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Abstract: Many studies were conducted to investigate arsenic mobilization in different alluvial plains
worldwide. However, due to the unique endemic disease associated with arsenic (As) contamination
in Taiwan, a recent research was re-initiated to understand the transport behavior of arsenic
in a localized alluvial plain. A comprehensive approach towards arsenic mobility, binding, and
chemical speciation was applied to correlate groundwater hydrogeochemistry with parameters of
the sediments that affected the As fate and transport. The groundwater belongs to a Na-Ca-HCO3

type with moderate reducing to oxidizing conditions (redox potential = −192 to 8 mV). Groundwater
As concentration in the region ranged from 8.89 to 1131 µg/L with a mean of 343 ± 297 µg/L, while
the As content in the core sediments varied from 0.80 to 22.8 mg/kg with a mean of 9.9 ± 6.2 mg/kg.
A significant correlation was found between As and Fe, Mn, or organic matter, as well as other
elements such as Ni, Cu, Zn, and Co in the core sediments. Sequential extraction analysis indicated
that the organic matter and Fe/Mn oxyhydroxides were the major binding pools of As. Batch
adsorption experiments showed that the sediments had slightly higher affinity for As(III) than for
As(V) under near neutral pH conditions and the As adsorption capacity increased as the contents of
Fe oxyhydroxides as well as the organic matter increased.

Keywords: adsorption; alluvial aquifers; arsenic; speciation; sequential extraction

1. Introduction

High arsenic (As) concentrations of natural origin are often found in groundwater of alluvial
aquifers in different parts of the world. Such As-enriched aquifers also exist in the coastal Chianan
Plain of southwestern Taiwan. This region is unique for its endemic cases of a peripheral vascular
disease (i.e., gangrene), known as Blackfoot Disease (BFD), since 1960s [1]. The occurrence of BFD was
strongly correlated with the direct ingestion of groundwater containing, on average, 671 ± 149 µg/L
total dissolved As [2]. Several works addressed their heterogeneous distribution in the alluvial
aquifers of the Chianan Plain and a number of geogenic sources and release mechanisms of As were
reported in this region [3–5]. Among them, reductive dissolution of As-bound Fe/Mn oxyhydroxides
in organic-rich sediments was considered as one of the major processes [4–6]. Other processes, like
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pyrite oxidation and siderite dissolution were also responsible for high As in Taiwan [7]. Chemical
weathering of As-rich silicate minerals such as biotite in the Western Foothill Belt of the Central
Mountain Range of Taiwan might also be one of the sources of As contamination in the Chianan
Plain [8,9].

Spatial variation of As distribution in Chianan plain was controlled by local hydrogeological
factors [9]. However, vertical distribution of As did not reflect any significant correlation with
the depth [4–6]; arsenic in different solid phases and its associated release processes were mainly
responsible for such As enrichment. However, in-depth cross sectional studies on subsurface sediments
are limited, which may make it difficult to elucidate the characteristics of solid phase As uptake and
its release mechanism. Although the arsenic-laden groundwater is no longer used for drink water
purpose, it is still used in fishery of the region. Thus, developing a cost-effective method to remove
arsenic from water remains as a challenge.

Sequential extraction may help in explaining partitioning of As in different solid phases in
subsurface sediments as well as identifying the chemical speciation of As. Arsenic in solid phases
was generally the result of chemisorption of As(V) or As(III) on soil colloid surfaces, mainly Fe
oxide/hydroxides [10], in addition to be retained by minerals like biotite, goethite, and ferrihydrite [11].
In calcareous sediments, As could be adsorbed on carbonate minerals [10]. Different affinities of As(III)
and As(V) can influence the extent of their adsorption on sediment constituents, which in turn affects
the As concentrations in natural water [12]. Iron oxides have positive surface charges possessing
high capability to adsorb negative-charged arsenate (e.g., H2AsO4

−, and AsO4
3−) in water, whereas

reduced As in the form of uncharged complex (e.g., H3AsO3) is less adsorbed by oxides and other
minerals. Thus, As(III) is more mobile than other As species. For these reasons, chemical speciation
analysis of sediment samples is essential to identify the forms of As present along the soil profile,
which helps understand its transport, fate, and availability in natural systems.

The major objectives of this study are to: (i) understand the distribution of As in groundwater
and core sediments; (ii) study the distribution of As among various hosting solids, metal-sediment
interactions (mainly Mn and Fe), and As speciation in sediments; (iii) elucidate the adsorption
characteristics of arsenic speciation in aquifers; and (iv) understand the binding, mobility, and fate of
As in the As-enriched aquifer.

