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Abstract:

 In this paper, a method is proposed to calculate a comprehensive index that calculates the ecological efficiency of a city by combining together the measurements provided by some Data Envelopment Analysis (DEA) cross-efficiency models using the Shannon’s entropy index. The DEA models include non-discretionary uncontrollable inputs, desirable and undesirable outputs. The method is implemented to compute the ecological efficiency of a sample of 116 Italian provincial capital cities in 2011 as a case study. Results emerging from the case study show that the proposed index has a good discrimination power and performs better than the ranking provided by the Sole24Ore, which is generally used in Italy to conduct benchmarking studies. While the sustainability index proposed by the Sole24Ore utilizes a set of subjective weights to aggregate individual indicators, the adoption of the DEA based method limits the subjectivity to the selection of the models. The ecological efficiency measurements generated by the implementation of the method for the Italian cities indicate that they perform very differently, and generally largest cities in terms of population size achieve a higher efficiency score.
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1. Background


In the last decade, cities have gained a greater centrality in the economic and social growth of nations. The recent report delivered by the Brookings Institution indicates that in 2014 the economies of the 300 largest metropolitan areas accounted for 47% of global gross domestic product (GDP) and 38% of GDP growth [1]. According to recent estimates provided by Seto et al. [2], more than 80% of the national gross domestic product (GDP) is generated in urban areas. A recent worldwide research conducted by the McKinsey Global Institute on a sample of 600 cities estimates that between 2010 and 2050, the GDP of these cities is expected to double, while 23 megacities—cities having more than 10 million inhabitants—in 2007 generated 14% of global GDP [3].



People move to and live in cities to have access to better jobs, education, health care, goods and services. More than half of the human population over the world is living in cities and towns, and, in the next decades, the number of people expected to live in cities will grow to 75%, while population growth over the next 25 years will be concentrated in cities and towns [4,5]. The most urbanized areas are located in the American and Europe continents, respectively having about 80% and 70% of all inhabitants residing in cities and towns. However, while cities are the primary source of economic development and social prosperity, and house more than half of the world population, they are large users of resources, responsible for about 2/3 of energy demand and greenhouse gas emissions [5]. The recent rapid and intense urbanization has often resulted in an over consumption of water, energy, raw materials, land, and production of waste and air pollution. Poor environmental quality and ecological efficiency, together with a scarce infrastructure development and traffic congestion, negatively affect the economic competitiveness, livability, and attractiveness of cities [6,7].



An important issue related to the implementation of an effective urban development strategy aimed at improving the ecological efficiency of a city is the adoption of a measurement framework, a set of performance indicators and, eventually, a synthetic index to rank and benchmark cities. The measurements provided by such indicators and the comprehensive index may be a useful tool to evaluate the success of the policies adopted by local governments to make cities more ecologically efficient, and, if necessary, to revise urban development plans and projects.



Objectives


Measuring and comparing the ecological efficiency of cities have become important elements to assess their livability and the performance of policies adopted by local governments to improve city environmental sustainability and attractiveness [8]. Cities that are more ecologically-efficient are able to reduce the over consumption of resources by minimizing the use of energy, materials, water and land, enhancing recyclability and lower the impact on environment by minimizing air pollution, not treated black and grey water discharges, waste disposal, as well as supporting the adoption of facilities for the production of energy from renewable sources [9].



Several measurement guidelines, frameworks, set of indicators and indices have been proposed by public organizations, consulting bodies and academic scholars. However, these have a number of shortcomings that make them not very useful for ranking cities. Particularly, many shortcomings are due to the model implemented to measure the ecological efficiency indicators and the way different indicators are aggregated to generate a unique measurement. Composite indices are increasingly used for performance monitoring, conducting benchmarking studies, and communicating the outcome of public policies. The main advantage associated with the utilization of a composite aggregate index is related to its intrinsic capability to provide a comprehensive and effective view of a certain phenomenon and to generate a ranking and compare different units under evaluation [10]. Generally, equal weightings are used to aggregate the different dimensions or indicators to generate an aggregate index. However, when multiple weightings are adopted, there are no sound justifications for the choice of different weights. Furthermore, often aggregate indexes available in literature do not provide an acceptable discrimination between units.



This paper proposes a comprehensive index based on the calculation of Data Envelopment Analysis (DEA) cross-efficiencies and Shannon’s entropy index to rank cities with respect to their ecological efficiency score. This index has a number of advantages when it is compared to indexes proposed in the academic and industry literature. Particularly, it uses an endogenous weighting scheme to aggregate partial indicators that is generated from data themselves, avoiding the adoption of any subjective expert judgment. In addition, this index can be easily customized to the specific characteristics and needs of the context and to the availability of data to generate a more effective measurement of the city ecological efficiency by including different sets of indicators. Finally, it has a good discrimination capability. The index is used to compare and rank 116 provincial capital cities in Italy. While sustainability is a complex and multifaceted concept, this paper privileges the ecological dimension of it and a strict conceptualization of ecological efficiency circumscribed to environmental issues is adopted. As there is no agreement among scholars about the model that should be implemented to evaluate resource and environment efficiency, the methodological setting adopted to calculate the ecological efficiency of cities uses several DEA models to simultaneously measure environment and resource efficiency. Moreover, because each model calculates the city ecological efficiency as a cross-efficiency score from different perspectives, results from different DEA models are combined together by means of the Shannon’s entropy index.



The rest of the paper is organized as follows. Section 2 reports an in-depth literature survey that focuses on the measurement of ecological efficiency both from a practice and an academic orientation; Section 3 illustrates the method to compute the ecological efficiency of cities, while Section 4 shows and discusses some major results emerging from the application of the method to a case study relative to a sample of Italian cities. Finally, Section 5 presents some concluding remarks.





2. Measuring Ecological Efficiency: A Literature Survey


Quantifying sustainability development has been a major concern of policy makers and academic scholars, and ecological efficiency indicators have been widely adopted to measure the sustainability of cities. The following sections illustrate some major contributions on the measurement of ecological efficiency both from practice-oriented and academy-oriented perspectives.



2.1. The Practice-Oriented Contribution


A variety of recommendations and guidelines have been proposed relative to the design, meaning and quantification of ecological efficiency indicators [11]. Several international organizations and NGOs have proposed measurement frameworks and indicators to assess environmental sustainability of urban areas or regions, by adopting some theoretical multidimensional models aimed at conducting benchmarking studies at a local level [12], at the country level [13], at the international level [14,15], and in the developing countries of the world [16]. The adoption of a set of standardized sustainability indicators is important to perform effective benchmarking. Indeed, as Olsthoorn et al. [17] claim, environmental indicators are usually constructed and applied by organizations on the basis of their specific standpoints. Furthermore, these indicators are often arbitrary and reflect only some dimensions of environmental sustainability and performance.



In 2011 the United Nations Economic and Social Commission for Asia and the Pacific (UN-ESCAP), the United Nations Economic Commission for Latin America and the Caribbean (UN-ECLAC), and the United Nations Human Settlements Program (UN-Habitat), in partnership with the Urban Design Lab of the Earth Institute of the Columbia University have jointly released the “Guidelines for developing eco-efficient and socially inclusive infrastructure”, which provide practical tools for city planners and decision makers to reform urban planning and infrastructure design in developing countries, particularly in Asia and Latin America, according to the principles of ecological efficiency and social inclusion [18].



The Global Reporting Initiative has carried on a research project supported by the World Resource Institute, the United Nations Environment Programme (UNEP), several environment and social associations, the World Business Council for Sustainable Development (WBCSD) and certification agencies to define the “Sustainability Reporting Guidelines” as a common standard [19]. The Yale University has developed the global Environmental Performance Index (EPI) that is adopted to conduct benchmarking studies at both the national and provincial levels [20,21]. In the UK, the Sustainable Development Unit of Government and the Central Local Information Partnership Task Force on Sustainable Development (CLIP), together with a number of local governments have designed a set of indicators covering three dimensions of sustainability: environment, society and economy.



Since 1992, after the adoption of the Maastricht Treaty, the European Commission has showed concerns towards environmental sustainability. After the European Council held in Gothenburg in July 2001, sustainability development has become a major goal of the EU policies and a concern of EU countries. Since then, sustainable development indicators have become useful tools to measure and evaluate progress towards sustainable development in Europe. In 2008 the European Commission adopted a specific strategy for Climate Action. According to this strategy, the Member States will reduce their greenhouse gas emissions by at least 20% and boost the generation of energy from renewable sources to 20% of total consumption by 2020. Furthermore, the European Commission set the goal to reduce its primary energy consumption by 20% by 2020. This strategy stressed the need for EU countries to increase energy efficiency. In 2013, the European Commission published the results of a survey conducted in 2012 that focused on the perception of the quality of life in 79 European cities and major suburban areas. The survey evaluated quality of life as a variable dependent on the perceived quality of relevant public services (health, transport, education, cultural and recreational activities, road cleaning, parks and public land, road maintenance); the perceived quality about some issues related to collective life in the cities (e.g., sport facilities, shops, job offer, housing, environment pollution); and the perceived quality about some personal issues of participants to the survey (e.g., overall satisfaction about life, job, etc.). This survey was fundamentally qualitative in nature. The statistical office of the European Union—EUROSTAT—since 2004 provides statistics on some themes relevant to Europe, and, particularly, on transport, environment and energy, sustainable development, and quality of life. Data and indicators are freely available for research purposes [22].



There are a number of empirical studies aimed at identifying and measuring sustainability indicators and, finally, developing aggregated indices that are performed by private organizations.



The Economist Intelligence Unit (EIU), the research and analysis division of The Economist Group, sponsored by Siemens, conducts a yearly research project that covers more than 120 cities worldwide to calculate the Green City Index in order to provide city stakeholders with insights on better environmental policies and best practices [23]. Since 2009, the Green City Index (GCI) evaluates cities’ sustainability on about 30 indicators. In particular, the GCI uses data relative to CO2 emissions, energy consumption, buildings characteristics, utilization of land, transport infrastructure, water and sanitization, waste collection and treatment, and air quality. The method that calculates the CGI uses both qualitative assessments of the city environmental policies and quantitative measurements available in official public databases. The calculation of the index is very flexible as it takes into account data availability. Therefore, the structure of the index changes from country to country.



The Dual Citizen LLC—a USA based consulting company—publishes the Global Green Economy Index™ (GGEI) that provides a measurement of the sustainability performance of 60 countries and 70 cities. Since 2010, this performance index is constructed by aggregating 32 indicators, classified over four main dimensions (leadership and climate change, efficiency sectors, market and investment, environment and natural capital) [24].



The global consulting company Mercer HR has developed a methodology to rank cities with respect to the level of quality of life. The ranking index utilizes 39 indicators grouped in the following categories: political and social context, economical context, cultural context, health, education, public services and transport, leisure, consumption goods, public housing, environment [25]. The weekly newspaper “The Economist” employs data collected by the Mercer HR survey to develop a different index to rank cities in a smaller sample.



Every year, the European consultancy firm Arcadis calculates the Sustainable Cities Index for a sample including the more important 50 cities in the world. Cities are classified according to three sub-indices—People, Planet and Profit. These indices are constructed using indicators that measure environmental quality, such as energy consumption, greenhouse gas emissions, amount of energy generated from renewable sources, and waste recycling rate. [26,27].



The international technical literature also includes the following indices, which for the sake of brevity are only listed here: Climate Change Performance Index [28], Environmental Performance Index [29], Global Cleantech Innovation Index [30], Green Economy Report [31], Low Carbon Economy Index [32], Renewable Energy Country Attractiveness Index [33].



In Italy, in 2010, the National Council for Economics and Labour (CNEL) and the National Statistical Institute of Italy (ISTAT) jointly launched the BES project—Benessere Equo e Solidale—aimed at evaluating citizen wellbeing in Italian major cities [34]. The project utilizes a hierarchical frame of indicators grouped in 12 relevant higher-level indices. The second order indicators include measurements relative to the integrated water service, air quality, parks and urban green, road cleaning, urban waste collection and treatment. However, the BES project does not provide a synthetic final index to rank cities. Some indicators are available only at the regional level, while some indicators are available at the city level too.



