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Abstract: The spatio-temporal analysis of land use changes could provide basic information for
managing the protection, conservation and production of forestlands, which promotes a sustainable
resource use of temperate ecosystems. In this study we modeled and analyzed the spatial and
temporal dynamics of land use of a temperate forests in the region of Pueblo Nuevo, Durango,
Mexico. Data from the Landsat images Multispectral Scanner (MSS) 1973, Thematic Mapper (TM)
1990, and Operational Land Imager (OLI) 2014 were used. Supervised classification methods were
then applied to generate the land use for these years. To validate the land use classifications on
the images, the Kappa coefficient was used. The resulting Kappa coefficients were 91%, 92% and
90% for 1973, 1990 and 2014, respectively. The analysis of the change dynamics was assessed with
Markov Chains and Cellular Automata (CA), which are based on probabilistic modeling techniques.
The Markov Chains and CA show constant changes in land use. The class most affected by these
changes is the pine forest. Changes in the extent of temperate forest of the study area were further
projected until 2028, indicating that the area of pine forest could be continuously reduced. The results
of this study could provide quantitative information, which represents a base for assessing the
sustainability in the management of these temperate forest ecosystems and for taking actions to
mitigate their degradation.
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1. Introduction

During the last decade, the decrement of forest areas has come to attention because of the great
environmental impacts on the local, regional and global scales [1-3]. The population increase has
resulted in high demand for goods and services; inducing changes on the land uses to meet global
demands [4]. The forested areas of the planet cover large surfaces representing big carbon reservoirs.
However, their reduction has significantly altered the natural landscape and is one of the factors
contributing to the global climate change [5-8]. The forests of Mexico, which are also vulnerable to
climate change [9], represent a carbon store of approximately eight billion tons [10], equivalent to the
current global CO, emissions. The carbon storage capability of these forests is rapidly being lost due
to deforestation and degradation processes [11].

Temperate forests occupy the largest forest cover in Mexico, with about 32 million hectares,
equivalent to the 18% of its territory. The highest partnerships diversity between pine and oak of the
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world occurs in this region [12]. However, each year, on average, 40 thousand hectares of temperate
forest are lost. The deforestation alters biogeochemical cycles [13]. The expansion of agricultural lands,
the illegal logging and the opening of pasturelands to feed cattle on forest areas has resulted in the
fragmentation and degradation of the landscape [14]. The quantification of changes in the landscape is
important for the understanding of the spatial and structural dynamics of land use and its associated
ecological effects [15]. In this regard, it is important to understand the behavior of the areas occupied
by forests and the relationships with the abiotic factors involved in their development, distribution
and preservation [16]. To analyze the structure, function and dynamics of land use, it is necessary to
link spatial patterns with the landscape to quantify the causes and consequences of its evolution [17].

Remote sensing data represent a source of rapid acquisition of land use information, with field
supervision methods of low cost [18]. In this regard, the data from the Landsat satellite provides
images since 1972, the year of its first mission. This satellite has a worldwide coverage with
a medium spatial resolution [19]. Previous studies using information from remote sensing have been
developed multitemporal and change detection techniques to monitor the forest dynamics [20-22].
Associated with the development of remote sensing, the techniques of land use classification have been
refined through the years. One of the techniques commonly used is the maximum likelihood [23,24].
Other method of classification is object-oriented which takes groups of pixels as a unit of analysis.
These pixels represent real objects on the ground instead of pixels isolated. The method of neural
networks incorporates a multi-information model (spectral response, elevations, thematic maps)
related to the statistical distribution of the data [25,26]. In relation to the above, each method offers
some reliability in the classification of land use. The best method of classification depends on the
interest of the user to discriminate specific categories [27].