2. Materials and Methods

2.1. Geologic Setting

The alluvial Chianan Plain is located in the southwestern part of Taiwan (Figure 1) with an area of
2400 km2. It is surrounded by the Peikang River in the north, the Ernjen River in the south, the Western
Foothill Belt of the Central Mountain Range in the east, and the Taiwan Strait in the west. Subsurface
sediments of this coastal plain were deposited during the Quaternary period in a deltaic environment
where the groundwater was reducing in nature [4,5,13]. The plain is covered by alluvial deposits
originating from the Western Foothill Belt of the Central Mountain Range through erosion and fluvial
transport [6,9]. The sediments deposited into the plain are fine-grained clastic, while the subsurface
water is highly saline, especially near the coastal areas. The sediments, deposited in shallow to deep
sea environments, locally known as the Gutingkeng Formation at a depth of 100 to 280 m, often contain
high amounts of organic ooze and humic acids [14]. Detailed local geological and hydrogeological
setting was reported elsewhere [9].

2.2. Drilling and Sediment Collection

One borehole was drilled to a depth of 200 m in the town of Yichu in southwestern Taiwan.
The site is located in the transition zone between the BFD-affected area and the non-affected area
(Figure 1). The core sediments were sampled using a split-spoon sampler with rotary drill rigs at
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various depths and were immediately sealed in zipper packets and preserved in an anaerobic chamber
for speciation analysis.

Sustainability 2016, 8, 1305 3 of 17 
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Figure 1. Study area of the Chianan Plain in southwestern Taiwan, which includes the drilling site at
Yichu. The locations of the groundwater sampling points are also marked.

2.3. Core Sediments Characterization

The particle size distribution was analyzed using the pipette method [15]. The specific surface
area (SSA) and cation exchange capacity (CEC) were determined by the methylene blue method.
The total organic carbon (TOC) was measured using a LECO carbon analyzer after the sediments were
first treated with 2 mol/L H2SO4 to remove free inorganic carbonates. The trace elements of core
sediment were analyzed using ICP-MS version (Agilent 7500 cs, Santa Clara, CA, USA).

2.4. Groundwater Sampling and Analysis

Twenty-nine samples of groundwater were collected from the surrounding areas near the drilling
site. Temperature, pH, electrical conductivity, salinity, total dissolved solids (TDS), and uncorrected
oxidation-reduction potential (ORP) were measured on site using portable instruments. Groundwater
samples were acidified with HNO3 or HCl to pH 2 for major cations and As speciation analyses
and un-acidified for major anion analyses. The major cations of Ca2+, Mg2+, K+, Na+, and NH4

+

and major anions of Cl−, NO3
−, NO2

−, SO4
2−, and F− were analyzed with an ion chromatograph

(Dionex, Suunyvale, CA, USA) using external calibration (accuracy: ±6%; precision: ±5%). Alkalinity
and phosphate were analyzed spectrophotometrically. Dissolved organic carbon (DOC) was analyzed
using a carbon analyzer (Analytikjena Multi N/C 2100, Überlingen, Germany). Elemental composition
was measured using ICP-MS (Agilent 7500 cs). Arsenic speciation was performed with the HG-AFS
technique using the Millennium Excalibur system PSA 10.055 (PSA Analytical Ltd., Kent, UK) with a
detection limit of 1 µg/L.

2.5. Sequential Extraction Procedures

Sequential extraction of As was intended to determine the content of As bounded on different
solid phases: (1) water soluble; (2) clay and carbonate; (3) Mn oxyhydroxides; (4) Fe oxyhydroxides;
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and (5) organic matter and sulfides in As-enriched sediments [16]. For all extraction 2 g of sediment
and 16 mL of extraction solution was used. The sediments were mixed with 1 mol/L MgCl2 for 1 h in
extraction (1). For extraction (2), 1 mol/L sodium acetate/acetic acid buffered at pH 4.5 was mixed
with the residues from extraction (1) for 15 h. For extraction (3), residues from extraction (2) was
extracted with 40 mL of 0.04 mol/L hydroxylamine hydrochloride in 25% acetic acid at 95 ◦C for 5 h.
For extraction (4), 100 mL of 0.2 mol/L oxylate + 0.2 mol/L oxalic acid was used for extractions of
residues from extraction (3) and the extraction lasted for 4 h in the dark. For extraction (5), 6 mL of
0.02 N HNO3 and 10 mL of 30% H2O2 were mixed with the residues from extraction (4) and heated to
85 ◦C for 2 h. The amounts of the residual fraction of As were computed as the difference between
bulk concentration (determined by Aqua Regia total digestion) and the sum of leachable fractions.

2.6. Arsenic Speciation

The As speciation analyses were determined using the method by Georiadis [17]. A mild extraction
media of phosphate solution [18] and sodium diethyldithiocarbamate trihydrate (NaDDC) were used
as extractants. The supernatant solution was filtered through a 0.45 µm PVDF Acrodisc® syringe
(Pall Corp., Port Washington, NY, USA) filter into a 2 mL HPLC vial and was immediately analyzed
using the HG-AFS technique with the Millennium Excalibur system.