Since 25 and 20 years, respectively, the two most important Italian economic newspapers—the Sole24Ore and ItaliaOggi—every year carry on separate surveys that deliver two rankings of the Italian provincial capital cities with respect to the quality of life. Particularly, the Sole24Ore study utilizes a set of 36 indicators articulated into six thematic areas (standard of living, business and jobs, environment and public services, crimes, population, leisure). While the thematic areas remain unchanged, the individual indicators of each area can be modified or substituted by new indicators to provide a more articulated evaluation of the city quality of life [35]. However, changing the set of indicators and the weighting scheme from year to year can make the rankings and comparison of cities meaningless. The survey performed by ItaliaOggi evaluates the quality of life in the Italian provinces adopting a set of 77 indicators clustered into eight main areas, which are weighted differently. The project compares only provincial areas and provides more in depth information for a limited number of large cities [36].



The project Ecosistema Urbano promoted by Legambiente, a nonprofit green association, has a greater focus on environmental issues and the multidimensional sustainability indicators are used as a reference to develop the “environment” thematic area of both surveys carried on by Sole24Ore and ItaliaOggi [37]. The project Ecosistema Urbano has now developed a well-accepted set of 20 environment indicators that assess quality, pressure and management of environmental resources and are measured year by year for all Italian provincial capital cities. These indicators are aggregated to generate a single index and obtain a unique ranking. Every year, cities showing better environmental performance are awarded a prize.



Finally, several local governments in Italy carry on customer satisfaction survey based on the usage of a set of indicators that often have been purposefully designed. However, many times the set of indicators is not based on the use of variables and measurements that have been previously scientifically validated. Indeed, as local governments try to promote cities as livable, green and environmentally sustainable, indicators are chosen ad hoc to evaluate only some aspects and measure the achievement of improvement goals that are easily achievable.




2.2. The Academy-Oriented Contribution


Several scholars have suggested methodological frameworks and indicators to measure the ecological efficiency of urban and regional areas. Mori and Christodoulou [38] reviewed major sustainability indices—Ecological Footprint (EF), Environmental Sustainability Index (ESI), Dashboard of Sustainability (DS), Welfare Index, Genuine Progress Indicator (GPI), Index of Sustainable Economic Welfare, City Development Index, emergy/exergy, Human Development Index (HDI), Environmental Vulnerability Index (EVI), Environmental Policy Index (EPI), Living Planet Index (LPI), Environmentally-adjusted Domestic Product (EDP), Genuine Saving (GS)—and finally discussed conceptual requirements necessary for building an index useful to measure city sustainability. In particular, they claim that the availability or the ad hoc creation of a set of indices and/or indicators is an important part of the evaluation of city sustainability.



Literature also suggests sets of indicators and aggregated indices that encompass specific dimensions of urban sustainability, such as energy use [39,40], and water consumption [41]. However, even though the importance of indicators and indices is well acknowledged, there is no agreement about the choice of the indicators and the construction of aggregate indices. Nan and Williams [42] conducted an in-depth historical review on the literature relative to the eco-city and related-concepts, and the performance indicators commonly used for evaluating the sustainability of urban areas. The scholars found that there are several definitions of eco-cities that privilege different dimensions of sustainability and eco-efficiency and even though there has been an effort to integrate these concepts there is no consensus about what dimensions are more or less important. The authors assert ([42], p. ii) “[…] there is some high-level consensus on the types of phenomena that should be measured in evaluating sustainable, green, eco-, and similarly labeled cities. All indicator systems measure performance related to energy and climate change. Fewer, but still a majority, measure air quality and land use impacts. Even fewer, but still a majority, measure water quality and social health impacts. Waste, transportation, and economic impacts are least commonly measured, but nevertheless are measured by a majority of indicator systems. Despite some consensus on the most important general categories to be measured, there is little consensus about the priority issues to be evaluated in each category. There is also little agreement on the methodology by which indicators for each of these areas should be chosen other than relying on data that are already available and on expert opinion regarding what indicators can best be used to measure progress. Threshold benchmarks are not commonly used, and there is little agreement on how indicators or indicator categories should be weighed against each other in forming an aggregated score that could be assigned to a city if a single summary indicator is desired.”



In general, scholars implement different methods and approaches to generate measurements to evaluate sustainability and ecological efficiency of cities, i.e., ecological footprint analysis (EFA) [43,44], emergy accounting [45], urban metabolism analysis [46], ratio-approach [47], parametric and non-parametric methods (e.g., stochastic frontier analysis and DEA) [48,49,50], and Analytical Hierarchy Process (AHP) [51].



Implementing these methods and approaches has both advantages and disadvantages. Li et al. [52] proposed a method based on the calculation of the ecological footprint as an aggregate environmental indicator for evaluating the eco-efficiency of residential development at city level. The method was implemented to compare three Chinese cities. However, the scholars regret that data collection and analysis was very complex and time consuming. Geng et al. [53] used ecological footprint analysis for evaluating urban sustainability and comparing two industrial cities in China and Japan. As they claim, even though the ecological footprint analysis is a useful method for evaluating city sustainability, it has some shortcomings. The difficulty to get accurate information about products’ life cycles in the case of long and complex production chains, problems related to double-counting, and a lack of an in depth knowledge about the production processes make the implementation of the method not easy and not effective.



A number of researchers use the “emergy” approach to obtain a comprehensive way to value an ecological system that produces goods and delivers services in terms of the amount of energy, which is used directly and indirectly and is conveniently expressed in solar emjoules as a measuring unit [54]. For instance, Pizzigallo et al. [55] used an emergy based analysis to evaluate the environmental sustainability of the Province of Modena in Italy. However, this approach has raised some criticism for its being idiosyncratic, computationally complex and data intensive [56]. Scholars have also adopted the metaphors of the living organism and the metabolic process to describe the urban ecosystem and the economic and social activities that people, businesses and infrastructure assets perform when resources are consumed and goods and/or services are produced [57,58]. The Urban Metabolism Analysis has been utilized as an accounting tool to measure the balance between the material flows in cities and, finally, develop eco-efficiency indices [46]. The implementation of this latter approach that is based on the analysis of material flows employs more practical measuring units that the non-academic stakeholders can more easily understand. However, the approach has been criticized [59]. Indeed, the suitability of the Urban Metabolism (UM) framework in applying the concept of the city as a biophysical system has been questioned, emphasizing “[…] a weakness of UM as the tendency to conflate organism and ecosystem, often using the terms interchangeably” ([59], p. 757).



Yin et al. [60] used measurements of ecological efficiency indicators for evaluating the progress towards sustainability of provincial capital cities in China. Wang et al. [61] conducted case study analysis to evaluate the progress of ecological construction in the Shandong province in China by means of a pre-set of qualitative and quantitative indicators. Sustainability and ecological efficiency indicators have often been developed as ratios, such as water consumption to inhabitants, and amount of CO2 produced per year.



A large amount of academic research is focused on the effort to implement weighting factor methods and techniques in the field of environment and sustainability in order to aggregate several indicators to obtain a single comprehensive index [62,63,64,65]. In general, four approaches have been followed to weight individual indicators: (a) using arbitrary (subjective) weights, i.e., the same weights for all indicators; (b) generating weights from social preferences relative to different indicators that are associated to specific sustainability dimensions; (c) using expert judgment to build a set of weights; (d) generating weights endogenously from the dataset itself (for instance, by implementing non-parametric linear programming techniques or statistical analysis aimed at reducing the amount of variables), thus avoiding the introduction of any subjectivity linked to personal preferences.



When an arbitrary set of weights is utilized to aggregate individual indicators, the choice of one or more weights may not always be easily justified by a sound scientific argumentation because cities are very complex systems in which the interaction among sustainability policies, human behavior, infrastructure assets performance, resource use, etc. can be difficult to understand [66]. One common method that partially avoids arbitrariness in the selection of weights is the AHP method. Michael et al. [67] adopted AHP to rank and prioritize a set of urban sustainability indicators for Malaysia. Aldegheishem [68] evaluated the urban sustainable development for Riyadh city by implementing AHP. Specifically, 13 second-level sustainability indicators were grouped into three first-level indicators after generating weights by means of an analytical hierarchy process. By means of AHP, Hesari et al. [69] investigated the priorities of sustainable development components in improving the old fabrics of Isfahan city. However, weights generated by implementing AHP can be to a great extent subjective because they are provided by expert judgment. Moreover, when the number of indicators used is great, the involvement of experts and the process that generates weights can be time-consuming. Furthermore, even using AHP has the same drawbacks of all methods that choose subjective weights. One major problem is the replicability of the weighting set as it is very unlikely that different experts working independently would assign the same weights to all indicators [66].



Implementing statistical (parametric) methods and techniques allows obtaining objective weights, and, in some cases, determining to what extent an indicator’s weight is approximately proportionate to the sustainability performance outcome. These methods include generally multivariate regression analysis, principal component analysis (PCA), and stochastic frontier analysis (SFA) [65]. Using data for OECD and non-OECD countries over a period of 20 years, Sengupta et al. [70] showed that the aggregation of sustainability indicators to form a unique index coupled with the implementation of multivariate statistical analysis provides important insights. Scholars showed that over the 20-year window some indicators have shifted in their importance in influencing the overall environmental index, while others have remained relatively irrelevant. Cuesta et al. [48] implemented a parametric stochastic method to calculate the distance from the environmental efficiency frontier. Even though these methods have the potential to provide robust results, limitations due to sample size and data availability make it impossible to estimate weights from data. DEA has become very popular as a non-parametric technique to measure environmental performance [71]. DEA has the advantage over other classification and ranking methods commonly used of its great flexibility in the generation of weights, ranging from a full objectivity to a large subjectivity. Indeed, weights can be generated either endogenously from data themselves, or taking into account the decision-maker judgment using various forms of restriction constraints added to the analysis. Zhou et al. [72] conducted an in-depth literature survey on the application of DEA to environment and energy studies. Zhou et al. [73] discussed the environmental DEA technologies that exhibit either non-increasing returns to scale or variable returns to scale. Zhou et al. [74] developed a non-radial DEA model and a non-radial Malmquist environmental efficiency to measure change of environmental performance of 26 OECD countries from 1995 to 1997. Two important advantages of DEA over parametric multivariate statistical methods are that it more easily accommodates both multiple inputs and multiple outputs, and it does not require any specific functional form to be imposed on the ecological efficiency model. Since its introduction, a large number of extensions to basic DEA models have appeared to deal with environmental-related benchmarking analyses. DEA has been especially implemented to evaluate cities’ ecological efficiency. Cherchye and Kuosmanen [75] analyzed several DEA applications concerning country sustainability development. Lu and Lo [76] implemented DEA to rank 31 Chinese regions with respect to their sustainability. Wang et al. [47] adopted a meta-frontier function and a non-radial directional distance function to construct an index that at the same time calculates the performance achieved by coupling energy savings and emissions reductions. The method was used to evaluate energy-efficiency performance of 209 Chinese cities. Wang et al. [77] constructed three levels of regional eco-efficiency indicators by analyzing the flow of materials and implemented DEA to measure the eco-efficiency degree of Tongling City between 1990 and 2008. Huang et al. [78] proposed an extended DEA model that combines global benchmark technology, undesirable output, super efficiency and slacks-based measure to investigate the dynamics of regional eco-efficiency in China from 2000 to 2010. Üstün [79] used DEA to evaluate environmental efficiency of Turkish cities. The scholar evaluated the environmental efficiencies of 81 Turkish provinces in 2010 using four DEA models. Further, by using these measurements, he developed environmental efficiency maps of Turkey. The scholar employed the following inputs: total water resources, total environmental budget (i.e., current expenditure and total environmental expenditure), and the following outputs: total amount of solid waste collected, number of people taken sewage service, number of people taken potable sewage service, the reciprocal of the maximum PM10 and SO2 concentrations. Yin et al. [60] applied DEA to perform an eco-efficiency study of 30 Chinese provincial capital cities using environmental pollution as an undesirable output, and a modified super-efficiency model for ranking. Yu and Wen [80] utilized standard Banker-Charnes-Cooper (BCC) and Charnes-Cooper-Rhodes (CCR) DEA models and the Malmquist index to evaluate the status quo and future trends of 46 typical cities in China.