Once a classification technique is applied, the comparison and analysis of satellite images
from different dates is performed. The difference among the evaluated dates is assessed by map
algebra [28-30]. Other techniques are based on multivariate analysis through regression of images [31].
The latter method is recently one of the most widely used to predict land use through the variation
of this model [32]. However, the logistic regression models cannot quantify the change and serve
to perform the temporal analysis [33]. In this regard, the use of Markov chains (MC) and cellular
automata (CA), integrated to the spatio-temporal analysis represent an alternative to overcome these
limitations. Markov chains and CA are stochastic models that incorporate the interaction effects of
the spatial and temporal dynamics [34-36]. The Markov prediction methods can serve to analyze
the dynamic behavior of land use in a time-space pattern to provide forecasts of future changes that
can help in making decisions [37,38]. Some researchers who have applied traditional Markov models
have shown their capabilities to describe the trends in the amount of change in land use [38-41].
Even though the Markov analysis itself can not simulate and predict changes in land use, the combined
techniques between MC and CA offer the ability to analyze the spatiotemporal dynamics and also
simulate future scenarios. However, Cellular Automata require factors in defining the simulation
model of land use [39-41].

In this study, we analyzed and modeled the temporal dynamics of land use of a region of
temperate forests in the town of Pueblo Nuevo, Durango, Mexico. The traditional Markov model and
cellular automata techniques were used to forecast future changes of land use in the study area.

2. Materials and Methods

2.1. Study Area

The study area is located in the southern region of the State of Durango, in the municipality of
Pueblo Nuevo, with a surface area of 138,710 ha (Figure 1). The vegetation of this region corresponds
to a temperate forest. The most abundant forest species are: Quercus sideroxyla Humb. and Bonpl.,,
Q. durifolia V. Seem, Pinus cooperi Ornelasi, P. engelmannii Carr., P. durangensis Schl., P. leiophylla Schl. and
Cham., P. teocote Schlech and Cham., and Hardwood species such as Arbutus madrensis and A. tesselata.



Sustainability 2016, 8, 236 30f13

The herbaceous community is represented by: Bouteloua spp. and Arcthosthaphilos pungens HBK present
in open areas with some disturbance.
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Figure 1. Location of the study area, municipality of Pueblo Nuevo, Durango.

The climate of the region is temperate humid with summer rains. The air temperature oscillates
in the range of 8-26 °C and the precipitation ranges from 800 to 2000 mm. The most abundant soil
types are: Leptosol, luvisol, regosol, umbrisol, cambisol, phaeozem and fluvisol [42]. These conditions
favor the growth of pine and oak communities, which are the most dominant in the study area.

2.2. Data Collection

Landsat image data were used; the first one from the sensor Landsat Multispectral Scanner (MSS),
capture date: 4 April 1973; the second from the Landsat Thematic Mapper (TM), capture date: 26 March
1990 and the third one from the Landsat 8 (Operational Land Imager, OLI), capture date: 6 May 2014.
The information was acquired from the US Geological Survey (USGS). The data from the Landsat
MSS has four spectral bands, with a spatial resolution of 60 m; however, it was re-sampled to 30 m.
The TM sensor has seven spectral bands and its spatial resolution is 30 m. Data from the Landsat 8
has nine spectral bands with a spatial resolution of 30 m in bands 1-7 and 9, while its eighth band
(panchromatic) has a spatial resolution of 15 m. The bands from the evaluated sensors are located
in the wavelengths of the optical and infrared regions of the electromagnetic spectrum. To make a
coherent superposition of the classified images, the final resolution utilized for all of them was 30 m.
This was necessary for later analysis carried out with CA.