2.7. Batch Study for As Adsorption

Samples of fine particles with relatively high As contents were selected for further adsorption
experiments to determine the As adsorption capacity. To each 50 mL centrifuge tube, 1 g of sediments
and 10 mL of As(V) or As(III) solution made from Na2HAsO4·7H2O or NaAsO2 at concentrations of
0.1, 0.4, 0.6, 0.8, 1.2, 1.6, and 2.0 mM were mixed for 24 h on a shaker table. No background electrolyte
was added. The solution pH was between 7.6 and 8.8, under which the As(V) was in HAsO4

2− form
while As(III) was in H3AsO3 form, and the pH was not maintained. After centrifugation, the As
concentrations in the supernatants were measured and the amount of As adsorbed were determined
by the differences between the initial and the equilibrium As concentrations. The adsorption data were
fitted to the Langmuir adsorption isotherm and the As adsorption capacity was then calculated.

3. Results and Discussion

3.1. Chemical Characterization of Sediments

A total of 38 core sediment samples at various depths down to 200 m were analyzed for their
physico-chemical characteristics, particle size distribution and bulk geochemical (major ions and trace
elements) composition. The average clay percentage was predominantly higher than that of sand
and silt throughout the entire core, with the highest value (74%) at 85 m (Figure 2a). Overall, the
percentage of sand was slightly decreased with depth, whereas the percentage of silt was about the
same throughout the entire depth of the core, exhibiting a slight increasing trend with depth for clays.
The sediments at alluvial Chianan Plain at various depths were similar to those of the Bengal Delta
Plain [5,6].

The Yichu core sediments were reddish brown to gray in color with alteration of light and dark
sediments along the entire depth. The gray color of the subsurface sediments suggested reduced
environment in these aquifers, and the adsorbed As could be released to the groundwater via reductive
dissolution of Fe/Mn oxyhydroxides [19]. This suggested potential release of the adsorbed As if the
geochemical parameters such as pH and ORP changed.

The elemental composition of the Yichu core sediments is presented in Table 1. The As, Fe, and
Mn contents showed a large variation with depth (Figure 3), ranging from 0.80 to 22.8 mg/kg (mean
9.9 ± 6.2 mg/kg), 1.0% to 5.6% (mean 2.6% ± 1.0%), and 69 to 1511 mg/kg (mean 429 ± 306 mg/kg),
respectively. Highest levels of As were found at depths of 15, 40, 90, 100, 180, and 190 m. Regression
analysis between As and other elements and TOC (Figure 4) showed positive correlations. For Fe, Mn,
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and TOC, the correlations were R2 = 0.72, 0.81, and 0.55, respectively, with p < 0.05, suggesting their
strong association. Positive correlations between As and Fe (R2 = 0.65, p < 0.05), or Mn (R2 = 0.42,
p < 0.05), were also observed in a previous study of sediments collected from an adjacent Budai area
(Figure 1), which indicates that Fe and Mn in the sediments could be in the form of adsorbed phases
on fine-grain (clay size) mineral surfaces [20]. Positive correlations were also found between As and
Ni (R2 = 0.55, p < 0.05) or Co (R2 = 0.65, p < 0.05) for sideraphile, and between As and Cu (R2 = 0.50,
p < 0.05), or Zn (R2 = 0.54, p < 0.05), for chalcophile, indicating that sulfide solids may serve as local
sinks for As under sulfate-reducing conditions.
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Table 1. Elemental composition of core sediment samples of Yichu, Chianan Plain.

Sample
Depth (m)

As
(mg/kg) Fe (%) Mn

(mg/kg)
Ni

(mg/kg)
Co

(mg/kg)
Pb

(mg/kg)
Zn

(mg/kg)
Cu

(mg/kg) Ca (%) Al (%) P (%) Mg (%) K (%) NH4
(mg/kg)

Cl−

(mg/kg)
NO3

−

(mg/kg)
HCO3

−

(mg/kg)

5 6 1.83 234 18.8 8.4 9.1 49 8 NA NA NA NA NA 2.29 0.41 105.4 57.42
10 13.5 3.19 500 29.6 13.2 18.1 75 15.5 0.41 1.09 0.036 0.43 0.18 2.04 2.56 6.98 115.0
15 23 3.77 742 35.1 15.7 22.3 89 18.9 0.93 1.56 0.045 0.8 0.2 3.47 0.81 10.65 63.82
20 10.9 2.07 337 18.7 8 12 53 9.5 1.05 1.71 0.049 0.92 0.2 2.58 0.62 16.92 64.49
25 6.5 1.9 294 17.7 7.9 8.3 52 5.3 0.74 0.95 0.032 0.48 0.12 2.51 0.35 6.07 67.97
30 8.4 2.35 334 23.8 9.9 11.1 60 8.1 0.75 0.98 0.031 0.52 0.12 2.99 1.27 0.776 81.91
35 6.8 2.26 351 20.4 9.3 11 54 7.6 0.82 1.16 0.038 0.62 0.13 3.36 1.11 0.745 77.33
40 18 3.81 672 38.1 16 28.2 102 28.8 0.9 1.08 0.042 0.62 0.13 3.81 11.29 0.454 134.2
45 6.6 2.03 351 21.6 9.5 12.2 51 7.7 1.23 1.8 0.049 1.05 0.17 BDL 9.04 0.217 92.42
50 14 3.92 808 38.9 18 21.9 86 19.5 1.01 0.99 0.069 0.62 0.13 5.66 7.54 0.195 50.54
55 12 2.1 431 22.1 10.2 11.5 55 9.2 1.2 1.83 0.052 1.07 0.21 7.90 3.57 31.67 71.16
60 2.7 1.96 354 19.4 8.6 10.4 51 9.5 1.09 1 0.035 0.63 0.13 7.90 6.26 1.857 83.47
65 2.7 1.92 262 20.2 8.2 10.3 67 7.9 0.93 1.04 0.043 0.55 0.17 3.39 1.84 41.11 65.74
70 3.6 1.86 99 19.6 8.1 8.6 54 9.3 0.8 0.98 0.036 0.52 0.12 3.65 0.34 4.29 81.33
75 6.9 2.36 136 34 17.4 18.4 78 16.6 0.12 1.05 0.036 0.37 0.14 10.73 1.15 189.3 81.33
80 6.4 3.69 815 31.6 14 18.8 82 17.7 0.18 1.44 0.043 0.51 0.13 2.78 0.71 82.06 86.42
85 13 4.21 531 41.1 16.6 21.8 97 22 0.57 1.68 0.055 0.71 0.14 5.61 0.76 74.12 36.6
90 22.8 2.46 504 21.9 10.4 12.1 57 10 0.67 2.03 0.046 0.96 0.18 2.72 0.33 73.09 34.31
95 0.8 1.04 69 14.2 7.7 8.4 41 5.1 0.1 1.25 0.038 0.36 0.15 5.27 0.64 5.45 31.47

