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Abstract: During the 20th century, air pollution control technologies grew at an amazingly rapid
rate. Air quality in much of the industrialized world greatly improved as the efficiencies of these
technologies improved. This continued improvement in pollution control has more recently been
complemented with measures to prevent the emission of air pollutants. The previous, exclusive
focus on treatment requires systems thinking. This review provides a framework for this Special
Issue of Sustainability by describing the new tools that are needed to support this new, broader focus,
including life cycle assessments, exposure models, and sustainable design.
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1. Introduction

Since the industrial revolution in the 19th century, the air quality in many parts of the world has
been threatened by an array of pollutants. Combustion, mining, agriculture, transportation and many
other societal practices have been associated with the emissions of gases and aerosols that threaten
the health and quality of life of billions of people, as well as eroding the quality of ecosystems and
endangering other species [1,2].

Control technologies were developed and deployed to address the air pollution that accompanied
worldwide industrial expansion concomitantly. Indeed, these were the exclusive approaches employed
until the end of the 20th century. The predominant choices involved the extent and type of treatment,
ranging from no controls to increasingly sophisticated technologies designed to address specific
pollutants. For example, electrostatic precipitation and fabric filter technologies have continued to
improve to remove particulate matter (PM) from stack and vent emissions. At first, these technologies
collected all size ranges of PM, but as research demonstrated that smaller particles were more respirable
and could penetrate the lungs more deeply [2,3], engineers designed equipment to remove these smaller
particles [1].

Air pollution research and practice can benefit from systems thinking and sustainability tools.
The research community has recently made strides in integrating life cycle and green engineering
tools with air pollution control and prevention, such as design for the environment (DfE), design for
disassembly, human exposure modeling, and multi-criteria decision analysis. One of the means of
achieving this is by expert elicitation, where professional judgment is used as a first step in screening
for potential exposure and risk of large numbers of chemicals that are either air pollutants or which
may be transformed into pollutants.

The transition toward more sustainable approaches must be accompanied by enhanced tools that
take advantage of technological advances and systems thinking. This begins with an appreciation of
how science and engineering is changing to address air quality needs.
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2. Trends in Sustainable Air Quality Solutions

The articles in this Special Issue indicate a number of trends, including the increased focus on
near-field exposures, the variability among regions and nations in the ability to adopt sustainable air
quality programs, the complexities in both the scientific and policy aspects of 21st century air quality
programs, and the need to address both traditional air pollution problems (e.g., China) and emerging
scenarios (e.g., in-vehicle exposures).

Historically, air pollution has been addressed mainly as an engineering problem, which is usually
focused on the source, e.g., a stack or vent from a factory or from the exhaust of an automobile.
Engineering solutions were designed to fit the emission. The factory is an example of a stationary
source and the automobile an example of a mobile source. Somehow, all the releases from these
sources had to be connected to the air quality of a neighborhood, town, or larger area. Thus, if the
concentration of a pollutant emitted from a stack or tailpipe could be decreased, the air quality would
be expected to improve correspondingly.

Location is a key factor in air pollutant exposure. Time spent and activities undertaken in
different locations are important determinants of air pollution exposure. Air pollution monitoring
may provide reliable estimates of ambient concentrations of air pollutants at various sites in a region.
However, most people spend the majority of their time in indoor locations [4], with distinctions
among ambient (often defined further as outdoor), indoor, and personal-scale exposures. The locations
where people spend their time, such as in a kitchen, bedroom, vehicle or garage, are known as
microenvironments. The microenvironmental connections between outdoor and indoor, and between
these and personal-scale concentrations, can vary substantially by type of pollutant and mechanisms.
For example, indoor concentrations of fine particulate matter do not correlate closely with outdoor
concentrations [5]. Elevated concentrations of ozone (O3) in the outdoor air do not typically penetrate
indoor environments, but can enter dwellings more effectively by mechanical and open windows [6].