3. The Method


As mentioned earlier, the main goal of this study is to develop a method to compute a comprehensive index to measure the ecological efficiency of cities useful to generate rankings and conduct benchmarking analyses. The method assumes that individual cities can be stylized as (ecological) production functions that generate different outputs (i.e., products and services) through the combination of a set of inputs. The household water consumption, the amount of households served by black water depuration plants, and the installed photovoltaic power are examples of outputs. Of course, in the perspective of the measurement of the city ecological efficiency, the outputs can be of different types, either good or bad. Thus, the household water consumption can be considered a bad output, while the number of photovoltaic power facilities installed on the roofs of public buildings and the number of households served by black water depuration are good outputs of the production function. The city administrators may adopt particular measures and policies to promote the diffusion of virtuous behaviors and best practices relative to sustainability among inhabitants, i.e., the limitation or even the restriction of vehicle use in downtown areas, the adoption of no drive-days programs, the control of truck movements, a set of incentives to differentiate waste and recycling as annual fee reduction, etc. In order to produce outputs, cities have to consume a certain amount of resources. In general, the bigger the city size, the larger the amount of resource consumption will be. In general, both the size of the city territory and population are good proxies of the amount of the resources consumed by the city production process. One city can be more ecologically efficient than another city which has about the same population and territory extension if it produces a larger amount of good outputs, i.e., the amount of differentiated and recycled waste, and a lower amount of bad outputs, i.e., household electricity and water consumption.



Every city is associated with a specific production function that utilizes the same typologies of inputs and outputs. The capability of the city to generate the largest amount of good outputs as products and services that have a minimum impact on the environment and the lowest production of bad outputs that, vice versa, have a negative impact on environment with the same amount of inputs (population and territory area) is denominated ecological efficiency. Therefore, every city achieves a different ecological efficiency measurement as it has a different capability to generate good outputs limiting the production of bad outputs. Given this definition of ecological efficiency, a relative measurement of it can be obtained by implementing a non-parametric frontier approach based on DEA. DEA is a robust, standardized and transparent benchmarking technique [81,82,83], and literature has emphasized the advantages of using it to conduct efficiency analyses, in particular [83,84]: (a) it is an effective technique for measuring the efficiency of units in the presence of multiple outputs and multiple inputs; (b) it does not need any specific assumption relative to the type of production function to combine inputs and outputs; (c) it avoids introducing any subjective judgment or estimate in the analysis.



The proposed method to obtain a comprehensive measurement of the ecological efficiency of a city is developed in two steps: (1) the calculation of efficiency scores by implementing several DEA models adopting different perspectives; (2) the calculation of cross-efficiency scores; and (3) the combination of the efficiency scores by computing the Shannon’s entropy index.



3.1. Step 1: the Calculation of the Individual Efficiency Scores


Since its first introduction in 1978, DEA has been widely adopted as a powerful and effective methodology for modeling operational processes of certain units that convert multiple inputs into multiple outputs and measuring their efficiency in order to conduct benchmarking studies [81]. As a non-parametric linear programming technique, DEA measures the efficiency of each unit (denominated DMU, Decision Making Unit) in a sample as the ratio of weighted outputs over weighted inputs. In particular, the efficiency of a DMU is measured relatively to similar DMUs with the goal to estimate the frontier that is associated to the best practice for the sample under evaluation. As Cooper et al. [82] claim, DEA is a technique that is aimed at measuring distances from efficient frontiers rather than at identifying central tendencies as it happens in statistical regression.



Assume that there is a set of n DMUs to be evaluated, and each DMU j (j = 1,…,n) produces s different outputs using m different inputs which are denoted as yrj (r = 1,…,s) and xij (I = 1,…,m) respectively.



For any evaluated DMU k, the relative efficiency score is generally defined as the ratio of the weighted sum of outputs over the weighted sum of inputs, that is


[image: there is no content]



(1)




vk = (v1k,…,vmk) and uk = (u1k,…,usk) are the input and output weighting vectors for the evaluation of DMU k, while urk and vik are respectively the multipliers of the outputs and the inputs.



Assuming an input orientation and that there is no constant proportionality between inputs and outputs along the efficient frontier, a measurement for the relative efficiency of DMU k can be obtained by solving the following multiplier model (the dual of the envelopment model) denoted as BCC DEA [85]:
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(2)







In this model, the variable u*k is added to take into account different returns to scale along the efficient frontier.



A measurement for the relative efficiency of DMU k can be obtained by solving the following linear program, as follows [85]:
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(3)







Model Equation (3) is solved n times, once for every DMU in the set. For each DMU k, a set of optimal input weights v1k*,…, vmk*, and output weights u1k*,…, usk* can be obtained by solving the above model Equation (3).



The ratio
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(4)




is referred to as the BBC efficiency of DMU k when uk* and vk* are the optimal solution to model Equation (3). This measurement of efficiency reflects the self-evaluation of DMU k. Ekk = 1 if DMU k is 100% efficient, and Ekk < 1 if DMU k is inefficient.




3.2. Step 2: the Calculation of the Cross-Efficiency Scores


The common DEA models are unable to generate useful rankings across DMUs because more than one of them might be scored as 100% efficient by the mathematical programming algorithm. Additionally, because every DMU has its own set of weights, all of its weight might be assigned to a single output and input, making the efficiency analysis unrealistic. A promising approach to alleviate the weak discrimination capability of the basic DEA models is based on the calculation of the DMU cross-efficiency score [86]. While in the traditional DEA models the measurement of a DMU efficiency is based only on self evaluation, by assigning the most favorable set of weights for outputs and inputs to maximize its efficiency (that is to say, from an optimistic perspective), in the DEA cross-efficiency approach a peer evaluation together with a pure self evaluation of DMUs are performed [87]. Ranking procedures based on the calculation of cross-efficiency scores have a number of advantages [88,89]. Particularly, they do not need the introduction of unrealistic weighting schemes provided by expert judgment, and generate a unique DMU ranking to differentiate between good and poor performers. A DMU which achieves a high cross-efficiency score has been evaluated passing a more rigorous test, because it has been considered efficient by the majority of its peers and not only by itself. The method to calculate DMUs cross-efficiencies can be formulated as follows [86,90].



The cross-efficiency of each DMU j denominated as Ekj can be calculated using the optimal values of DMU k as follows:
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(5)







These values are used to obtain an n × n cross-efficiency matrix, in which the diagonal entries show the conventional DEA efficiency scores of the DMUs (self evaluation) and the off-diagonal cells give the cross-efficiency scores (peer evaluation). In order to get the final efficiency score and a ranking of the DMUs, cross-efficiencies must be aggregated. Table 1 shows details. The average of cross-efficiencies is used as an aggregation method (average method).



Table 1. Cross-efficiency matrix for n DMUs and the calculation of cross-efficiency scores.



	
DMU

	
Target DMU

	
Average Cross-Efficiency




	
1

	
2

	
n






	
1

	
E11

	
E12

	
E1n

	
[image: there is no content]




	
2

	
E21

	
E22

	
E2n

	
[image: there is no content]




	
n

	
En1

	
En2

	
Enn

	
[image: there is no content]










When the DMU k multipliers are used to calculate the efficiency of the other DMUs in the cross-efficiency formulation, if u*k is negative the expression [image: there is no content] may be negative. Thus, in the input orientation approach the efficiency of DMU j may be negative when computed using the multipliers of DMU k. To avoid negative cross-efficiencies, Soares de Mello et al. [91] suggest adding the additional constraint [image: there is no content] in model (3).



The weights obtained from model (3) are usually not unique depending on the optimal solution arising from the particular LP software in use. Consequently, the cross-efficiency scores computed according to model (5) remain arbitrarily determined. To avoid such arbitrariness, secondary goals that optimize the input and output weights have been suggested in the literature [86,89,90].





The most common goals are based on either an “aggressive” or a “benevolent” peer-evaluation of DMUs. In the aggressive approach, the mean of efficiencies of the other DMUs is minimized in order to maximize the self-efficiency of the DMU under evaluation. The aim of the aggressive approach is to find optimal weights that make the evaluated DMU look the best that it can be and the remaining n-1 DMUs worse. In the benevolent approach, not only the efficiency of the evaluated DMU is maximized but also the mean efficiency of the remaining DMUs. In this formulation, the aim is to obtain weights that make both the DMU under evaluation and the remaining n-1 DMUs look as good as possible.



The aggressive evaluation DEA cross-efficiency model is formulated as follows


[image: there is no content]



(6)







Ekk* is the optimal BCC self-evaluation of DMU k.



In the benevolent evaluation DEA cross-efficiency model, the objective function of model Equation (6) is changed from minimizing to maximizing.




3.3. Step 3: the Aggregation of Different DEA Efficiency Scores Using the Shannon’s Entropy Index


In order to have a more comprehensive evaluation of the city ecological efficiency, the suggested method calculates the cross-efficiency measurements from different perspectives and approaches, running several DEA models. Even performing cross-efficiency analysis, any single DEA model has limited discriminatory power to generate an effective ranking of cities and, henceforth, it is useful to combine the results provided by several models integrating the different rankings of DMUs.



Thus, to have a comprehensive measurement for the efficiencies, which takes into account various perspectives and approaches at the same time, the Shannon-DEA procedure as implemented by Bian and Yang [92] is adopted. This procedure is based on the calculation of the Shannon’s entropy index that is used as a coefficient of importance degree [93,94]. Several scholars have showed that this comprehensive efficiency index discriminates better than individual DEA models to rank DMUs [92,94,95,96]. Furthermore, the aggregation based on the Shannon’s entropy index of different efficiency measurements is better than the aggregation performed averaging the efficiency scores because it provides a Pareto optimal solution.



Bian and Yang [92] suggest a procedure that is based on six steps:

	(1)

	
Generation of an n × q efficiency matrix E where n is the number of DMUs and q is the number of different DEA models performed. In matrix E, each row corresponds to a DMU and each column corresponds to a DEA cross-efficiency evaluation model. Therefore, as an example, CE22 is the cross-efficiency score of DMU 2 obtained by performing DEA model 2.




	(2)

	
Normalization of the efficiency matrix E recalculating the individual efficiencies as [image: there is no content] (p = 1,…, q and j = 1,…,n)




	(3)

	
Calculation of the Shannon’s entropy index Hp for each DEA model p as [image: there is no content] (p = 1,…, q and j = 1,…,n)




	(4)

	
Calculation of the diversification degree for every DEA model as dp = 1-Hp (p = 1,…,q). The greater dp, the greater the discriminatory power of the DEA model p. If a DEA model yields approximately equal efficiency scores for all DMUs, the DEA model has no discrimination ability for those DMUs, and the resulting dp has a small degree of importance. Accordingly, we can use dp to rate the importance of model p.




	(5)

	
Assessment of the importance degree of model p by calculating the weights of every DEA model using [image: there is no content] (p = 1,…, q) where [image: there is no content]




	(6)

	
Calculation of the cross-efficiency comprehensive index of DMU j as [image: there is no content] (j = 1,…, n).

















	
	DEA Model 1
	DEA Model 2
	DEA Model q



	DMU 1
	CE11
	CE12
	CE1q



	DMU 2
	CE21
	CE22
	CE2q



	DMU n
	CEn1
	CEn2
	CEnq








4. Case Study


The method for the calculation of the ecological efficiency index was used to perform a benchmarking study aimed at ranking and comparing Italian Province capital cities. The method was applied in two steps. In the first step, individual rankings were obtained by implementing seven DEA models, one calculating conventional DEA efficiency, and the remaining ones calculating cross-efficiency. In the second step, the six cross-efficiency models were combined together to get a single ranking by means of the Shannon’s entropy index. Finally, results were compared with the ranking provided by Sole24Ore in 2011. This particular year was chosen because of data availability and reliability. The purpose of this comparison is not to identify the better ranking but rather to test the performance of the proposed method in terms of its discrimination capability. Indeed, relative rankings are generally influenced not only by the dataset, but also by the variables used in the model and the ranking methodology [97].



4.1. Sample


Italy is the fifth manufacturing economy in the world, with a population of about 57 million people that are concentrated on a relatively small territory. The intense industrial development on one side, and the high population density on the other side have lead to a strong environmental pressure making the environmental protection an important public concern. Even though much environmental progress has been achieved in the last decade, air pollution, traffic congestion, waste production, and excessive resource consumption still remain major problems.