100 21.5 2.35 411 21.1 9.8 12 52 8.5 0.07 0.58 0.013 0.19 0.1 3.09 0.58 0.184 76.45
105 3.4 2.55 622 17.4 8.9 9.9 43 6.6 0.14 1.22 0.051 0.33 0.14 3.21 0.39 3.113 75.08
110 13.4 1.98 448 18.7 8.4 10.3 45 7.7 0.17 0.88 0.026 0.29 0.12 2.99 0.23 59.77 87.39
115 4 1.42 181 15.4 7.3 8.1 42 5.8 0.45 0.85 0.025 0.38 0.11 6.45 0.32 77.08 129.62
120 7.9 2.17 129 23.4 9.2 11.3 53 7.3 0.36 0.78 0.022 0.33 0.12 4.6 0.18 60.81 17.08
125 8.4 2.48 391 25.5 11.1 12.3 62 22.4 0.11 0.99 0.032 0.42 0.13 1.59 0.32 76.34 34.56
130 5.9 2.72 164 25.5 11.2 13.4 71 14.2 0.82 1.22 0.045 0.56 0.14 1.58 0.31 32.26 130.1
135 1.7 2.43 157 26.9 10 16.1 85 13.3 0.08 1.54 0.038 0.47 0.17 2.22 0.23 18.02 45.75
140 7.6 1.91 203 19.9 9.2 12 49 7.4 0.12 1.45 0.026 0.55 0.15 2.56 0.32 34.06 41.37
145 17.3 3.47 805 32.9 15.3 19.1 83 16 0.12 0.95 0.034 0.37 0.12 4.89 0.34 10.53 128.7
150 4 1.39 112 14.6 7.1 8 37 4.4 1.12 1.59 0.048 0.83 0.14 2.41 0.16 6.89 82.59
155 17.5 5.6 1511 38.8 16.8 24.5 101 22.7 0.08 0.69 0.027 0.27 0.1 3.24 0.24 3.71 30.84
160 10.3 4.78 1248 36.2 15.3 26.3 92 20.4 1.73 1.9 0.125 0.91 0.17 7.38 0.07 5.384 BDL
165 5.2 1.24 82 12.9 6.5 6.5 37 5 0.98 1.81 0.102 0.88 0.17 1.99 0.15 4.148 97.6
170 3.9 1.58 146 14.4 6.5 7.4 45 5.3 0.05 0.69 0.013 0.25 0.1 63.46 3.53 3.415 106.5
175 16.3 3.27 478 28.5 13 20.1 78 18.7 0.22 0.83 0.02 0.34 0.1 81.35 8.05 6.05 76.68
180 18.8 3.08 422 30.8 14 18 79 15.7 0.95 1.5 0.044 0.8 0.14 64.42 4.11 3.191 57.51
185 4.7 2.57 338 23 8.3 11.6 65 7 0.91 1.44 0.042 0.8 0.13 53.68 4.29 11.79 75.08
190 18.4 4.05 694 34.4 15.6 33.5 102 21.2 0.75 1.33 0.038 0.7 0.15 2.29 0.40 105.4 57.42
195 13.2 2.95 400 27.4 10.9 17.4 74 11 1.07 1.97 0.05 1.08 0.19 2.04 2.56 6.98 115.0
200 9.3 2.7 398 25.8 10.3 15.7 73 10 0.87 1.46 0.047 0.77 0.17 3.47 0.81 10.65 63.82

Min 0.80 1.04 69 12.9 6.5 6.5 37.0 4.4 0.05 0.58 0.013 0.19 0.10 0 0.07 0.184 0
Max 22.8 5.60 1511 41.1 18.0 33.5 102 28.8 1.73 2.03 0.125 1.08 0.21 81.4 11.3 189.3 134.2