2.3. Data Pre-Processing

The satellite images from 1973, 1990 and 2014 were radiometrically corrected. The conversion
from digital numbers (DN’s) to reflectance values was performed with the process called top of the
atmosphere (TOA). This process is necessary to make comparisons among the images from different
dates. The radiometric conversion for the Landsat MSS and TM sensors was performed by following
the Equations (1) and (2), where the spectral radiance (L,) and the TOA reflectance (o)) were obtained:

Ly = ((Lmax, — Lminy)) / (QCALmax — QCALmin)) x (QCAL — QCALmin) + Lmin, @)

T x Ly xd?
— AT 2
A ESUN, % cosfs @
where QCAL is DN, Lmin, is the spectral radiance scales to QCALmin, Lmax, is the spectral radiance
scales to QCALmax, QCALmin is the minimum quantized calibrated pixel value, QCALmax is the
méximum quantized calibrated pixel value, d is the distance from the earth to the sun, ESUN, is the

mean solar exoatmospheric irradiance, and 6s is the solar zenith angle.
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In the case of the data from the Landsat 8, the radiometric conversion was performed by applying

the Equation (3).

p)\
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where p" is the TOA planetary reflactance, with correction for solar angle, and s is the local sun
elevation angle.

For reflectance normalization of the images from 1973 and 1990 the image from Landsat 8 was
used. This process allows to making a modification on the histograms by improving the brightness
values in the images from 1973 and 1990, taking as a reference the image from 2014. This process
allows to minimizing the spectral variations of the land use covers [43].

2.4. Image Classification

For the supervised classification, the method of maximum likelihood was used. This method
uses training areas as polygons and decision rules of maximum likelihood (Equation (4)) to classify
images. Three classified land use maps derived from the Landsat MSS 1973, the Landsat TM 1990
and the Landsat sensor OLI 2014 were obtained; one from each sensor. The three classified images
were adjusted to the same spatial resolution of 30 m. Given that the vegetation of the study area
predominantly consisted of natural temperate forests, distributed in a scarp topography, the water
harvesting takes place mainly through infiltration and runoff processes towards lower places in the
watershed. Then, the accumulation of water or the presence of water bodies in the zone was practically
null. Therefore, based on the dominance of forest species and their ecological and economical
importance in the region, the land uses classified in all the images were: Open Areas (Oa), Oak
forests (Of) and Pine forests (Pf).

§i () = Inp (i) 3 |l — 3 (e )T 2 (e my) @

where: gi = class, x = n-dimensional data (where 7 is the number of bands), p (w;) = probability that
class w; appears in the image and that is assumed for all classes, |} };| = determinant of co-variance
matrix data from class w;, and }};~! = inverse matrix, m; = vector.

2.5. Spectral Separability

The canopy structure of the plants belonging to each land use played an important role during
the discrimination process. The canopy reflectance in the infrared range (SWIR) is closely related to the
water absorption. Meanwhile, the energy dispersion is also caused by the canopy structure and by the
aerial space among the leaves [44,45]. The spectral separability was determined by the Jeffrey-Matusita
distance (JM) [46], according to Equation (5). This method includes the value of the Bathacharyya
distance (Equation (6)) [47].

M =2 (1 - e—B) )
1 , 2 1, ofo?
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(1 )012+012 2 20207
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where B is the Bhattacharyya distance, 11, m; and o1, 02 are the class means and variances, respectively.
The JM distance has values from 0 to 2. A value of 2 indicates a complete separability between two
classes and lower values indicate misclassified classes.

2.6. Classification Accuracy

The Kappa coefficient was used to validate the classifications (Equation 7) by employing
300 control points for each year, taken from the compositions of false color images. The Kappa
coefficient and the error matrix are considered as common techniques in measuring the accuracy of
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thematic maps generated by the classification process [48]. Measurements of particular categories of
classification can be verified with field data or reference data [49].

NYEX S8 (Xiy x X4)
N2 = 35 (Xip x Xy)

@)

Kappa =

where: Kappa = Kappa index, k = number of matrix files, Xii = observation number on row i and
column I (along the diagonal), X;; and X ; = total marginal for row i and column i, respectively,
N = total number of observations.