In Italy, urban areas, and particularly cities and towns, have become very important to support policy actions aimed at improving environment quality. The Bassanini Act issued in 1997 strengthened the competence of local authorities as to environmental issues management. However, there are remarkable disparities across cities with respect to the capability of local governments to modify resource consumption patterns, waste management approaches, and the determinants of urban mobility towards more sustainable paths.



This study considers Italian Province capital cities as units of analysis. However, because of data unavailability, and missing values indeed being a major problem when DEA is performed, the sample size is limited to 116 capital cities.




4.2. DEA Models


Several DEA models were implemented to compute cross-efficiencies from different perspectives (i.e., arbitrary, aggressive and benevolent) as different models lead to different cross-efficiency scores. For all models, both input and output-orientations were chosen. In total, seven DEA models were performed. The assumption of variable returns to scale (VRS) was made because of the large variety of cities in terms of population and land area sizes, henceforth adopting the approach suggested by Banker et al. [85].



The first model (Model A) implemented conventional VRS DEA to evaluate cities ecological efficiencies. The other 6 models (Model A to Model G) implemented VRS cross-efficiency DEA and generated preliminary rankings of cities with respect to their ecological efficiency. Table 2 shows the DEA models adopted to carry on the study.


Table 2. Description of data envelopment analysis (DEA) models.


	Model
	Model Type
	Orientation
	Weight Computation
	Approach





	Model A
	conventional
	output-oriented
	1 stage
	-



	Model B
	cross-efficiency
	output-oriented
	1 stage
	arbitrary



	Model C
	cross-efficiency
	input-oriented
	1 stage
	arbitrary



	Model D
	cross-efficiency
	output-oriented
	2 stage (secondary goal)
	benevolent



	Model E
	cross-efficiency
	output-oriented
	2 stage (secondary goal)
	aggressive



	Model F
	cross-efficiency
	input-oriented
	2 stage (secondary goal)
	benevolent



	Model G
	cross-efficiency
	input-oriented
	2 stage (secondary goal)
	aggressive












4.3. Variables


Table 3 presents input and output variables used in the study to implement DEA models. As Thanassoulis [98] claims, the identification of input and output variables in DEA applications is both difficult and crucial. Thus, variables were identified having clearly in mind the purpose of the study and similar studies. However, as is common in studies like this, the selection of variables was influenced by data availability. Two inputs used in the analysis—the city population and territory land area—have been considered as non-discretionary or uncontrollable variables because they are not under control of the productive unit (i.e., the Province capital city), and cannot be controlled by the city council administrators (see, for instance, [99]). Even though the total city population and land area have been considered as uncontrollable variables in DEA models that cannot be controlled by the city decision makers, they are internal to the city production process. As these inputs are assumed to be part of the production process, they contribute to define the production possibility set (PPS) and the efficient frontier together with the discretionary inputs and the outputs. These production factors have been included in the models as suggested in the literature [100]. The uncontrollable inputs do not enter directly in the efficiency measures being optimized in the objective function of the DEA model. However, they can affect the efficiency measurements because of their inclusion in the constraints (see Appendix).


Table 3. Input and output variables.


	Variable
	Type
	Classified as
	Description





	DEPURATION
	output
	good
	amount of inhabitants living in the province capital city served by black water depuration service (year 2011)



	DWASTE
	output
	good
	amount of differentiated urban waste collected in the province capital city (kg) (year 2011)



	PHOTOVOLTAICS
	output
	good
	total power of photovoltaic plants installed on public building roofs (kW) (year 2011)



	GREEN
	output
	good
	total amount of urban green available to citizens (square m) (year 2011)



	TRANSPORTATION
	output
	good
	demand for public transportation (no. of passengers) (year 2011)



	NPCARS
	output
	good
	no. of cars owned by people living in the province capital city classified as euro IV and euro V (year 2011)



	WATER
	output
	bad
	household water consumption (liters per day) (year 2011)



	NDWASTE
	output
	bad
	amount of not differentiated urban waste collected (kg) (year 2011)



	GAS
	output
	bad
	household natural gas consumption (cooking and heating) (cubic meters) (year 2011)



	ELECTRICITY
	output
	bad
	household electricity consumption (kWh) (year 2011)



	POLLUTION
	output
	bad
	exceedance days of air quality threshold value of PM10 (year 2011)



	PCARS
	output
	bad
	no. of cars owned by people living in the province capital city classified as euro 0–III (polluting cars) (year 2011)



	POPULATION
	input
	non discretionary
	total population living in the province capital city (year 2011)



	AREA
	input
	non discretionary
	total city land area (squared km) (year 2011)









Outputs are classified as either being “good” or “bad”, whether they are desirable or undesirable. Because undesirable outputs are jointly produced with desirable outputs, as Yang and Pollit [101] (p. 1096) suggest: “[…] it makes sense for us to credit a DMU for its provision of desirable outputs and to penalize it for its production of emissions when evaluating its performance”. In the presence of undesirable outputs, the DMUs having a larger amount of good (desirable) outputs and a lower amount of bad (undesirable) outputs relative to fewer inputs should be regarded as efficient [82]. Undesirable outputs were treated as inputs in the DEA models following literature [101,102,103,104,105]. Additionally, including the undesirable outputs as inputs in the DEA model is consistent with the measure of eco-efficiency indicated by the World Council for Sustainable Business Development as the ratio of the product/service value to the environmental influence [106].



Measurements for the variables were collected from the ISTAT database. Since 1996, ISTAT collects data relative to major Italian cities. The environmental issues investigated refer to the main following themes—air, energy, green areas, noise, transport, waste and water. Data relative to year 2011 have been used to calculate the city ecological efficiency index. In total, two inputs and 12 outputs (six desirable and six undesirable included as six further inputs) have been considered in the analysis.






4.4. Results


Table 4 displays efficiency scores calculated by implementing DEA Models A–G, the efficiency score computed as a comprehensive measurement by using the Shannon’s entropy index (XECI), and the measurements relative to environmental quality used by Sole24Ore to construct the city livability index. Additionally, Table 4 shows the ranking levels of cities for every model, too. As it has been emphasized in the second section of this paper, the Sole24Ore index has a large amount of subjectivity determined by the arbitrary choice of the set of weights utilized to combine and group 25 indicators of environmental quality into seven macro-indicators that are finally aggregated to get an individual index of environmental quality by adopting a further set of weights. For instance, for the aggregation of the depuration, water consumption, and water dispersion indicators related to the water macro-indicator, the weights of six, 3.5 and 2.5 are adopted. Moreover, the indicators are normalized by using certain utility functions that are developed taking into account some sustainability goals. In this way, scores given to indicators provide a measurement of the sustainability rate of a city when it is compared to an ideal city.



Table 4. Efficiency scores.