Mean 9.93 2.64 429.1 25.0 11.0 14.7 65.5 12.2 0.63 1.26 0.042 0.60 0.14 9.94 1.96 29.78 72.6
STD 6.20 1.00 306.6 7.82 3.4 6.36 19.3 6.29 0.44 0.39 0.020 0.25 0.03 19.2 2.79 40.99 31.8

Median 8.15 2.40 372.5 23.2 9.95 12.0 61.0 9.50 0.75 1.22 0.038 0.55 0.14 3.30 0.63 8.76 75.1
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3.2. Hydrogeochemistry and Occurrences of As in Groundwater

The physico-chemical characteristics of the groundwater collected from the alluvial Chianan
Plain are presented in Tables 2 and 3 (n = 29). The hydrochemical properties of the groundwater in
the neighboring areas of the drilling site exhibited considerable variations in a range of well depth
from 3 m to 313 m, i.e., water temperature (18.1 to 32.3 ◦C; mean 25.6 ± 2.86 ◦C), pH (7.05 to 8.34;
mean 7.64 ± 0.35), EC (0.85 to 67.9 mS/cm; mean 4.32 ± 12.3 mS/cm), salinity (0.2‰ to 46.2‰;
mean 2.46‰ ± 8.44 ‰), TDS (408 to 2750 mg/L; mean 998 ± 678 mg/L), DOC (11.3 to 204 mg/L,
mean= 107 ± 52.2 mg/L), and ORP (−192 to 8 mV; mean −107 ± 49.2 mV). The alkalinity ranged from
154 to 340 mg/L (mean 183 ± 31.5 mg/L).

Among the major anions, chloride ranged from <0.1 to 332 mg/L (mean 103 ± 91.4 mg/L),
and nitrate varied from 3.50 to 7.80 mg/L (mean 4.60 ± 1.80 mg/L). Elevated levels of sulfate
were observed up to 385 mg/L (mean 17.1 ± 70.8 mg/L). Fluoride was mostly absent with the
exception of four locations showing the maximum at 3.16 mg/L. Similarly, nitrite was only found in
six sites (mean 105 ± 261 mg/L). Phosphate showed a meager variation between <0.1 to 6.08 mg/L
(mean 1.91 ± 1.40 mg/L). Among the major cations, Na+ was found to vary within 1.41 to 871 mg/L
(mean 320 ± 224 mg/L). NH4

+ was observed at five sites (mean 3.81 ± 7.32 mg/L). Other cations K+

(3.34 to 59.8 mg/L; mean 15.4 ± 12.2 mg/L), Mg2+ (7.37 to 105 mg/L; mean 49.9 ± 28.6 mg/L) and
Ca2+ (11.7 to 531 mg/L; mean 103 ± 102 mg/L) also varied considerably. The general water type was
found to be an Na-Cl type as observed from the Piper diagram (Figure 2b). The major cation Ca2+ may
derive from carbonate minerals such as calcite and dolomite, while Mg2+ may originate from biotite,
chlorite, and carbonate minerals, and K+ may derive from orthoclase and clay minerals [21].

The As(III) and As(V) concentrations ranged from 0.62 to 954 µg/L (mean 209 ± 242 µg/L) and
from 0.23 to 318 µg/L (mean 84.6 ± 94.9 µg/L), respectively (Table 3), among the 29 groundwater
wells. Only a few samples contained arsenic concentrations within the WHO standard of <10 µg/L,
and most of the groundwater samples contained concentrations higher than 100 µg/L.

3.3. Solid Phase Partitioning of As and Speciation

Figure 5 shows the fraction of extractable and non-extractable solid phase As at different
depths. The relative proportion of different As pools did not show much depth variation.
The percentage of leachable As did not vary much until at a depth of 110 m. Only a small fraction
(0.03% to 2.17%) of As was present in the water soluble/leachable form and clay/carbonate bound
fraction (0.01% to 1.43%). Similarly, the exchangeable of As accounted for 4% in the sediments of
Zhalong wetland in Northeastern China ([22]. Among the various extractable pools, the organic matter
(0.90%–51.4%) and Fe/Mn-oxyhydroxides were found to be the major binding phases (1.08%–51.1%
bound to Mn-oxyhydroxide, and 0.58%–25.5% to Fe-oxyhydroxides). These results confirmed that
the As in the sediments interacted with the Fe/Mn phases via adsorption. The amounts of As in the
sodium pyrophosphate and 0.1 M hydroxylamine extracts were found to be higher among various
extractable pools, suggesting that organic matter and Mn-oxyhydroxides are the dominant hosts of
solid phase As. A general trend of increasing As bound to organic matter was observed below a
depth of 130 m, whereas As bound to Mn-oxyhydroxide was uniform until a depth of 150 m, and
thereafter it increased markedly. The majority of the As fractions is bound to the recalcitrant fraction.
The percentage of non-extractable As was uniformly high and ranged widely between 41.4% and
96.8%, suggesting that most As was associated with residual phases of crystalline sulfides, except at
a depth of 135 m where the non-leachable fraction was only 1.60%. In a similar study, 88%–91% of
the total As concentration was found associated with residual fraction in mariculture sediments from
Dongshan Bay in China across from Taiwan Strait [23].
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Table 2. Physico-chemical characteristics of groundwater samples (n = 29) collected from Yichu, Chianan plain, southwestern Taiwan.

