Industry (5) —0.037 —0.027 0.036 —0.039
Financial etc. (0.205) (0.216) (0.218) (0.206)
Industry (6) Services —0.423 *** —0.458 ** —0.433 ** —0.372%*
y v (0.128) (0.133) (0.138) (0.130)
. 0213 * —0.188 —0.211* —0.197+*
Period 1996-1998 (0.113) (0.118) (0.120) (0.113)
. —0.468 *** —0.458 *** —0.505 ** —0.450 ***
Period 1999-2001 (0.115) (0.121) (0.122) (0.115)
. —1.065 *** —1.064 ** —1.104 % —1.057 *=*
Period 2002-2004 (0.116) (0.121) (0.123) (0.116)
. —2.160 *** —2.175 *** —0.007 2156 %
Period 2005-2007 (0.117) (0.122) (0.123) (0.117)
. —4.535 % —4.500 % —4.553 % —4.538 %
Period 2008-2010 (0.118) (0.123) (0.125) (0.117)
¢ inventor 0.0001 ** 0.0002 *** 0.0001 0.0001
(0.0001) (0.0001) (0.0001) (0.0001)
# batent 0.0001 0.00003 0.0001 0.0002 **
P (0.0001) (0.0001) (0.0001) (0.0001)
Constant 10.265 ** 11.994 = 12.286 *** 10.917 ***
(0.466) (0.380) (0.521) (0.541)
Observations 300 300 300 300
Log Likelihood —2805.317 —2819.324 —2825.308 —2803.890
thet 3.328 *** 3.054 *** 2.955 *** 3.369 ***
cta (0.262) (0.239) (0.231) (0.266)
Akaike Inf. Crit. 5652.633 5680.648 5692.615 5653.779

Note: * p < 0.1; * p < 0.05; **p < 0.01.
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Table B3. Regression Results for Five-Year Time Window.

20 of 25

Negative Binomial Regression Results (Polling of Data in the Five-Year Time Window)

Dependent Variable: Patent Citations

(1) (2) 3) 4) (5) (6) (7) ) ) (10)
Clustering coefficient —2.045 " —4.845 ™ —4.593
& (0.417) (0.536) (0.534)
Average degree —0.032 —0.172 *** —0.075*
8¢ deg (0.032) (0.049) (0.045)
. 1.026 * 2.029 *** 3.175 *#** 2.320 ***
Strength of ties (0.546) (0.588) (0.649) (0.613)
. . —11.494 *** —16.696 ***  —15.330 *** —16.318 ***
Weighted degree centralization (2.415) (2.331) (2.395) (2.322)
# component 0.0002 0.001 *** 0.001 *** 0.001 ***
P (0.0002) (0.0002) (0.0002) (0.0002)
_ *% EEs _
Component concentration 0.284 0.920 1.919 0491
(0.266) (0.414) (0.412) (0.443)
Industry (1) Construction —0.412 —0.342 —0.442 —0.409 —0.486 —0.439 —0.369 —0.548 ** —0.401 —0.542 **
y (0.309) (0.300) (0.309) (0.307) (0.299) (0.308) (0.311) (0.257) 0.277) (0.255)
Industry (2) Manufacturin —0.239 —0.217 —0.229 —0.300 —0.253 —0.278 —0.231 —0.602 *** —0.512 *** —0.576 ***
y & (0.184) (0.178) (0.184) (0.186) (0.178) (0.187) (0.184) (0.160) (0.176) (0.162)
Industry (3) Transportation efc 0.318 0.411 ** 0.306 0.296 0.300 0.261 0.351 * 0.175 0.214 0.193
y P " (0.199) (0.193) (0.199) (0.199) (0.192) (0.203) (0.200) (0.170) (0.185) (0.170)
Industry (4) Wholesale trade —0.261 —0.220 —0.241 —0.345 —0.188 —0.283 —0.265 —-0.315* —0.443 ** —0.303 *
y (0.206) (0.199) (0.206) (0.210) (0.200) (0.207) (0.206) (0.180) (0.195) (0.180)
Industry (5) Financial etc —0.092 —0.082 —0.103 0.048 —0.187 —0.092 —0.098 0.130 0.129 0.138
y ' (0.301) (0.291) (0.300) (0.306) (0.291) (0.299) (0.300) (0.259) (0.279) (0.258)
Industry (6) Services —0.203 —0.154 —-0.167 —0.262 —0.224 —0.218 —0.230 —0.289 * —0.537 *** —0.273 *
y (0.167) (0.162) (0.173) (0.171) (0.161) (0.168) (0.170) (0.153) (0.167) (0.157)
Period 1996-2000 —0.008 —0.075 0.012 —0.078 —0.037 0.007 —0.032 —0.255 ** —0.267 ** —0.253 **
(0.138) (0.134) (0.139) (0.139) (0.134) (0.137) (0.138) (0.117) (0.127) (0.117)
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Table B3. Cont.