	
DMU

	
Province Capital Cities

	
Model A

	
Model B

	
Model C

	
Model D

	
Model E

	
Model F

	
Model G

	
XECI

	
Sole24Ore




	
Eff

	
Rank

	
Eff

	
Rank

	
Eff

	
Rank

	
Eff

	
Rank

	
Eff

	
Rank

	
Eff

	
Rank

	
Eff

	
Rank

	
Eff

	
Rank

	
Index

	
Rank






	
CI1

	
Agrigento

	
0.884

	
26

	
0.338

	
90

	
0.391

	
92

	
0.532

	
86

	
0.303

	
91

	
0.477

	
93

	
0.382

	
90

	
0.4027

	
97

	
0.327

	
75




	
CI2

	
Alessandria

	
0.865

	
30

	
0.472

	
77

	
0.513

	
79

	
0.737

	
68

	
0.423

	
78

	
0.639

	
74

	
0.521

	
77

	
0.5497

	
83

	
0.462

	
54




	
CI3

	
Ancona

	
0.975

	
12

	
0.565

	
40

	
0.630

	
35

	
0.851

	
29

	
0.507

	
40

	
0.781

	
22

	
0.633

	
32

	
0.6597

	
34

	
0.527

	
33




	
CI4

	
Andria

	
1.000

	
1

	
0.535

	
52

	
0.627

	
36

	
0.833

	
36

	
0.469

	
61

	
0.762

	
32

	
0.597

	
45

	
0.6355

	
43

	
-

	
-




	
CI5

	
Aosta

	
1.000

	
1

	
0.740

	
3

	
0.816

	
3

	
0.980

	
1

	
0.719

	
2

	
0.958

	
1

	
0.829

	
1

	
0.8391

	
2

	
0.593

	
14




	
CI6

	
Arezzo

	
0.869

	
29

	
0.461

	
80

	
0.519

	
77

	
0.695

	
76

	
0.394

	
83

	
0.629

	
77

	
0.506

	
77

	
0.5324

	
86

	
0.449

	
59




	
CI7

	
Ascoli Piceno

	
0.950

	
17

	
0.473

	
76

	
0.527

	
74

	
0.776

	
60

	
0.422

	
79

	
0.661

	
65

	
0.531

	
73

	
0.5638

	
78

	
0.537

	
30




	
CI8

	
Asti

	
0.989

	
7

	
0.526

	
56

	
0.566

	
60

	
0.832

	
37

	
0.479

	
57

	
0.713

	
47

	
0.578

	
54

	
0.6144

	
57

	
0.447

	
61




	
CI9

	
Avellino

	
1.000

	
1

	
0.591

	
28

	
0.665

	
26

	
0.881

	
16

	
0.575

	
22

	
0.828

	
10

	
0.674

	
23

	
0.7012

	
21

	
0.448

	
60




	
CI10

	
Bari

	
1.000

	
1

	
0.669

	
11

	
0.693

	
18

	
0.892

	
12

	
0.605

	
10

	
0.796

	
20

	
0.688

	
16

	
0.7230

	
15

	
0.442

	
65




	
CI11

	
Barletta

	
1.000

	
1

	
0.574

	
36

	
0.677

	
23

	
0.861

	
24

	
0.509

	
38

	
0.819

	
14

	
0.657

	
25

	
0.6811

	
28

	
-

	
-




	
CI12

	
Belluno

	
1.000

	
1

	
0.365

	
88

	
0.422

	
90

	
0.470

	
90

	
0.303

	
91

	
0.481

	
92

	
0.413

	
88

	
0.4078

	
95

	
0.693

	
2




	
CI13

	
Benevento

	
0.833

	
33

	
0.198

	
95

	
0.212

	
97

	
0.224

	
95

	
0.176

	
96

	
0.249

	
99

	
0.219

	
94

	
0.2124

	
102

	
0.507

	
40




	
CI14

	
Bergamo

	
1.000

	
1

	
0.576

	
35

	
0.598

	
47

	
0.856

	
26

	
0.549

	
28

	
0.722

	
44

	
0.615

	
39

	
0.6516

	
36

	
0.521

	
35




	
CI15

	
Biella

	
0.992

	
4

	
0.515

	
62

	
0.546

	
69

	
0.825

	
41

	
0.487

	
52

	
0.684

	
58

	
0.568

	
58

	
0.6029

	
61

	
0.468

	
52




	
CI16

	
Bologna

	
1.000

	
1

	
0.661

	
14

	
0.694

	
17

	
0.898

	
10

	
0.604

	
11

	
0.822

	
12

	
0.688

	
16

	
0.7267

	
13

	
0.600

	
11




	
CI17

	
Bolzano

	
1.000

	
1

	
0.651

	
17

	
0.702

	
14

	
0.891

	
13

	
0.593

	
18

	
0.811

	
17

	
0.704

	
13

	
0.7240

	
14

	
0.666

	
4




	
CI18

	
Brescia

	
1.000

	
1

	
0.641

	
18

	
0.682

	
21

	
0.907

	
8

	
0.585

	
21

	
0.813

	
16

	
0.683

	
18

	
0.7173

	
18

	
0.496

	
43




	
CI19

	
Brindisi

	
1.000

	
1

	
0.570

	
38

	
0.655

	
29

	
0.854

	
27

	
0.492

	
48

	
0.781

	
22

	
0.627

	
34

	
0.6612

	
33

	
0.445

	
63




	
CI20

	
Cagliari

	
1.000

	
1

	
0.640

	
19

	
0.664

	
27

	
0.895

	
11

	
0.588

	
20

	
0.762

	
32

	
0.657

	
25

	
0.7002

	
22

	
0.496

	
43




	
CI21

	
Caltanissetta

	
0.760

	
36

	
0.371

	
87

	
0.412

	
91

	
0.612

	
84

	
0.327

	
89

	
0.500

	
91

	
0.401

	
89

	
0.4362

	
93

	
0.321

	
76




	
CI22

	
Campobasso

	
1.000

	
1

	
0.480

	
74

	
0.565

	
61

	
0.784

	
58

	
0.435

	
74

	
0.698

	
53

	
0.567

	
59

	
0.5864

	
69

	
0.499

	
42




	
CI23

	
Carbonia

	
1.000

	
1

	
0.718

	
7

	
0.791

	
5

	
0.779

	
59

	
0.597

	
16

	
0.757

	
35

	
0.746

	
9

	
0.7295

	
12

	
0.496

	
43




	
CI24

	
Caserta

	
1.000

	
1

	
0.608

	
24

	
0.677

	
23

	
0.879

	
17

	
0.555

	
27

	
0.804

	
19

	
0.676

	
21

	
0.6983

	
23

	
0.476

	
50




	
CI25

	
Catania

	
1.000

	
1

	
0.250

	
94

	
0.215

	
96

	
0.244

	
94

	
0.197

	
95

	
0.206

	
100

	
0.215

	
95

	
0.2210

	
101

	
0.286

	
81




	
CI26

	
Catanzaro

	
1.000

	
1

	
0.499

	
71

	
0.513

	
79

	
0.668

	
81

	
0.459

	
65

	
0.559

	
88

	
0.511

	
76

	
0.5343

	
85

	
0.307

	
79




	
CI27

	
Chieti

	
0.796

	
35

	
0.500

	
70

	
0.545

	
70

	
0.705

	
73

	
0.442

	
72

	
0.629

	
77

	
0.551

	
66

	
0.5606

	
79

	
0.540

	
28




	
CI28

	
Como

	
0.993

	
3

	
0.534

	
53

	
0.554

	
67

	
0.829

	
38

	
0.508

	
39

	
0.678

	
61

	
0.574

	
55

	
0.6119

	
58

	
0.459

	
57




	
CI29

	
Cosenza

	
0.942

	
18

	
0.477

	
75

	
0.532

	
72

	
0.759

	
65

	
0.453

	
66

	
0.668

	
64

	
0.539

	
71

	
0.5701

	
73

	
0.424

	
68




	
CI30

	
Cremona

	
0.990

	
6

	
0.507

	
66

	
0.532

	
72

	
0.816

	
44

	
0.471

	
60

	
0.657

	
68

	
0.551

	
66

	
0.5878

	
67

	
0.517

	
36




	
CI31

	
Crotone

	
0.914

	
23

	
0.460

	
81

	
0.513

	
79

	
0.721

	
71

	
0.407

	
81

	
0.598

	
83

	
0.503

	
79

	
0.5322

	
86

	
0.232

	
87




	
CI32

	
Cuneo

	
0.959

	
15

	
0.547

	
46

	
0.607

	
44

	
0.826

	
40

	
0.480

	
56

	
0.734

	
40

	
0.610

	
41

	
0.6322

	
46

	
0.589

	
15




	
CI33

	
Enna

	
0.698

	
38

	
0.305

	
92

	
0.350

	
93

	
0.531

	
87

	
0.272

	
93

	
0.421

	
95

	
0.338

	
91

	
0.3687

	
98

	
0.278

	
82




	
CI34

	
Fermo

	
0.935

	
20

	
0.471

	
78

	
0.524

	
76

	
0.762

	
64

	
0.418

	
80

	
0.643

	
72

	
0.530

	
74

	
0.5565

	
81

	
-

	
-




	
CI35

	
Ferrara

	
0.877

	
27

	
0.532

	
54

	
0.560

	
63

	
0.770

	
62

	
0.452

	
67

	
0.658

	
67

	
0.559

	
62

	
0.5872

	
68

	
0.562

	
21




	
CI36

	
Firenze

	
1.000

	
1

	
0.567

	
39

	
0.591

	
51

	
0.702

	
74

	
0.520

	
35

	
0.687

	
57

	
0.587

	
51

	
0.6080

	
60

	
0.509

	
39




	
CI37

	
Foggia

	
1.000

	
1

	
0.543

	
48

	
0.624

	
37

	
0.834

	
35

	
0.475

	
59

	
0.751

	
37

	
0.589

	
50

	
0.6347

	
44

	
0.460

	
56




	
CI38

	
Forlì

	
1.000

	
1

	
0.585

	
32

	
0.627

	
36

	
0.803

	
50

	
0.500

	
45

	
0.734

	
40

	
0.627

	
34

	
0.6444

	
41

	
0.595

	
13




	
CI39

	
Frosinone

	
0.844

	
32

	
0.397

	
85

	
0.422

	
90

	
0.678

	
80

	
0.380

	
84

	
0.563

	
87

	
0.438

	
86

	
0.4789

	
89

	
0.273

	
83




	
CI40

	
Genova

	
1.000

	
1

	
0.694

	
9

	
0.721

	
11

	
0.891

	
13

	
0.621

	
9

	
0.839

	
9

	
0.710

	
10

	
0.7448

	
9

	
0.570

	
19




	
CI41

	
Gorizia

	
0.935

	
20

	
0.536

	
51

	
0.592

	
50

	
0.772

	
61

	
0.499

	
46

	
0.710

	
48

	
0.608

	
42

	
0.6179

	
54

	
0.533

	
32




	
CI42

	
Grosseto

	
1.000

	
1

	
0.628

	
21

	
0.671

	
24

	
0.858

	
25

	
0.526

	
32

	
0.757

	
35

	
0.630

	
33

	
0.6772

	
29

	
0.445

	
63




	
CI43

	
Iglesias

	
1.000

	
1

	
0.398

	
84

	
0.476

	
85

	
0.569

	
85

	
0.362

	
87

	
0.519

	
89

	
0.465

	
81

	
0.4636

	
92

	
0.496

	
43




	
CI44

	
Imperia

	
0.516

	
39

	
0.115

	
96

	
0.130

	
98

	
0.070

	
96

	
0.099

	
97

	
0.116

	
101

	
0.135

	
96

	
0.1105

	
103

	
0.314

	
77




	
CI45

	
Isernia

	
1.000

	
1

	
0.477

	
75

	
0.562

	
62

	
0.719

	
72

	
0.460

	
64

	
0.620

	
80

	
0.552

	
65

	
0.5639

	
78

	
0.312

	
78




	
CI46

	
La Spezia

	
1.000

	
1

	
0.610

	
23

	
0.693

	
18

	
0.825

	
41

	
0.549

	
28

	
0.806

	
18

	
0.681

	
19

	
0.6922

	
26

	
0.636

	
5




	
CI47

	
Lanusei

	
1.000

	
1

	
0.514

	
63

	
0.645

	
31

	
0.784

	
58

	
0.488

	
51

	
0.697

	
54

	
0.644

	
29

	
0.6268

	
49

	
-

	
-




	
CI48

	
L'Aquila

	
1.000

	
1

	
0.583

	
33

	
0.609

	
43

	
0.692

	
77

	
0.479

	
57

	
0.735

	
39

	
0.572

	
56

	
0.6104

	
59

	
0.365

	
72




	
CI49

	
Latina

	
0.979

	
10

	
0.560

	
42

	
0.599

	
46

	
0.844

	
31

	
0.486

	
53

	
0.715

	
46

	
0.593

	
49

	
0.6315

	
47

	
0.289

	
80




	
CI50

	
Lecce

	
0.980

	
9

	
0.485

	
73

	
0.525

	
75

	
0.799

	
52

	
0.430

	
76

	
0.643

	
72

	
0.523

	
76

	
0.5662

	
76

	
0.448

	
60




	
CI51

	
Lecco

	
0.999

	
2

	
0.520

	
59

	
0.569

	
59

	
0.826

	
40

	
0.483

	
55

	
0.698

	
53

	
0.586

	
52

	
0.6123

	
58

	
0.441

	
66




	
CI52

	
Livorno

	
1.000

	
1

	
0.723

	
6

	
0.789

	
6

	
0.920

	
6

	
0.634

	
6

	
0.905

	
6

	
0.766

	
8

	
0.7877

	
6

	
0.537

	
30




	
CI53

	
Lodi

	
1.000

	
1

	
0.502

	
69

	
0.518

	
78

	
0.794

	
54

	
0.485

	
54

	
0.641

	
73

	
0.541

	
70

	
0.5794

	
71

	
0.568

	
20




	
CI54

	
Lucca

	
0.874

	
28

	
0.507

	
66

	
0.541

	
71

	
0.736

	
69

	
0.443

	
71

	
0.643

	
72

	
0.549

	
68

	
0.5685

	
75

	
0.545

	
27




	
CI55

	
Macerata

	
0.731

	
37

	
0.396

	
86

	
0.448

	
88

	
0.621

	
83

	
0.359

	
88

	
0.564

	
86

	
0.455

	
83

	
0.4725

	
90

	
0.584

	
16




	
CI56

	
Mantova

	
1.000

	
1

	
0.477

	
75

	
0.494

	
81

	
0.799

	
52

	
0.446

	
69

	
0.630

	
76

	
0.517

	
74

	
0.5596

	
80

	
0.595

	
13




	
CI57

	
Massa

	
0.940

	
19

	
0.557

	
44

	
0.590

	
52

	
0.803

	
50

	
0.485

	
54

	
0.672

	
63

	
0.594

	
48

	
0.6153

	
56

	
0.307

	
79




	
CI58

	
Matera

	
1.000

	
1

	
0.696

	