2.7. Land Use and Land Cover Change Using Markov Chain

The simulation technique used to predict the change in land use was the Markov Chains.
The Markov Chains is a stochastic process model that describes the probability of change from one
state to another, i.e., from one land use type to another, using a transition probability matrix [34-36].
The transition probability would be the probability that a land cover type (pixels) at the time ¢y changes
to another land cover type in the time ¢;. Therefore, changes in land use between the dates were used
to develop a probability transition matrix and then predict land uses for a future time. This matrix is
the result of the crossing between the images by setting a proportional error. The transition probability
maps are elaborated from the three land uses generated through the process of classification and these
are used to calculate projections of possible changes between the specified times. The mathematical
expression of the transition probability is:

M Pij=1i=12...... m ©)

P = (Pij)= P21 P12 P2m 9)
Pm1 Pn2 Pmm

where: Pij = the probability of transition from one land use to a another, m = the type of land use of the
area studied, Pij values are within the range 0-1.

The combination of Markov and Cellular Automata (CA_Markov) allows simulating the evolution
of the geographical area represented by pixels. Each pixel can take a value from a finite set of states.
All pixels are affected by a transition function that takes as arguments the measured values and
values of the neighboring pixels as a function of time. For the study area, the transition function was
determined based on the difference between 1990 and 2014. CA_Markov then used this transition
function to predict the land cover for 2028. In other words, the transition probability matrix, created
from the changes observed between 1990 and 2014, the transition probability maps of 2014 and each
scenario were used to produce maps of land use for the year 2028. In an iterative process CA_Markov
uses the transition probability maps of each land cover to establish the inherent suitability of each pixel
to change from one land use type to another. To assign a weight of suitability to the pixels that are
away from the pixel analyzed, a 5 x 5 filter (Figure 2) was used [50]. Since the probability of changes
during the years analyzed stays constant, any year after 2014 can be projected. However, projections in
the short term are more realistic than projections in the long term, so we run the simulation until 2028.
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Figure 2. 5 x 5 filter configuration used in CA Markov.

2.8. Validation of the Model

The validation of the prediction model of land use change was carried out by using the simulation
result of land use from Markov for 2014. This, with the reference map obtained from the supervised
classification process of the same year. Through the comparison of the observed and simulated values,
the model was validated. A transition matrix was generated to analyze the probability of change in
land use.

2.9. Cellular Automata (CA)

Cellular Automata is a simulation model where the space and time are discrete variables and
interactions assigned are local variables [51]. Cellular automata analysis was carried out by the module
of CA_Markov in the software Idrisi Selva. This module uses the output of the analysis of the Markov
Chain and predicts the land use for a future time. To predict the land use, the supervised classifications
for the three periods were used.

3. Results and Discussion

3.1. Spectral Serability

Table 1 shows the results of the | M distance for the land uses analyzed in this study corresponding
to the years 1973, 1990 and 2014. According to the bands processed from the Landsat sensors analyzed,
it can be observed that the fifth band of the sensors TM and OLI8 show the highest values of spectral
separability for the clases OA vs. Of, OA vs. Pf and Of vs. Pf (JM = 1.48, 1.65, 1.67). The analysis also
shows that the infrared band (band 4 in Landsat MSS; band 4 in Landsat TM; band 5 in Landsat OLIS8)
plays a key role in the discrimination of the land uses studied.

Table 1. | M distance for the land uses of Oa vs. Of, Oa vs. Pf and Of vs. Pf.