Sample Location Latitude/Longitude Depth (m) Temp (◦C) EC (mS/cm) TDS (mg/L) Salinity (‰) pH ORP (mV) DOC (mg/L)

Beimen 2B N 23◦17′23.4”/E 120◦8′57.8” 60 24.8 67.9 OFL 46.2 7.1 −128 23
Yenshui 2 N 23◦18′4”/E 120◦15′12” 23 20.9 1.2 575 0.4 7.83 −158 26.4

Yichu (house) N 23◦19′52.3”/E 120◦13′27.2” 20 24.7 3.08 1481 1.5 7.23 −108 17.
Lucao1B (rice field) N 23◦24′59.9”/E 120◦17′50.6” 13 18.1 1.52 727 0.6 7.54 −54 11.3

Lucao1A (house) N 23◦24′59”/E 120◦17′51” 30 24.3 1.79 857 0.7 7.54 −118 19.6
Liujiao2 N 23◦30′27.3”/E 120◦16′19.1” 67 24.9 1.044 501 0.3 7.31 −148 13.7

Budai-Shinwen N 23◦20′22”/E 120◦7′57.9” 313 24.7 1.15 554 0.4 7.63 −140 158
Budai-3 N 23◦20′29.7”/E 120◦9′37” 233 32.3 0.97 463 0.3 8.25 −96 129

Beimen CN 9 N 23◦18′33.3”/E 120◦8′45.7” 100 31.7 1.67 799 0.7 8.1 -72 157
Beimen-Jinhu N 23◦18′26”/E 120◦9′8.2” 300 28.5 1.42 682 0.5 7.44 −139 159

Beimen 2A N 23◦30′27.6”/E 120◦16′19” 277 24.7 1.86 893 0.8 7.33 −144 163
Yenshui 3 N 23◦18′6.7”/E 120◦15′11.1” 23 24.7 1.56 751 0.6 7.92 −158 119
Yenshui 1 N 23◦18′2.4”/E 120◦14′57.2” 23 24.7 1.37 657 0.5 8.12 −133 124
Beimen 1 N 23◦17′23.3”/E 120◦5′41.2” 200 26.4 1.43 684 0.5 7.68 −149 205
Budai 5 N 23◦22′56.8”/E 120◦9′49.6” 200 24.5 0.86 410 0.2 8.34 8 97.7
Budai 4 N 23◦ 19′37.8”/E 120◦ 9′3.2” 300 23.9 3.55 1704 1.8 7.76 −100 141

Hsuechia 2 N 23◦13′46.1”/E 120◦10′4.3” 3 21.4 5.47 2626 2.9 7.38 −96 105
Siaying 3 N 23◦14′14.7”/E120◦14′21.7” 233 27.5 0.85 408 0.2 8.13 −17 111
Siaying 1 N 23◦14′7.9”/E 120◦14′40” 150 25 3.37 1619 1.7 7.05 −27 103
Yichu 5 N 23◦19′59.7”/E 120◦13′11.6” 20 26.1 1.57 751 0.6 7.24 −119 125
Yichu 6 N 23◦19′29.7”/E 120◦12′48.1” 20 25.1 2.32 1116 1 7.5 −102 142
Yichu 7 N 23◦18′55.5”/E 120◦10′5.8” 72 29.1 1.13 545 0.4 8.1 -192 136
Yichu 8 N 23◦18′57.1”/E 120◦10′25.6” 143 25.2 5.44 2750 2.9 7.9 −10 138
Lucao 3 N 23◦22′40.4”/E 120◦16′51.8” 4.5 27.8 1.10 531 0.3 7.3 −91 87
Lucao 4 N 23◦23′15.1”/E 120◦17′39.2” 83 26.5 1.49 716 0.6 7.84 −148 101
Lucao 5 N 23◦23′25.3”/E 120◦17′20.4” 300 26.3 2.08 998 0.9 7.63 −153 98.3

Hsuechia 3 N 23◦17′7.5”/E 120◦11′6.7” 67 27.8 0.96 462 0.2 7.65 −72 122
Hsuechia 4 N 23◦16′22.2”/E 120◦9′36.2” 5 24.1 5.05 2610 2.7 7.34 −113 155
Hsuechia 5 N 23◦14′39.6”/E 120◦9′14.7” 7 27.1 2.24 1076 1 7.59 −118 115

Min 3 18.1 0.85 408 0.2 7.05 −192 11.3
Max 313 32.3 67.9 2750 46.2 8.34 8 204

Mean 113 25.6 4.32 998 2.46 7.64 −107 107
STD 110 2.86 12.3 678 8.44 0.35 49.2 52.2

Median 67 25 1.56 739 0.6 7.63 −118 119
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Table 3. Hydrochemical characteristics of groundwater samples (n = 29) collected from Yichu, Chianan plain, southwestern Taiwan.