8

	
0.695

	
16

	
0.875

	
19

	
0.601

	
13

	
0.780

	
23

	
0.679

	
20

	
0.7202

	
17

	
0.448

	
60




	
CI59

	
Messina

	
1.000

	
1

	
0.595

	
27

	
0.594

	
49

	
0.789

	
55

	
0.532

	
30

	
0.649

	
71

	
0.589

	
50

	
0.6238

	
50

	
0.162

	
90




	
CI60

	
Milano

	
1.000

	
1

	
0.773

	
2

	
0.796

	
4

	
0.948

	
4

	
0.699

	
3

	
0.910

	
5

	
0.769

	
7

	
0.8149

	
3

	
0.501

	
41




	
CI61

	
Modena

	
1.000

	
1

	
0.628

	
21

	
0.666

	
25

	
0.895

	
11

	
0.558

	
25

	
0.795

	
21

	
0.671

	
24

	
0.7006

	
21

	
0.527

	
33




	
CI62

	
Monza

	
1.000

	
1

	
0.596

	
26

	
0.632

	
34

	
0.872

	
21

	
0.593

	
18

	
0.777

	
25

	
0.647

	
28

	
0.6853

	
27

	
-

	
-




	
CI63

	
Napoli

	
1.000

	
1

	
0.652

	
16

	
0.665

	
26

	
0.828

	
39

	
0.603

	
12

	
0.760

	
34

	
0.654

	
27

	
0.6929

	
25

	
0.360

	
73




	
CI64

	
Novara

	
1.000

	
1

	
0.581

	
34

	
0.612

	
42

	
0.838

	
34

	
0.522

	
33

	
0.731

	
41

	
0.623

	
35

	
0.6499

	
37

	
0.445

	
63




	
CI65

	
Nuoro

	
1.000

	
1

	
0.473

	
76

	
0.480

	
84

	
0.409

	
91

	
0.376

	
85

	
0.407

	
96

	
0.442

	
85

	
0.4305

	
94

	
0.554

	
25




	
CI66

	
Olbia

	
1.000

	
1

	
0.576

	
35

	
0.597

	
48

	
0.819

	
42

	
0.492

	
48

	
0.655

	
69

	
0.594

	
48

	
0.6207

	
52

	
0.515

	
37




	
CI67

	
Oristano

	
1.000

	
1

	
0.672

	
10

	
0.779

	
8

	
0.891

	
13

	
0.600

	
14

	
0.871

	
7

	
0.770

	
6

	
0.7616

	
8

	
0.525

	
34




	
CI68

	
Padova

	
1.000

	
1

	
0.633

	
20

	
0.644

	
32

	
0.865

	
23

	
0.603

	
12

	
0.773

	
27

	
0.654

	
27

	
0.6945

	
24

	
0.535

	
31




	
CI69

	
Palermo

	
1.000

	
1

	
0.327

	
91

	
0.322

	
94

	
0.394

	
92

	
0.290

	
92

	
0.359

	
97

	
0.319

	
92

	
0.3350

	
99

	
0.235

	
86




	
CI70

	
Parma

	
1.000

	
1

	
0.567

	
39

	
0.622

	
38

	
0.851

	
29

	
0.498

	
47

	
0.761

	
33

	
0.622

	
36

	
0.6518

	
36

	
0.619

	
8




	
CI71

	
Pavia

	
0.975

	
12

	
0.477

	
75

	
0.493

	
82

	
0.786

	
56

	
0.440

	
73

	
0.610

	
81

	
0.512

	
75

	
0.5520

	
82

	
0.485

	
48




	
CI72

	
Perugia

	
0.959

	
15

	
0.608

	
24

	
0.647

	
30

	
0.839

	
33

	
0.506

	
41

	
0.764

	
30

	
0.630

	
33

	
0.6643

	
31

	
0.615

	
9




	
CI73

	
Pesaro

	
0.874

	
28

	
0.558

	
43

	
0.598

	
46

	
0.779

	
59

	
0.489

	
50

	
0.702

	
51

	
0.602

	
43

	
0.6198

	
53

	
0.561

	
22




	
CI74

	
Pescara

	
0.988

	
8

	
0.517

	
61

	
0.548

	
68

	
0.753

	
67

	
0.503

	
44

	
0.661

	
65

	
0.556

	
63

	
0.5887

	
66

	
0.425

	
67




	
CI75

	
Piacenza

	
0.991

	
5

	
0.590

	
29

	
0.624

	
37

	
0.868

	
22

	
0.529

	
31

	
0.745

	
38

	
0.636

	
31

	
0.6641

	
31

	
0.538

	
29




	
CI76

	
Pisa

	
0.814

	
34

	
0.471

	
78

	
0.499

	
80

	
0.699

	
75

	
0.405

	
82

	
0.586

	
84

	
0.504

	
78

	
0.5259

	
87

	
0.596

	
12




	
CI77

	
Pistoia

	
1.000

	
1

	
0.468

	
79

	
0.472

	
86

	
0.530

	
88

	
0.394

	
83

	
0.514

	
90

	
0.448

	
84

	
0.4701

	
91

	
0.457

	
58




	
CI78

	
Pordenone

	
1.000

	
1

	
0.522

	
57

	
0.529

	
73

	
0.654

	
82

	
0.520

	
35

	
0.623

	
79

	
0.550

	
67

	
0.5659

	
77

	
0.620

	
7




	
CI79

	
Potenza

	
1.000

	
1

	
0.587

	
30

	
0.615

	
40

	
0.826

	
40

	
0.517

	
36

	
0.717

	
45

	
0.619

	
37

	
0.6455

	
39

	
0.461

	
55




	
CI80

	
Prato

	
1.000

	
1

	
0.724

	
5

	
0.787

	
7

	
0.949

	
3

	
0.656

	
4

	
0.929

	
2

	
0.776

	
5

	
0.8018

	
4

	
0.537

	
30




	
CI81

	
Ragusa

	
0.990

	
6

	
0.513

	
64

	
0.571

	
57

	
0.809

	
46

	
0.448

	
68

	
0.682

	
60

	
0.548

	
69

	
0.5938

	
64

	
0.446

	
62




	
CI82

	
Ravenna

	
1.000

	
1

	
0.571

	
37

	
0.580

	
55

	
0.828

	
39

	
0.478

	
58

	
0.675

	
62

	
0.583

	
53

	
0.6178

	
54

	
0.557

	
23




	
CI83

	
Reggio Calabria

	
1.000

	
1

	
0.564

	
41

	
0.570

	
58

	
0.754

	
66

	
0.492

	
48

	
0.626

	
78

	
0.566

	
60

	
0.5945

	
64

	
0.222

	
88




	
CI84

	
Reggio Emilia

	
1.000

	
1

	
0.601

	
25

	
0.647

	
30

	
0.806

	
48

	
0.521

	
34

	
0.763

	
31

	
0.644

	
29

	
0.6621

	
32

	
0.605

	
10




	
CI85

	
Rieti

	
0.852

	
31

	
0.412

	
83

	
0.460

	
87

	
0.684

	
79

	
0.362

	
86

	
0.571

	
85

	
0.456

	
82

	
0.4896

	
88

	
0.513

	
38




	
CI86

	
Rimini

	
1.000

	
1

	
0.665

	
13

	
0.699

	
15

	
0.916

	
7

	
0.591

	
19

	
0.820

	
13

	
0.708

	
11

	
0.7317

	
11

	
0.556

	
24




	
CI87

	
Roma

	
1.000

	
1

	
0.740

	
3

	
0.705

	
13

	
0.887

	
14

	
0.656

	
4

	
0.779

	
24

	
0.685

	
17

	
0.7416

	
10

	
0.457

	
58




	
CI88

	
Rovigo

	
0.952

	
16

	
0.503

	
68

	
0.545

	
70

	
0.789

	
55

	
0.465

	
62

	
0.683

	
59

	
0.564

	
61

	
0.5904

	
65

	
0.367

	
71




	
CI89

	
Salerno

	
1.000

	
1

	
0.816

	
1

	
0.820

	
2

	
0.963

	
2

	
0.732

	
1

	
0.911

	
4

	
0.817

	
3

	
0.8421

	
1

	
0.473

	
51




	
CI90

	
Sanluri

	
1.000

	
1

	
0.544

	
47

	
0.723

	
10

	
0.804

	
49

	
0.490

	
49

	
0.755

	
36

	
0.694

	
15

	
0.6657

	
30

	
-

	
-




	
CI91

	
Sassari

	
1.000

	
1

	
0.733

	
4

	
0.735

	
9

	
0.851

	
29

	
0.599

	
15

	
0.761

	
33

	
0.671

	
24

	
0.7241

	
14

	
0.515

	
37




	
CI92

	
Savona

	
0.980

	
9

	
0.517

	
61

	
0.597

	
48

	
0.817

	
43

	
0.464

	
63

	
0.725

	
42

	
0.593

	
49

	
0.6172

	
55

	
0.556

	
24




	
CI93

	
Siena

	
1.000

	
1

	
0.665

	
13

	
0.720

	
12

	
0.884

	
15

	
0.556

	
26

	
0.811

	
17

	
0.700

	
14

	
0.7211

	
16

	
0.488

	
47




	
CI94

	
Siracusa

	
1.000

	
1

	
0.455

	
82

	
0.488

	
83

	
0.800

	
51

	
0.425

	
77

	
0.637

	
75

	
0.490

	
80

	
0.5482

	
84

	
0.262

	
84




	
CI95

	
Sondrio

	
1.000

	
1

	
0.542

	
49

	
0.570

	
58

	
0.826

	
40

	
0.569

	
24

	
0.703

	
50

	
0.598

	
44

	
0.6340

	
45

	
0.582

	
17




	
CI96

	
Taranto

	
0.907

	
24

	
0.487

	
72

	
0.545

	
70

	
0.763

	
63

	
0.433

	
75

	
0.660

	
66

	
0.534

	
72

	
0.5689

	
74

	
0.357

	
74




	
CI97

	
Tempio Pausania

	
1.000

	
1

	
0.347

	
89

	
0.437

	
89

	
0.498

	
89

	
0.305

	
90

	
0.445

	
94

	
0.422

	
87

	
0.4075

	
96

	
0.515

	
37




	
CI98

	
Teramo

	
0.999

	
2

	
0.556

	
45

	
0.616

	
39

	
0.840

	
32

	
0.487

	
52

	
0.745

	
38

	
0.615

	
39

	
0.6412

	
42

	
0.490

	
46




	
CI99

	
Terni

	
0.905

	
25

	
0.521

	
58

	
0.569

	
59

	
0.785

	
57

	
0.460

	
64

	
0.706

	
49

	
0.572

	
56

	
0.6005

	
62

	
0.547

	
26




	
CI100

	
Torino

	
1.000

	
1

	
0.669

	
11

	
0.659

	
28

	
0.901

	
9

	
0.633

	
7

	
0.772

	
28

	
0.671

	
24

	
0.7169

	
18

	
0.495

	
44




	
CI101

	
Tortolì

	
1.000

	
1

	
0.668

	
12

	
0.839

	
1

	
0.874

	
20

	
0.655

	
5

	
0.852

	
8

	
0.819

	
2

	
0.7824

	
7

	
-

	
-




	
CI102

	
Trani

	
1.000

	
1

	
0.518

	
60

	
0.602

	
45

	
0.826

	
40

	
0.464

	
63

	
0.735

	
39

	
0.596

	
46

	
0.6218

	
51

	
-

	
-




	
CI103

	
Trapani

	
0.918

	
22

	
0.511

	
65

	
0.559

	
64

	
0.723

	
70

	
0.443

	
71

	
0.609

	
82

	
0.526

	
75

	
0.5605

	
79

	
0.240

	
85




	
CI104

	
Trento

	
1.000

	
1

	
0.733

	
4

	
0.787

	
7

	
0.940

	
5

	
0.631

	
8

	
0.928

	
3

	
0.784

	
4

	
0.7985

	
5

	
0.682

	
3




	
CI105

	
Treviso

	
0.928

	
21

	
0.272

	
93

	
0.275

	
95

	
0.318

	
93

	
0.261

	
94

	
0.311

	
98

	
0.290

	
93

	
0.2878

	
100

	
0.465

	
53




	
CI106

	
Trieste

	
0.972

	
13

	
0.564

	
41

	
0.614

	
41

	
0.840

	
32

	
0.505

	
42

	
0.745

	
38

	
0.611

	
40

	
0.6451

	
40

	
0.492

	
45




	
CI107

	
Udine

	
1.000

	
1

	
0.586

	
31

	
0.594

	
49

	
0.838

	
34

	
0.538

	
29

	
0.695

	
55

	
0.617

	
38

	
0.6438

	
41

	
0.577

	
18




	
CI108

	
Varese

	
1.000

	
1

	
0.544

	
47

	
0.577

	
56

	
0.845

	
30

	
0.504

	
43

	
0.701

	
52

	
0.595

	
47

	
0.6265

	
49

	
0.410

	
70




	
CI109

	
Venezia

	
1.000

	
1

	
0.514

	
63

	
0.581

	
54

	
0.690

	
78

	
0.422

	
79

	
0.701

	
52

	
0.553

	
64

	
0.5754

	
72

	
0.635

	
6




	
CI110

	
Verbania

	
1.000

	
1

	
0.612

	
22

	
0.689

	
19

	
0.876

	
18

	
0.574

	
23

	
0.816

	
15

	
0.706

	
12

	
0.7107

	
20

	
0.737

	
1




	
CI111

	
Vercelli

	
0.991

	
5

	
0.506

	
67

	
0.556

	
66

	
0.815

	
45

	
0.460

	
64

	
0.693

	
56

	
0.570

	
57

	
0.5983

	
63

	
0.444

	
64




	
CI112

	
Verona

	
1.000

	
1

	
0.653

	
15

	
0.679

	
22

	
0.853

	
28

	
0.595

	
17

	
0.826

	
11

	
0.675

	
22

	
0.7126

	
19

	
0.507

	
40




	
CI113

	
Vibo Valentia

	
1.000

	
1

	
0.530

	
55

	
0.643

	
33

	
0.828

	
39

	
0.490

	
49

	
0.775

	
26

	
0.640

	
30

	
0.6492

	
38

	
0.208

	
89




	
CI114

	
Vicenza

	
0.969

	
14

	
0.547

	
46

	
0.588

	
53

	
0.807

	
47

	
0.512

	
37

	
0.724

	
43

	
0.602

	
43

	
0.6289

	
48

	
0.479

	
49




	
CI115

	
Villacidro

	
1.000

	
1

	
0.537

	
50

	
0.688

	
20

	
0.809

	
46

	
0.478

	
58

	
0.769

	
29

	
0.656

	
26

	
0.6538

	
35

	
-

	
-




	
CI116

	
Viterbo

	
0.978

	
11

	
0.514

	
63

	
0.557

	
65

	
0.795

	
53

	
0.445

	
70

	
0.650

	
70

	
0.534

	
72

	
0.5812

	
70

	
0.414

	
69




	

	
max

	
1.000

	

	
0.816

	

	
0.839

	

	
0.980

	

	
0.732

	