The emphasis of air pollution programs has been to decrease releases from stationary and mobile
sources, especially for the so-called “criteria pollutants”, i.e., particulate matter, carbon monoxide,
oxides of nitrogen and sulfur, O3, and lead. This has also been the main focus for the hazardous
air pollutants, i.e., “air toxics”. These have been addressed using the best or maximally achievable
control technologies. However, personal exposure to most chemicals predominantly occurs within
near-field exposure scenarios, e.g., exposure while using a product that contains the chemical or
contact with an article treated with the chemical [7]. This is leading to new screening models and tools,
including multi-criteria decision analysis (MCDA) and expert elicitation exposure-based chemical
prioritization [8].

MCDA allows for the consideration of numerous variables, from various information sources.
For near-field air pollution, the two main categories of variables are: (1) those associated with product
use; and (2) the physical and chemical properties of the pollutant. Thus, one of the important gaps
in data and tools needed for life cycle- and risk-based decision making to address and to prevent air
pollution is improved exposure predictions. For example, human health characterization factors (CFs) in
life cycle assessments (LCAs) have benefited from improved hazard, especially toxicity, information [9].

The Cs are weighting factors used in an important component of the LCA process, i.e., the life
cycle impact assessment (LCIA). An air pollution LCIA converts emissions into impact scores for
various impact categories [10]. Two important impact categories for air pollution are human health
or global climate change. An impact score is a weighted sum of the damage due to all air pollutant
emissions to one of these or other impact categories [11]. LCAs generally and LCIAs specifically
are important sustainability tools in that they provide a systematic view of the costs and benefits of
an entire process rather than a single stage of the life cycle. For air pollution, LCAs allow the engineer
or process designer to compare among various alternatives. For example, a chemical compound may
appear to be the best choice for manufacturing a product, but the LCIA may indicate that it will
produce a toxic air pollutant in later stages, which will have to be treated. The treatment will add costs
and risks that can be prevented by changes in process design or selection of safer chemicals which, if
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substituted, may obviate or greatly reduce the treatment costs. Likewise, the LCA may indicate that
a choice of a substance may increase air and other pollutants in earlier stages, such as the extraction of
ores, which may not be necessary if another substance with less extraction-related pollution is chosen.

Until recently, LCAs have underweighted exposure and relied more heavily on inherent toxicity
estimates to indicate risks posed by substances in the human health CFs [12]. However, since health
risk is a function of hazard and exposure, the human health CF also needs reliable exposure predictions.
These depend on a number of factors that differ among air pollutants. One large gap is accounting for
near-field scenarios and incorporating these into sustainability tools.

3. Sustainability Tools for Air Pollution Control Systems

3.1. Near-Field versus Far-Field Exposure Scenarios

The difference between near-field and far-field exposure scenarios can be quite dramatic.
Until recently, air pollutants were predominantly approached from a far-field perspective, i.e.,
a substance is released from a stack, whereupon it is followed until it reaches the receptor. This called
for measurements at the source and downwind on a path toward the receptor. For example, the
dominant exposure pathways for the criteria pollutants and for chemically persistent compounds, e.g.,
polychlorinated biphenyls and dioxin, may be far-field, e.g., leaked into soil or emitted from a stack and
ultimately reaching the receptor, such as humans or other species (see Figure 1). However, for many
substances, the dominant exposure scenario is near-field, e.g., a product purchased and consumed
or used in a residential setting. The difference is demonstrated in the flowchart depicted in Figure 2.
Note that the flow leads to aggregate exposure estimates, i.e., all routes and pathways for a single
compound. For cumulative exposure estimates, i.e., all routes and pathways for multiple chemical
compounds, individual flow charts for all potential compounds that may contact the person would
have to be combined.
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Figure 2. Information flow needed for a human exposure model that addresses both far-field and
near-field exposure scenarios. LCA = life cycle analysis; QSAR = quantitative structure activity
relationships; MCDA: multi-criteria decision analysis. Adapted from [15].