21 of 25

Negative Binomial Regression Results (Polling of Data in the Five-Year Time Window)

Dependent Variable: Patent Citations

@ (2) 3) 4 (5) 6) 7) (®) 9 (10)
Period 20012005 —0.789 %%  _0.862%*  —0.761%*  —0.852%%*  _(0.822%*  _0776*%*  —0.812%*  _1.065**  —0.993%* 1042 %
(0.141) (0.138) (0.143) (0.143) (0.136) (0.140) (0.142) (0.120) (0.131) (0.121)
Period 20062010 —2.993%% 3044 _2065** 3060  —2.997*%  _DO8RF 3013  _3165%* 3139 3139
(0.142) (0.138) (0.146) (0.144) (0.137) (0.142) (0.143) (0.119) (0.132) (0.122)
# inventor 0.00001 0.0001 0.00001 0.0001 ~0.0001  —0.00001 0.00000 0.0001 * 0.0001 0.0001 **
(0.00005)  (0.00005)  (0.00005) (0.0001) (0.00005)  (0.00005)  (0.00005)  (0.00005) (0.0001) (0.0001)
# batent 0.0003**  0.0002**  0.0003**  0.0002**  0.003**  0.0002**  0.0003**  0.00004 0.0001 0.00003
P (0.00004)  (0.00004)  (0.00004)  (0.00004)  (0.00004)  (0.00004)  (0.00004)  (0.00004)  (0.00005)  (0.00004)
Constant 9.794 %% 10908 **  9.905%* 9521  10224%%  Q798%*  QUpgE* D75 QUS7Ek 1D g7
(0.203) (0.314) (0.227) (0.247) (0.221) (0.203) (0.211) (0.430) (0.249) (0.433)
Observations 200 200 200 200 200 200 200 200 200 200
Log Likelihood 2073957  —2066.307 —2073.502 —2072.441 —2065.733 —2072.974  —2073419 —2028.421  —2045462  —2027.365
theta 2043 %% 2202 D] 271 2303%% 2161 2153 3211%* Q757 3041
(0.201) (0.215) (0.201) (0.203) (0.217) (0.202) (0.202) (0.307) (0.262) (0.310)
Akaike Inf. Crit. 4171914 4158614  4173.004  4170.883 4157465  4171.948  4172.838  4090.841 4124925  4090.729

Note: *p<0.1;** p<0.05; **p <0.01.
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Table B4. Regression Results for Five-Year Time Window (interaction effects).

Negative Binomial Regression Results (Polling of Data in the Five-Year Time Window)

Dependent Variable: Patent Citations

@ (2) 3) 4)
Clustering ~1172 —3.902 *** —4.645 *** —1.208
coefficient (0.826) (0.536) (0.918) (0.996)
Averase desree —0.110 ** —0.068 —0.075 —0.116 **
gedes (0.046) (0.046) (0.046) (0.047)
. 1.609 *** 1.097 2.229 1.723
Strength of ties (0.591) (0.843) (1.623) (1.725)
Weighted degree 15.979 ** —27.121 **+* —16.282 *** 21.030 **
centralization (6.732) (5.045) (2.337) (9.765)
# component 0.0004 ** 0.001 *** 0.001 *** 0.0004 *
P (0.0002) (0.0002) (0.0002) (0.0002)
Component 0.363 —0.241 —0.492 0.379
concentration (0.471) (0.438) (0.443) (0.480)
—56.009 *** —59.469 ***
CGWDC (10.308) (11.377)
. 33319 * —8.618
STWDC (13.482) (13.784)
0.163 0.327
CCST (2.389) (2.422)
Industry (1) —0.518 ** —0.522 ** —0.543 —0.520 **
Construction (0.243) (0.253) (0.256) (0.243)
Industry (2) —0.507 *** —0.546 *** —0.573 *** —0.505 ***
Manufacturing (0.155) (0.161) (0.166) (0.161)
Industry (3) 0.254 0215 0.193 0.253
Transportation etc. (0.162) (0.169) 0.171) (0.164)
Industry (4) —0.298 * —0.309 * —0.303 * —0.299 *
Wholesale trade (0.172) (0.178) (0.183) (0.174)
Industry (5) 0.009 0.045 0.139 0.028
Financial etc. (0.245) (0.258) (0.258) (0.248)
Industry (6) —0.279 * —0.284 * —0.271* —0.276 *
Services (0.149) (0.155) (0.160) (0.153)
. —0.209 * —0215* —0.252 ** —0216*
Period 1996-2000 (0.111) (0.116) (0.118) (0.113)
. —0.978 *** —1.005 *** —1.042 **+ —0.983 ***
Period 2001-2005 (0.115) (0.120) (0.121) (0.116)
. —3.079 *** —3.108 *** —3.140 *** —3.084 ***
Period 2006-2010 (0.116) (0.122) (0.122) (0.117)
4 inventor 0.0001 * 0.0001 ** 0.0001 * 0.0001 *
(0.00005) (0.00005) (0.0001) (0.0001)
4 batent 0.0001 * 0.00004 0.00003 0.0001
P (0.00004) (0.00004) (0.0001) (0.0001)
Constant 10.959 *** 12.661 *** 12.834 *** 10.906 ***
onsta (0.566) (0.436) (0.604) (0.673)
Observations 200 200 200 200
Log Likelihood —2016.186 —2024.935 —2027.363 ~2016.032
theta 3.508 *++ 3.314 * 3.241 **+* 3.602 ***
(0.346) (0.317) (0.310) (0.346)
Akaike Inf. Crit. 4070.373 4087.869 4092.726 4074.063

Note:

*p<0.1;%p<0.05;*p<00l.
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