	
0.958

	

	
0.829

	

	
0.8421

	

	
0.737

	




	

	
min

	
0.516

	

	
0.115

	

	
0.130

	

	
0.070

	

	
0.099

	

	
0.116

	

	
0.135

	

	
0.1105

	

	
0.162

	




	

	
mean

	
0.965

	

	
0.542

	

	
0.587

	

	
0.772

	

	
0.487

	

	
0.689

	

	
0.584

	

	
0.6091

	

	
0.476

	




	

	
st.dev

	
0.074

	

	
0.116

	

	
0.123

	

	
0.153

	

	
0.106

	

	
0.142

	

	
0.119

	

	
0.1228

	

	
0.115

	










Model A has 70 full (100%) efficient cities and a large number of cities having their efficiency scores higher than 90%. Efficiencies are between 51.6% and 100%, while mean efficiency is 96.5%, and standard deviation is only 7.4%. Model A thus remains useless to rank cities with respect to their ecological efficiency because of its scarce discrimination power. On the contrary, models from Model A to Model G which are based on the computation of the cross-efficiency score offer a better discriminatory power. Indeed, the minimum efficiency score decreases from 51.6% (Model A) to 7.0% (Model D), and is never higher than 13.5% (Model G). These models have a higher standard deviation measurement than Model A, confirming their greater discriminatory capability. The analysis of the ranking levels emerging from the cross-efficiency calculation supports the idea that Model A is the worst one. Indeed, this model is able to identify only 39 ranks. The adoption of the cross-efficiency method largely increases the number of ranking levels. The model that calculates ecological efficiency by utilizing the Shannon’s entropy index (XECI model) behaves slightly better than the previous DEA cross-efficiency models, as it identifies 103 ranks. This model behaves even better than the index computed by the Sole24Ore which identifies only 90 ranking levels while covers 107 cities. Thus, there is no indication that the ranking provided by the Sole24Ore is particularly discriminating.



According to the XECI model, mean ecological efficiency relative to cities in sample is 60.91%, the maximum efficiency is 84.21% and the minimum efficiency is only 11.05%. Forty-seven cities achieve an ecological efficiency score which is below average. Moreover, among cities that are placed in the first 10 positions of the ranking, four of them are located in the North of Italy (Aosta, Genova, Milano and Trento), three in the Center of Italy (Livorno, Prato and Roma), two in the Isles (Oristano and Tortolì) and only one in the South (Salerno), even though this latter achieves the higher level in the ranking with the score of 84.21%. These results are not unexpected. Indeed, in the last decade Salerno has become one of the excellent and more livable cities in Southern Italy. Since 2006, the local government has implemented a well-organized and efficient solid waste management, with the doorstep collection of waste, a high rate of recycling, and a strong involvement of the population. In addition, since the middle of the 90s, the city administration has largely invested to improve urban quality and increase the attractiveness of the city internationally. The local governments of Aosta, Genova, Milano and Trento have also adopted good practices to improve the quality of environment and sustainability. They all approved the Plan for Green and/or have implemented Local Agenda 21, while Milano, Trento and Genova implemented the Urban Mobility and Logistics Plan and an Infomobility System aimed at reducing traffic congestion. Trento made a great effort to support the installation of renewable solar facilities and the usage of public transportation, particularly by public employees going at work. Even though the city of Milano did a limited investment to install renewable energy plants on the roofs of public buildings, the local government promoted the adoption of design methods and construction materials improving energy efficiency of public and private buildings. This practice allowed having an important reduction of natural gas consumption.





Focusing on the latest 10 positions in the ranking, six cities are located in the isles (Catania, Enna, Nuoro, Palermo, Tempio Pausania), three in the North (Belluno, Imperia, Treviso), and one in the South of Italy (Benevento). In 2011, the small city of Benevento achieved important environmental targets, i.e., an acceptable rate of differentiated waste collection, an average production of solid waste per inhabitant of about 400 kg and moderate electricity consumption, but it suffered from high levels of pollution in terms of concentration of PM10 and scarce water treatment. Black water treatment still remains a major problem for many cities in the isles, too.



Table 5 presents information relative to the importance degrees utilized to compute the comprehensive ecological efficiency index for sample cities. Data show that Model E has the highest (0.17721) importance degree (Wp), and, as a consequence, the ranking generated by Model E can be adopted as an acceptable substitute to the ranking obtained by calculating XECI. Model E has also the highest diversification degree (dp) measurement. Model G has both low importance and diversification degrees measurements and offers an unacceptable discriminatory capability to generate useful rankings.


Table 5. Importance degrees of DEA cross-efficiency models.


	Importance Degree
	Model B
	Model C
	Model D
	Model E
	Model F
	Model G





	Hp
	0.99477
	0.99491
	0.99486
	0.99450
	0.99483
	0.99512



	dp
	0.00523
	0.00509
	0.00514
	0.00550
	0.00517
	0.00488



	Wp
	0.16869
	0.16425
	0.16586
	0.17721
	0.16662
	0.15737









The Pearson correlations and the Spearman’s rank correlations have been calculated to assess the sensitivity of rankings to the particular DEA model (see Table 6 and Table 7). Particularly, the Spearman’s rank correlation coefficient is a robust measure of similarity between rankings. When the coefficient score is one, the two rankings coincide and, consequently, ranking is not affected by the particular DEA model, while a score of 0 indicates that rankings are absolutely different. The Pearson and Spearman’s rank correlation measurements always score less than one, varying from 0.168 to 0.993 and from 0.188 to 0.989, respectively. As expected, there is a high correlation between DEA cross-efficiencies and the comprehensive index both in terms of efficiency scores and ranks. Both the efficiency measurements and ranks of Model A and the Sole24Ore study are weakly correlated to the efficiency measurements and ranks obtained for the XECI model.


Table 6. Pearson Correlations between ecological efficiency indices.














	
	Model A
	Model B
	Model C
	Model D
	Model E
	Model F
	Model G
	XECI
	Sole24Ore





	Model A
	1.000
	0.592
	0.576
	0.540
	0.597
	0.546
	0.578
	0.583
	0.188



	Model B
	0.592
	1.000
	0.976
	0.876
	0.978
	0.930
	0.970
	0.974
	0.323



	Model C
	0.576
	0.976
	1.000
	0.896
	0.955
	0.966
	0.991
	0.984
	0.349



	Model D
	0.540
	0.876
	0.896
	1.000
	0.895
	0.953
	0.922
	0.951
	0.272



	Model E
	0.597
	0.978
	0.955
	0.895
	1.000
	0.935
	0.969
	0.975
	0.317



	Model F
	0.546
	0.930
	0.966
	0.953
	0.935
	1.000
	0.978
	0.985
	0.365



	Model G
	0.578
	0.970
	0.991
	0.922
	0.969
	0.978
	1.000
	0.993
	0.375



	XECI
	0.583
	0.974
	0.984
	0.951
	0.975
	0.985
	0.993
	1.000
	0.340



	Sole24Ore
	0.188
	0.323
	0.349
	0.272
	0.317
	0.365
	0.375
	0.340
	1.000








Table 7. Spearman Order Correlations between ranks.














	
	Model A
	Model B
	Model C
	Model D
	Model E
	Model F
	Model G
	XECI
	Sole24Ore





	Model A
	1.000
	0.567
	0.568
	0.484
	0.577
	0.510
	0.561
	0.559
	0.168



	Model B
	0.567
	1.000
	0.942
	0.867
	0.960
	0.899
	0.945
	0.965
	0.290



	Model C
	0.568
	0.942
	1.000
	0.858
	0.896
	0.955
	0.983
	0.978
	0.288



	Model D
	0.484
	0.867
	0.858
	1.000
	0.865
	0.908
	0.887
	0.924
	0.243



	Model E
	0.577
	0.960
	0.896
	0.865
	1.000
	0.873
	0.933
	0.947
	0.271



	Model F
	0.510
	0.899
	0.955
	0.908
	0.873
	1.000
	0.959
	0.965
	0.323



	Model G
	0.561
	0.945
	0.983
	0.887
	0.933
	0.959
	1.000
	0.989
	0.331



	XECI
	0.559
	0.965
	0.978
	0.924
	0.947
	0.965
	0.989
	1.000
	0.297



	Sole24Ore
	0.168
	0.290
	0.288
	0.243
	0.271
	0.323
	0.331
	0.297
	1.000















Finally, Table 8 reports measurements relative to the ecological efficiency comprehensive index XECI of cities grouped by geographical area and population class. Three population classes have been used for grouping cities—“less than 80,000” inhabitants, “between 80,000 and 200,000” inhabitants and “more than 200,000” inhabitants—as in the Sole24Ore ranking technical report. Except for the largest cities located in the isles (“more than 200,000” inhabitants cities), the mean comprehensive ecological efficiency generally increases when the size of the cities increases. Indeed, the mean efficiency is between 56.7% and 59.4% in smaller cities (“less than 80,000” inhabitants), and between 62.4% and 65.7% in medium size cities (“between 80,000 and 200,000” inhabitants). In the last group of cities (“more than 200,000” inhabitants), the mean ecological efficiency achieves higher scores in the North, Center and South of Italy, but sharply decreases in the last group of cities located in the isles, because of the lower efficiency values earned by the cities of Catania and Palermo.



Table 8. Measurements of the Shannon’s entropy index (XECI) for cities grouped by geographical area and population size.



	

	
Less Than 80,000

	
between 80,000 and 200,000

	
More Than 200,000




	
Cities

	
XECI

	
Population

	
Cities

	
XECI

	
Population

	
Cities

	
XECI

	
Population






	
North

	
Imperia

	
0.111

	
42,230

	
Treviso

	
0.288

	
80,822

	
Venezia

	
0.575

	
261,555




	
Belluno

	
0.408

	
35,595

	
Alessandria

	
0.550

	
89,613

	
Trieste

	
0.645

	
202,346




	
Pavia

	
0.552

	
68,449

	
Ferrara

	
0.587

	
132,588

	
Padova

	
0.694

	
206,284




	
Mantova

	
0.560

	
46,593

	
Como

	
0.612

	
81,794

	
Verona

	
0.713

	
252,720




	
Pordenone

	
0.566

	
50,499

	
Ravenna

	
0.618

	
153,096

	
Torino

	
0.717

	
871,816




	
Lodi

	
0.579

	
43,285

	
Vicenza

	
0.629

	
111,755

	
Bologna

	
0.727

	
370,402




	
Cremona

	
0.588

	
69,839

	
Udine

	
0.644

	
98,246

	
Genova

	
0.745

	
586,162




	
Rovigo

	
0.590

	
50,040

	
Forlì

	
0.644

	
116,242

	
Milano

	
0.815

	
1,235,543




	
Vercelli

	
0.598

	
46,179

	
Novara

	
0.650

	
101,922

	

	

	




	
Biella

	
0.603

	
43,855

	
Bergamo

	
0.652

	
115,294

	

	

	




	
Lecco

	
0.612

	
46,628

	
Parma

	
0.652

	
175,536

	

	

	




	
Asti

	
0.614

	
73,874

	
Reggio Emilia

	
0.662

	
162,093

	

	

	




	
Savona

	
0.617

	
60,764

	
Piacenza

	
0.664

	
100,109

	

	

	




	
Gorizia

	
0.618

	
35,186

	
Monza

	
0.685

	
119,950

	

	

	




	
Varese

	
0.627

	
79,654

	
La Spezia

	
0.692

	
92,604

	

	

	




	
Cuneo

	
0.632

	
54,857

	
Modena

	
0.701

	
178,962

	

	

	




	
Sondrio

	
0.634

	
21,684

	
Brescia

	
0.717

	
189,331

	

	

	




	
Verbania

	
0.711

	
30,327

	
Bolzano

	
0.724

	
102,214

	

	

	




	
Aosta

	
0.839

	
34,144

	
Rimini

	
0.732

	
139,360

	

	

	




	

	

	

	
Trento

	
0.798

	
113,900

	

	