Sample Location Alkalinity
(mg/L)

F
(mg/L)

Cl
(mg/L)

NO2
(mg/L)

NO3
(mg/L)

SO4
(mg/L)

Na
(mg/L)

NH4
(mg/L)

K
(mg/L)

Mg
(mg/L)

Ca
(mg/L)

PO4
(mg/L)

As(III)
(µg/L)

As(V)
(µg/L)

Fe
(µg/L)

Mn
(µg/L)

Beimen 2B 184 2.89 332 0.00 8.17 10.4 582 0.00 26.2 51.4 66 3.00 102 224 18,809 32.3
Yenshui 2 182 2.85 57.0 0.00 7.70 29.1 138 2.3 17.9 63 64.7 3.17 560 184 3725 91.0

Yichu (house) 190 3.16 269 0.00 7.76 336 277 0.00 20.1 88.1 236 0.44 102 10.5 8338 160
Lucao1B (rice field) 188 2.88 89.7 0.00 8.28 90.7 1.41 0.00 3.34 71.2 144 1.20 4.95 3.94 4879 75.9
Lucao 1A (house) 185 2.86 108 0.00 0.00 111 1.71 0.00 3.4 70.7 176 2.60 41.1 5.23 28 1.19

Liujiao 2 175 2.97 24.9 0.00 7.66 72.3 75.9 0.00 3.63 37.7 121 1.09 89.8 5.03 12,129 237
Budai- Shinwen 185 0.00 171 0.00 3.50 0.00 422 0.00 4.56 24.8 34.8 2.18 604 100 1271 30.3

Budai-3 177 0.00 9.85 0.00 0.00 3.33 223 10.1 8.25 12.8 16.2 3.92 654 64.4 533 40.7
Beimen CN 9 173 0.00 104 0.00 3.35 11.4 391 0.00 16.9 23 11.7 6.08 212 40.6 365 58.9
Beimen-Jinhu 180 0.00 137 0.00 3.36 3.11 362 28.3 6.88 31.4 42.3 1.86 356 184 4033 32.9

Beimen 2A 172 0.00 116 0.00 3.39 5.88 332 24.3 5.71 35.5 74.5 3.00 158 220 3537 28.0
Yenshui 3 177 0.00 76.8 0.00 0.00 86.8 194 4.45 20 77.2 102 1.82 954 177 2994 27.6
Yenshui 1 176 0.00 70.2 0.00 2.91 8.85 245 0.00 32.7 45.8 26.4 2.22 274 41.6 466 25.5
Beimen 1 340 0.00 12.4 1.29 3.79 3.16 333 0.00 3.66 12.6 33.8 4.16 372 161 2326 28.9
Budai 5 157 0.00 17.6 1.13 4.63 4.71 170 0.00 6.56 7.37 33.4 1.42 1.96 319 381 17.6
Budai 4 166 0.00 212 473 3.89 11.4 622 0.00 13.3 51.5 98.7 1.72 24.5 285 5832 28.7

Hsuechia 2 175 0.00 0.00 859 3.72 234 698 0.00 14.7 106 531 0.00 10.3 3.22 10,260 2609
Siaying 3 154 0.00 5.94 0.00 3.65 3.55 191 5.84 10.7 13.6 26.8 1.38 57.9 10.2 519 70.1
Siaying 1 171 0.00 0.00 207 385 0.95 531 0.00 8.55 32 112 2.43 190 9.15 12,093 263
Yichu 5 183 0.00 73.2 0.00 3.71 92.7 151 2.66 16.1 70.4 161 0.21 94.2 12.9 9385 107
Yichu 6 192 0.00 96.3 0.00 3.6 262 300 0.00 32.2 86.7 163 1.31 49.8 6.60 7022 1047
Yichu 7 182 0.00 23.4 0.00 3.49 3.43 259 11.8 12.8 16.2 17.9 2.89 305 104 1062 85.8
Yichu 8 189 0.00 258 539 4.46 39.8 816 0.00 29.9 77.1 59.9 1.91 0.62 96.1 956 17.5
Lucao 3 163 0.00 14.6 0.00 0.00 128 34 0.00 6.02 66.2 203 0.00 22.9 1.36 14,508 1957
Lucao 4 177 0.00 112 0.00 3.67 12.9 295 0.00 18.8 27.9 37.7 2.92 188 51.9 3428 87.9
Lucao 5 177 0.00 187 0.00 3.87 5.45 273 12.4 19.4 58.9 68.6 1.04 57.8 18.2 5389 192

Hsuechia 3 176 0.00 19.7 0.00 3.64 3.14 194 8.46 7.81 20.2 42 1.04 510 112 5281 161
Hsuechia 4 181 0.00 226 965 4.66 51.9 872 0.00 59.9 103 130 0.14 34.1 3.68 12,104 359
Hsuechia 5 179 0.00 155 0.00 3.83 126 316 0.00 18.9 66.2 157 0.34 34.8 0.23 10,965 339