3.2. Dose Calculations

Chin et al. [16] measured the difference in near-field (indoor air) and far-field (outdoor air)
pathways for exposure to para-dichlorobenzene (p-DCB). However, a more complete description to
support green chemistry and the sustainable design of a product would follow the flow in Figure 1.
The simplest example is a single consumer product whose main ingredient is p-DCB, i.e., solid pest
repellent, commonly used in residential closets. Figure 3 demonstrates this difference by comparing
Chin et al.’s results with consumer product doses modeled using SHEDS-HT [17], a high-throughput
human exposure and dose-screening model for chemicals. The mechanistic model is based on
probabilistic methods and algorithms of various exposure pathways, including oral, dermal, ingestion,
and inhalation.
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Figure 3. Distribution of doses of a volatile organic compound from inhalation of one consumer
product, other near-field sources, far-field sources, and aggregate (total) e xposure. In this instance,
far-field scenarios account for several orders of magnitude of less of the predicted dose compared to
near-field scenarios. The doses were modeled using SHEDS-HT [17] from data in Chin et al. [16] and
Csiszar et al. [18].



Sustainability 2016, 8, 1216 5 of 9

A case study by Csiszar et al. [18] to estimate potential exposures to p-DCB found that adding
risk-based screening and aggregate exposure predictions to sustainability tools such as LCA can be
used to compare product ingredients to help optimize formulations based on human toxicity, which can
be considered along with other life cycle impacts (e.g., climate change, resource depletion, ecotoxicity,
etc.). While none of the case studies presented here calculated uncertainty, similar calculations may
include uncertainty and variability, e.g., seasonal, geographic and population variability.

The exposure information becomes increasingly complicated for products containing more than
one chemical ingredient, as well as when considering co-exposures to chemical compounds other than
those in the product; for example, airborne substances in a home may react with those of the product,
generating new degradation products [19], and/or exposures to these other substances may change
the susceptibility of the exposed person to the product ingredients [20,21].

3.3. Screening Tools

Protecting and improving air quality, like other environmental media, relies on credible data and
models. Increasingly, evidence-based risk assessments are being augmented or even supplanted by
precaution. This is particularly important for decisions in which there is a reasonable likelihood that
an adverse effect is severe and irreversible [22]. Thus, tools will be needed to screen chemicals for
deleterious effects. This is most common for consumer products, but could also be applied to fuels and
industrial materials in early life stages which, when used, could result in emissions of air pollutants at
some later stage. For example, expert elicitation has been used to identify and prioritize chemicals that
may have high exposure potentials before they reach the marketplace [8].

This is useful for both sustainability users, e.g., LCA, and risk assessment users, e.g., substituting
fuels and chemicals in early life stages that prevent a future air pollutant [23]. The prioritization
must address both parent compounds and degradation products. For example, a chemical used in
an industrial process may be relatively safe within an industrial life stage if workers are wearing
proper personal protection equipment, but in downstream life cycle stages may result in an indoor air
pollutant, e.g., an incidental, harmful ingredient in a product.

Screening can merge hazard and exposure information. For example, exposure prioritization
can complement and/or be integrated into decision tools, such as the recently released CompTox
dashboard [24], which includes individual chemical structures for over 700,000 compounds. The dashboard
combines bioassay screening data, exposure modes, and product categories. Screening tools can
be beneficial in identifying analytics associated with data-poor and emerging substances, e.g.,
nanomaterials, by showing rankings of chemicals based on hazard and exposure potentials [8].
Such screening tools can be also support the evaluation of a hypothetical portfolio of products
(e.g., cleaning products, cosmetics) for various life stages of a product. A portfolio of products and
an accompanying set of their chemical ingredients can allow decision-makers to rank products according
to potential risk, including the likelihood of causing air pollution, which may lead to health risks [25].

3.4. Enhanced Characterization of Activities within Micro-Environments

This Special Issue of Sustainability provides examples of how the focus of air pollution modeling
and measurement has shifted from almost exclusively concentrations of pollutants in the ambient
air, especially outdoors, to concentrations in various microenvironments, e.g., rooms, vehicles, and
garages. A number of microenvironments are not well characterized in terms of air exchange, activities
of inhabitants, and source of contaminants, e.g., stored products. Since concentration is needed to
calculate exposure, this paucity of information translates in uncertainties about potential exposures to
particular air pollutants, e.g., carbon dioxide in vehicle compartments. Note that exposure estimates
require that such concentrations be combined with behavioral and activity information:

E =
∫ t=t2

t=t1

C (t) dt +
∫ t=t3

t=t2

C (t) dt . . . +
∫ t=tn+1

t=tn
C (t) dt, (1)
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where E is a person’s exposure from time t1 through time tn+1 (e.g., one day) and C is the concentration
of the air pollutant of concern. Thus, an accurate depiction of exposure must include a person’s
location where the activities occur. For example, the breathing rate will differ substantially if a person
is sleeping versus engaging in vigorous exercise.