Landsat MSS Landsat TM Landsat OLI8 Band Name Oa vs. Of OA vs. Pf Of vs. Pf
1 1 2 Blue 1.33 1.39 0.88
2 2 3 Green 1.23 1.40 0.97
3 3 4 Red 1.11 1.38 1.13
4 4 5 NIR 1.45 1.46 1.65
5 6 SWIR1 1.48 1.65 1.67
7 7 SWIR2 147 148 1.52

3.2. Land Use Classification 1973, 1990 and 2014

Three types of land use were determined for the study area, as they were the most representative
of the region (Figure 3). The land use of OA was the one presenting the least spatial distribution in the
study area. Grassland areas, populated areas and scrubland areas represented this class. According
to the natural potential of the region, these areas were not significant in terms of their spatial extent,
followed by the class Of and the class Pf. The land use classification of 2014 was the one presenting
the largest errors. The estimated global precision, based on the error matrix, was 92% with a kappa
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index of 0.90. In this year, the lowest precision was presented by the class of OA, both for the producer
precision (92%) and the user precision (91%). The land use classification for the year 1990 showed
the highest precision, showing less errors in the spectral characterization of classes, and registering a
global precision of 94% with a kappa index of 0.92. For the year 1973 the global precision was 93% with
a kappa index of 0.91 (Table 2). The final global precision reached for the maps was due mainly to the
individual precision obtained for each of the three classes. All of them presented producer precisions
within the range of 91%-96% and user precisions within the range of 91%-95%.
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Figure 3. Land use/land cover maps for the years (a) 1973; (b) 1990 and (c) 2014.

Table 2. Accuracy assessment of the classified land use maps.

Classification Accuracy

Years/Classes

Producer’s Accuracy User’s Accuracy Overall Accuracy Cohen’s Kappa
(%) (%) (%)

1973 93 091
Open areas 93 91
Oak forest 94 94
Pine forest 93 93

1990 94 0.92
Open areas 93 92
Oak forest 92 91
Pine forest 96 92

2014 92 0.90
Open areas 91 91
Oak forest 93 95
Pine forest 94 94

3.3. Land Use and Land Cover Change (1973-2014)

Once the land uses were obtained through the method of supervised classification, we analyzed
the land use change dynamics. Table 3 shows the surface change dynamics in each class. From 1973
to 1990 the class of OA increased by 1437 ha, the class of Of lose 908 ha and the class of Pf lose 528
ha. The increase of the class occurred at the expense of the classes of Of and Pf. However, the most
important change dynamics occurred during the last 24 years of the period analyzed (1990-2014).
The class of Pf showed the biggest loss with 4600 ha. During this period the classes of Of and OA
increased by 1928 ha and 2621 ha, respectively (Figure 4).
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Table 3. Areas (ha), percentages and changes of land use for the years 1973, 1990 and 2014.

Area (in ha) and Percentages (%) Changes (in ha)
Land Use 1973 1990 2014
1973-1990 1990-2014
Area % Area % Area %
Open areas land 18,304.57 13.20 19,742.13 1423 22,363.47 16.12 —1437.56 —2621.34
Oak Forest land 29,327.24 21.14 28,41846 2049 30,397.13 2191 908.78 —1978.67
Pine Forestland  91,078.73 65.66 90,549.94 6528 8594994 61.96 528.79 4600
70
741973 [L01990  EE 2014
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Figure 4. Percentage of area occupied by each land use in 1973, 1990 and 2014.

The temporal land use changes during the period analyzed (1973-2014) are shown in Figure 5.
The land use change in the region resulted in a steady loss of Pf, represented by a decrement of 5128.79
ha. In contrast, the classes of OA and Of increased by 4059 ha and 1070 ha, respectively. These changes
could be attributed to the wood harvesting that takes place in the region. This activity is perhaps one
of the main factors that impact the sustainability of the temperate forests of the region and threatens

the communities living in such forest [52-54].
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Figure 5. Changes in Land uses between 1973 and 2014: (a) Open areas; (b) Oak forest and

(c) Pine forest.

