Next Article in Journal
Coupling an Intercalibration of Radiance-Calibrated Nighttime Light Images and Land Use/Cover Data for Modeling and Analyzing the Distribution of GDP in Guangdong, China
Previous Article in Journal
Vegetation Carbon Storage, Spatial Patterns and Response to Altitude in Lancang River Basin, Southwest China
Article Menu

Export Article

Open AccessArticle
Sustainability 2016, 8(2), 109; doi:10.3390/su8020109

Seismic Response and Performance Evaluation of Self-Centering LRB Isolators Installed on the CBF Building under NF Ground Motions

1
and
2,3,*
1
Department of Civil and Environmental Engineering, South Dakota State University, Brookings, SD 57007, USA
2
Department of Civil and Environmental Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 22012, Korea
3
Head of Center, Incheon Disaster Prevention Research Center, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 22012, Korea
*
Author to whom correspondence should be addressed.
Academic Editor: Marc A. Rosen
Received: 2 December 2015 / Revised: 17 January 2016 / Accepted: 19 January 2016 / Published: 26 January 2016

Abstract

This paper mainly treats the seismic behavior of lead-rubber bearing (LRB) isolation systems with superealstic shape memory alloy (SMA) bending bars functioning as damper and self-centering devices. The conventional LRB isolators that are usually installed at the column bases supply extra flexibility to the centrically braced frame (CBF) building with a view to elongate its vibration period, and thus make a contribution to mitigating seismic acceleration transferred from ground to structure. However, these base isolation systems are somehow susceptible to shear failure due to the lack of lateral resistance. In the construction site, they have been used to be integrated with displacement control dampers additionally withstanding lateral seismic forces. For this motivation, LRB isolation systems equipped with superelastic SMA bending bars, which possess not only excellent energy dissipation but also outstanding recentering capability, are proposed in this study. These reinforced and recentering LRB base isolators are modeled as nonlinear component springs, and then assigned into the bases of 2D frame models used for numerical simulation. Their seismic performance and capacity in the base-isolated frame building can be evaluated through nonlinear dynamic analyses conducted with historic ground motion data. After comparative study with analyses results, it is clearly shown that 2D frame models with proposed LRB isolators generally have smaller maximum displacements than those with conventional LRB isolators. Furthermore, the LRB isolation systems with superelastic SMA bending bars effectively reduce residual displacement as compared to those with steel bending bars because they provide more flexibility and recentering force to the entire building structure. View Full-Text
Keywords: recentering capability; energy dissipation; Shape Memory Alloy (SMA); Lead-rubber Bearing (LRB); base-isolated frame recentering capability; energy dissipation; Shape Memory Alloy (SMA); Lead-rubber Bearing (LRB); base-isolated frame
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Seo, J.; Hu, J.W. Seismic Response and Performance Evaluation of Self-Centering LRB Isolators Installed on the CBF Building under NF Ground Motions. Sustainability 2016, 8, 109.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sustainability EISSN 2071-1050 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top