Min 154 0.00 0.00 0.00 0.00 0.00 1.41 0.00 3.34 7.37 11.7 0.00 0.62 0.23 28.1 1.19
Max 340 3.16 332 965 385 335 871 28.2 59.8 105 531 6.08 954 318 18,809 2609

Mean 183 0.61 103 105 17.1 60.4 320 3.81 15.4 49.9 103 1.91 209 84.6 5607 283
SD 31.5 1.21 91.4 261 70.8 86.6 224 7.32 12.2 28.6 102 1.40 242 94.9 5046 595

Median 177 0 89.8 0 3.71 11.4 276 0 13.3 51.4 68.5 1.82 102 41.5 4033 75.9
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Figure 5. Percentage of sequentially extracted As phases at different depths where As was found in
high concentrations.

The predominant species in the Yichu core sediments was As(III) (Figure 6). The As(III) ranged
from 0.9 ± 0.2 to 14 ± 0.78 µg/kg, whereas As(V) ranged from 0.13 ± 0.06 to 6.48 ± 0.63 µg/kg. It is
well known that As(V) is reduced to As(III) under reducing conditions. Due to the lack of negative
charged for arsenite under near neutral pH condition, its affinity to iron and manganese oxides is
much weaker than As(V), and can be released into water [24]. In addition, due to the weak binding,
92%–99% of As(III) could be extracted under subcritical conditions [25].
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3.4. Adsorption Characteristics of Arsenic in Sediment and Its Implication on Mobilization

A characteristic adsorption isotherm was observed when the adsorption of As(III) and As(V) was
plotted against the equilibrium As concentration at an equilibrium pH of 7.5 (Figure 7). Overall, a
slightly high As(III) adsorption on these sediments were observed. This finding is similar to the trend
observed in the Budai core sediments of the Chianan Plain [20] and agrees well with the As speciation
analyses of the core samples (Figure 6). Adsorption of As(III) on ferrihydrite was considerably faster
than that of As(V) at pH 7 to 8 [26]. Multiple linear regression analyses showed the following results:

As(V) = 0.03 Clay − 0.01 Mn + 0.48 Fe + 3.52 TOC + 7.01 SSA − 54.51 CEC, adjusted R2 = 0.99

As(III) = −0.04 Clay + 0.002 Mn + 1.17 Fe + 18.5 TOC + 6.19 SSA − 48.08 CEC, adjusted R2 = 0.99

They suggest positive correlation with Fe, TOC, SSA, and negative correlation with CEC,
confirming the observations for correlations between As contents and elements concentrations in
these core sediment samples (n = 40) (Figure 4).
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consideration. Arsenic adsorption on the sediments followed the Langmuir adsorption isotherm 
with a higher adsorption capacity for As(III) than for As(V), confirming the major adsorbed species 
was As(III) in the sediments.  
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Due to the strong adsorption of As(V) and As(III) onto organic matters, they are likely to remain
in soils for a long time, especially in fine-textured soils with high Fe content [27]. Similar results were
observed for estuarine sediments in SW Taiwan [28] and in the sediments of silty clay and silty sand of
the Yun-Lin Plain, Taiwan [29].

The groundwater contained low levels of sulfate, indicating that oxidation of pyrite may not
be the likely source of As. The element image analyses showed no correlation between pyrite and
As contents [30]. Thus, reductive dissolution of As-contained ferric iron under anaerobic conditions
is suggested to be a major mobilizing force for As release to the groundwater of the Chianan Plain.
Although no such correlation has been observed between As and bicarbonate concentration, high
As groundwater usually contains relatively elevated concentrations of bicarbonate in the Chianan
Plain aquifer. This may result in desorption of As oxyanions under the competitive sorption effect of
elevated concentrations of bicarbonate [31].
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4. Conclusions

The hydrogeochemical characteristics of groundwater and subsurface sediments and the
adsorption characteristics of arsenic speciation in aquifers were investigated in the As-enriched
areas of the Chianan Plain in southwestern Taiwan. The concentration of aqueous As was strongly
depth-dependent, with the maximum at 1131 µg/L. Redox-sensitive parameters were closely related
to bicarbonate and electrical conductivity. Dissolved As was significantly correlated with Fe contents,
suggesting that the Fe-bearing phases is likely to be a sink of As. The aquifer sediments were
characterized with higher clay content and alkaline pH and were enriched with organic matter, which
bears a positive correlation with As content at different depths under consideration. In core samples,
As, Fe, and Mn exhibited strong depth dependence, suggesting reductive dissolution to be a major
mobilizing force for As under moderately reducing conditions. Sequential separation showed that the
organic matter and Fe/Mn-oxyhydroxides are the major binding phases of As. The speciation analyses
showed dominance of As(III) over As(V) in the sediment samples under consideration. Arsenic
adsorption on the sediments followed the Langmuir adsorption isotherm with a higher adsorption
capacity for As(III) than for As(V), confirming the major adsorbed species was As(III) in the sediments.
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