3.4. Validation of Land use Change Projection

For the model validation, we compared the simulated land use areas by Markov Chains with
the actual ones. The results are shown in Table 4, in which three land use types presented relative
errors lower than 4%. The best agreement was shown by the pine forest type, where the actual area is
85,949.9 ha, while the corresponding simulated area is 85,732.41 ha. Thus, the developed Markov model
is verified to effectively predict area change of land use in the future. Meanwhile, the Markov—Cellular
Automata’s overall simulation success was 96.12% in 2014. In addition, the kappa coefficient was
determined to be 0.92, also showing a high precision. Therefore, the Markov—CA model can be used to
forecast the spatial distribution of land use in the future.
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Table 4. Comparison of land use in 2014 generated by supervised classification processes against
predicted by Markov techniques and CA.

Observed 14 Predictor 14
Land Use
Area (ha) Total Area (%) Area (ha) Total Area (%)
Open areas 22,363.44 16 21,988.89 16
Oak forest 30,397.13 22 30,989.21 22
Pine forest 85,949.94 62 85,732.41 62

3.5. Land Use Change Projection

The land use was projected using Markov’s transition probability matrices (Table 5). A transition
matrix summarizes the dynamics of each land use. The results show how the class of OA expanded
at the expense of the classes of Pf and Of. The most significant changes occurred during the period
1990-2014, where the class of Pf had the highest loss with 4600 ha. The probability of change in this
category was 42%, compared to 54% for the period 1973-1990. In the last period studied, the classes of
OA and Of increased its surface area in 2621 and 1978 ha, respectively. The transition matrix showed
values from 25% to 30% for this same period, whereas for the period of 1973-1990 the values were 18%
and 27%. The loss of Pf area during the evaluated period reveals some level of degradation of these
ecosystems, which reduces the environmental sustainability of these forests. The changes were mainly
caused by wood harvesting, as well as construction of roads and power lines [55-57].

Table 5. Transition probability matrices of land use changes for three periods (%).

Pine Forest Oak Forest Open Areas

1973-1990

Pine forest 0.543 0.167 0.289
Oak forest 0.187 0.315 0.498
Open areas 0.276 0.204 0.519
1990-2014

Pine forest 0.422 0.208 0.369
Oak forest 0.308 0.294 0.398
Open areas 0.255 0.289 0.456
2014-2028

Pine forest 0.379 0.229 0.392
Oak forest 0.399 0.246 0.354
Open areas 0.252 0.294 0.453

The land use projection for the year 2028 was based on the transition probability matrices.
Figure 6 shows the spatial distribution of the land use classes for 2028. According to the transition
matrix presented in Table 4, the class of OA will continue to increase its area in 25% while the
classes of Pf and Of will decrease their surface in 37% and 39%, respectively. These changes will be
induced by the anthropogenic activities that take place in the area. The Global Partnership on Forest
Landscape Restoration reports that more than 2000 million hectares of forestland were completely
cleared worldwide over the past centuries. These areas are in a state of degradation [58].
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Figure 6. Simulation of land use changes during 2014-2028: (a) Open areas; (b) Oak forest;
(c) Pine forest.

4. Conclusions

The simulation of the spatio-temporal dynamics of temperate forests represent an alternative for
the mapping of forest ecosystems in a given time series. The classification of satellite images showed a
good level of accuracy with respect to ground reference data, as supported for the values of the Kappa
coefficient. In the period of 1973-2014 the class of Pf lost more than five thousand hectares. This land
was converted to other land uses. The principal causes contributing to this decline were manly forestry,
construction of roads and power lines. The analysis of the trends in land use change by using Markov
Chains and CA shows the influence of these activities in the region. The land uses of the temperate
forests projected for 2028 show a similar trend when compared to the period 1973-2014, where 4800 ha
of pines will be probably lost. The open areas will increase to 4200 ha, and the oak forest will increase
by 1400 ha. It is important that the government institutions involved with the forest management
policies take action in the conservation, protection and production of the temperate forest ecosystems.
Overall, the combined methods in this study demonstrate the usefulness in applying remote sensing
to monitor spatial and temporal changes of temperate forests. The results of this study could provide
quantitative information, which represents a base for assessing the sustainability in the management
of these temperate forest ecosystems.
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