	




	
mean

	
0.582

	
49,141

	
mean

	
0.645

	
122,771

	
mean

	
0.704

	
498,353




	
max

	
0.839

	
79,654

	
max

	
0.798

	
189,331

	
max

	
0.815

	
1,235,543




	
min

	
0.111

	
21,684

	
min

	
0.288

	
80,822

	
min

	
0.575

	
202,346




	
stdev

	
0.139

	
15,558

	
stdev

	
0.101

	
33,195

	
stdev

	
0.071

	
377,272




	
Center

	
Macerata

	
0.472

	
42,013

	
Pistoia

	
0.470

	
89,154

	
Firenze

	
0.608

	
356,869




	
Frosinone

	
0.479

	
46,803

	
Pisa

	
0.526

	
85,901

	
Roma

	
0.742

	
2,611,397




	
Rieti

	
0.490

	
46,098

	
Arezzo

	
0.532

	
97,965

	

	

	




	
Fermo

	
0.557

	
36,899

	
Lucca

	
0.569

	
86,818

	

	

	




	
Ascoli Piceno

	
0.564

	
50,081

	
Terni

	
0.601

	
109,295

	

	

	




	
Viterbo

	
0.581

	
62,947

	
Pesaro

	
0.620

	
94,440

	

	

	




	
Massa

	
0.615

	
68,847

	
Latina

	
0.631

	
117,746

	

	

	




	
Grosseto

	
0.677

	
78,475

	
Ancona

	
0.660

	
100,696

	

	

	




	
Siena

	
0.721

	
52,843

	
Perugia

	
0.664

	
161,910

	

	

	




	

	

	

	
Livorno

	
0.788

	
156,891

	

	

	




	

	

	

	
Prato

	
0.802

	
185,153

	

	

	




	
mean

	
0.573

	
53,889

	
mean

	
0.624

	
116,906

	
mean

	
0.675

	
1,484,133




	
max

	
0.721

	
78,475

	
max

	
0.802

	
185,153

	
max

	
0.742

	
2,611,397




	
min

	
0.472

	
36,899

	
min

	
0.470

	
85,901

	
min

	
0.608

	
356,869




	
stdev

	
0.087

	
13,539

	
stdev

	
0.103

	
34,790

	
stdev

	
0.094

	
1,594,192




	
South

	
Benevento

	
0.212

	
61,573

	
Catanzaro

	
0.534

	
89,523

	
Taranto

	
0.569

	
200,255




	
Crotone

	
0.532

	
58,913

	
Lecce

	
0.566

	
89,492

	
Napoli

	
0.693

	
961,884




	
Chieti

	
0.561

	
51,513

	
Pescara

	
0.589

	
117,239

	
Bari

	
0.723

	
315,946




	
Isernia

	
0.564

	
21,957

	
Reggio Calabria

	
0.594

	
180,949

	

	

	




	
Cosenza

	
0.570

	
69,502

	
Foggia

	
0.635

	
147,481

	

	

	




	
Campobasso

	
0.586

	
48,798

	
Andria

	
0.636

	
99,976

	

	

	




	
L'Aquila

	
0.610

	
67,196

	
Brindisi

	
0.661

	
88,698

	

	

	




	
Trani

	
0.622

	
55,745

	
Barletta

	
0.681

	
94,122

	

	

	




	
Teramo

	
0.641

	
54,200

	
Salerno

	
0.842

	
132,794

	

	

	




	
Potenza

	
0.646

	
66,771

	

	

	

	

	

	




	
Vibo Valentia

	
0.649

	
33,422

	

	

	

	

	

	




	
Caserta

	
0.698

	
75,578

	

	

	

	

	

	




	
Avellino

	
0.701

	
54,309

	

	

	

	

	

	




	
Matera

	
0.720

	
59,750

	

	

	

	

	

	




	
mean

	
0.594

	
55,659

	
mean

	
0.638

	
115,586

	
mean

	
0.662

	
492,695




	
max

	
0.720

	
75,578

	
max

	
0.842

	
180,949

	
max

	
0.723

	
961,884




	
min

	
0.212

	
21,957

	
min

	
0.534

	
88,698

	
min

	
0.569

	
200,255




	
stdev

	
0.124

	
14,158

	
stdev

	
0.090

	
32,357

	
stdev

	
0.082

	
410,426




	
Isles

	
Enna

	
0.369

	
27,907

	
Siracusa

	
0.548

	
118,888

	
Catania

	
0.221

	
294,461




	
Agrigento

	
0.403

	
58,216

	
Cagliari

	
0.700

	
149,937

	
Palermo

	
0.335

	
658,078




	
Tempio Pausania

	
0.407

	
13,951

	
Sassari

	
0.724

	
123,677

	
Messina

	
0.624

	
243,380




	
Nuoro

	
0.431

	
36,682

	

	

	

	

	

	




	
Caltanissetta

	
0.436

	
61,697

	

	

	

	

	

	




	
Iglesias

	
0.464

	
27,688

	

	

	

	

	

	




	
Trapani

	
0.561

	
69,177

	

	

	

	

	

	




	
Ragusa

	
0.594

	
69,832

	

	

	

	

	

	




	
Olbia

	
0.621

	
53,079

	

	

	

	

	

	




	
Lanusei

	
0.627

	
5,488

	

	

	

	

	

	




	
Villacidro

	
0.654

	
14,291

	

	

	

	

	

	




	
Sanluri

	
0.666

	
8,460

	

	

	

	

	

	




	
Carbonia

	
0.729

	
28,885

	

	

	

	

	

	




	
Oristano

	
0.762

	
31,166

	

	

	

	

	

	




	
Tortolì

	
0.782

	
10,716

	

	

	

	

	

	




	
mean

	
0.567

	
34,482

	
mean

	
0.657

	
130,834

	
mean

	
0.393

	
398,639




	
max

	
0.782

	
69,832

	
max

	
0.724

	
149,937

	
max

	
0.624

	
658,078




	
min

	
0.369

	
5,488

	
min

	
0.548

	
118,888

	
min

	
0.221

	
243,380




	
stdev

	
0.140

	
22,601

	
stdev

	
0.095

	
16,716

	
stdev

	
0.208

	
226,127














5. Conclusions


The prosperity and the development of nations are largely influenced by the growth of their cities. While cities are an important source of growth and economic competitiveness, at the same time, they are huge consumers of resources and energy, and producers of waste and greenhouse gas emissions.



In the last two decades, a number of factors have induced the policy makers and city planners to rethink the development and management model of cities, such as the advent of climate change, the shortage of fossil fuels and natural resources, the high costs related to the solid waste disposal, the increasing traffic congestion and the unpropitious impact of pollution on human health. In this context, improving the city ecological efficiency has become an important task of local administrators to make their cities more attractive, livable and environmentally sustainable. Measuring the results of the policies and actions implemented to enhance the sustainability level of cities is thus necessary to assess their effectiveness and efficiency. Rankings and benchmarking studies can be indeed an important tool for the city administration to make the city more ecologically efficient and environmentally sustainable, attractive and, finally, more competitive. Placing at a high rank of the ranking helps improving the image of the city and the reputation of the local government, and, as a consequence, can have an important role to support the marketing strategy of the city and attract funds from the central government and the private sector.



However, ranking metrics and methodologies often suffer from methodological drawbacks and remain opaque with a high degree of subjectivity related to the choice of indicators and, particularly, weighting schemes. Indeed, using ranking methods based on subjective weighting schemes may be inappropriate as weights reflect the preferences of a specific audience. Rankings can be very sensitive to weights and even very small changes in the weighting scheme can seriously impact the ranking order, and it is common that they are many times open to manipulation.



This paper has proposed a robust and transparent method that implements Data Envelopment Analysis and the Shannon’s entropy index to construct an aggregated measurement of city sustainability in the form of an ecological efficiency comprehensive index. The proposed methodological framework has the advantage to combine together a set of indicators that reflect the diversity of many ecological efficiency areas and different evaluation perspectives. In the method, the weighting scheme used to aggregate partial indicators is generated endogenously from the data. In addition, the flexibility of the method allows the inclusion of a variable set of indicators in order to customize the measurement of the ecological efficiency index to the specific needs of the context, and, more important, to the availability of data.



As an empirical application, the index has been used to measure the ecological efficiency for a sample of 116 Italian provincial capital cities. The outcome of city rankings highlights a remarkable variability in the sample of cities. The score of the comprehensive index that measures the ecological efficiency is between 11.05% and 84.21%. In particular, on the one hand, there are a large number of cities where, over years, the local governments planned and implemented several projects and specific policies to improve urban environmental sustainability. These cities achieved a higher ecological efficiency score and perform better on the ranking. This is the case of Salerno (84.2%) in the South of Italy, Aosta (83.9%), Genova (74.5%), Milano (81.5%) and Trento (79.8%) in the North, Livorno (78.8%), Prato (80.2%) and Roma (74.2%) in the Center, and Oristano (76.2%) and Tortolì (78.2%) in the Isles. On the other hand, there are urban contexts where there is still a lack of attention to environmental issues and sustainability, above all as a consequence of the territorial, economic and infrastructural divide. As a general behavior, the ecological efficiency measurement increases when the size of the city increases. However, the largest cities which are located in the Isles are poorly performing. Differences between cities can be even more marked than differences between regions.



Results show that the proposed DEA framework based on the implementation of various cross-efficiency DEA models and the Shannon’s entropy index produces an evaluation of the city ecological efficiency that differs from that provided by the economic newspaper Sole24Ore which is typically assumed as a reference in Italy for city comparisons. Main reasons of this difference are the utilization of a different set of environment-related statistics and of subjective weights introduced in the calculation of the index provided by the Sole24Ore study. On the contrary, the adoption of DEA as a general method limits the subjectivity needed for the analysis to the choice of the DEA models (i.e., the input and output variables). In this way, a ranking of cities with respect to their ecological efficiency can be generated by means of a more objective methodology. Therefore, using DEA as a method for generating an ecological efficiency measurement allows having some degree of standardization and comparability. Moreover, the DEA-Shannon’s entropy based index provides useful and easy-to-communicate information to rank and compare cities with respect to their environmental sustainability with an acceptable discrimination capability.



The city governments can use the ranking measurements generated by the index to conduct useful benchmarking analyses, and identify the city strengths and weaknesses compared with peer cities. Furthermore, performing a more in-depth analysis within the group of city peers looking at the measurements of individual indicators used to construct the comprehensive measurement can suggest where the city has to improve to increase its progress to ecological efficiency by monitoring the performance of the city over time. Benchmarking and city rankings are fundamental pre-requisites for the political decision makers and administrators to give account of their actions, forcing them to make their decisions transparent and comprehensible to stakeholders, becoming an important tool to promote democracy and participation by attracting attention and stimulating discussion on sustainable strategies, and supporting shared learning. Thus, the proposed index becomes an indispensable tool for the development of plans and policy measures to promote the ecological efficiency in the cities.



Of course, measuring the city ecological efficiency is not an exact science. The development of the proposed index is a work in progress, and a longitudinal analysis is necessary to further test its strengths or weaknesses. It has been computed for one single year, providing a static representation of the ecological efficiency scores of the cities in the sample, but its calculation can be easily extended to several years if reliable and objective data are available to perform benchmarking analyses over time. There are some critical non-discretionary variables that are beyond the control of the city government which can influence the ecological efficiency measurement and, henceforth, need consideration. A more in depth research effort should take into account factors such as climate, territory topology, infrastructure development, and so on. Unlike country or regional data which are generally available thanks to the work carried on by the National Statistical Offices, collecting data at the city level is still at the beginning. Therefore, the lack of reliable, high quality and cost effective data is a major challenge, no matter how the ranking methodology can be rigorous and supported by a sound theory. Moreover, even though the relevant advantage of the method is its objectivity, the extreme flexibility of DEA allows the introduction in the model of thresholds, weight restrictions, and economic payoffs that take into account specific policy goals.



It should be recognized that city comparisons and the examination of the effect of policies and measures to support city sustainability are complex and require a more in depth analysis than that allowed by a single ranking index. Thus, caution is necessary when the proposed index is used to assess the efficacy of environmental policies. According to literature relative to the measurement of urban sustainability and ecological efficiency no single indicator set or index are appropriate for every application and implementable in practice. Henceforth, the proposed comprehensive index should not be considered as a substitute, but rather utilized together with other methods.
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Appendix


Supposing that the set of input variables is partitioned into the subset of discretionary input variables (ID) and the subset of non-discretionary (uncontrollable) input variables (IND) so that ID∪IND=I={1,…,m} and ID∩IND=∅, models (3), (4), (5) and (6) are modified as follows:
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