Several of the Special Issue’s articles address various aspects of all three features, i.e.,
characterizing a person’s “exposome” [26], meaning a complete profile of a person’s exposure based
on the biological uniqueness of the person combined the activities and the location of the person.
For example, average ventilation (i.e., breathing) rates will vary by biology, e.g., the 50th percentile
for the age group 16 to <21 years performing moderate activity is 50% higher for the older age group
(2.06 × 10−2 m3·min−1) than the younger groups (for example, 3.14 × 10−2 m3·min−1 for age group
51 to <61 years) performing the same activity. Similarly, the ventilation rate is affected by the activity,
e.g., the age group 16 to <21 years performing a high intensity activity is 5.05 × 10−2 m3·min−1;
it is 5.59 × 10−2 m3·min−1 for age group 51 to <61 years performing the same vigorous activity [27].
It is important to keep in mind that ventilation rates are important indicators of the air pathway
and inhalation route. However, air pollutant exposure can also result from dermal, oral, nasal, and
ingestion routes. For example, an aerosol may deposit on a surface and be sorbed to skin or enter food,
resulting in dermal and ingestion exposures, respectively [28–30].

This demonstrates that sustainability tools and models must go beyond concentration data and
must also account for the influence of a person’s or population’s biology, activities and location, just as
air pollution risk assessments have had to consider their impact on potential exposure and risk [31].

3.5. Citizen Science and Sensors

Science in general and environmental science specifically are beginning to make use of widely
available communications and sensor applications and technologies to improve the coverage and
granularity of environmental measurements [32]. Numerous air quality studies can benefit from
greater participation, e.g., relationships between ecosystem conditions and air quality, climate change
impact assessments, and pollution detection and compliance monitoring [33,34].

This trend will likely continue and grow. For example, prototype smart phone systems have
been successfully deployed for suites of gas-phase pollutants [32]. The systems connect to the smart
phone and are about the same size as the phone itself. Thus, they are compact, inexpensive (at least
compared to research and fit-for-purpose equipment), and relatively easy to operate and maintain
(using off-the-shelf hardware). In this instance, the system’s precision and accuracy are maintained
by calibrating with central, fixed monitoring stations, allowing the citizen scientist to calibrate to the
central readings [32].

As mentioned, air pollution control has depended on ever-advancing technologies. Moving forward,
sustainable air quality programs will continue to depend on these advances, not only to treat
pollutants, but to monitor their concentrations in places that in the past would have been logistically
and cost-prohibitive.

4. Discussion

This paper suggested ways that sustainability tools can be incorporated into air quality decision
making, i.e., improved dose calculations based on near- and far-field exposures, better screening tools,
and adoption of an exposome perspective that combines biology, location and activities. Recent changes
in risk assessment call for a greater reliance on tools that prevent air pollutants from being generated,
e.g., the substitution of safer chemicals upstream in a product or process life cycle. Air pollution
prevention and control is also benefiting from technological advances that include better exposure and
dose models and smart technologies that can support citizen science.

The articles in this Special Issue have approached these and other sustainability needs for air
quality decision making at various scales and complexities.
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5. Conclusions

Air quality decision making is changing, from less acceptance of the need to treat air pollution
to a more proactive and sustainable view of preventing the pollution at the outset. This paper has
discussed a number of ways to transition from an exclusive control approach to one that increasingly
relies on systems tools to view the entire life cycle of a product or process. This will result in less waste
and pollution, not only at the end-of-product life, but in all stages of the life cycle, from extraction to
manufacturing to product use and beyond. Certainly, air pollution control technologies will be needed
at numerous stages in the life cycle, but a systems approach may well prove to lessen the amounts and
toxicities of substances in the atmosphere at all scales, which should translate into improved economic
and operational efficiencies.

The systems perspective also allows for steps to generate fewer or even eliminate difficult-to-treat
pollutants, which would translate into better compliance with laws and regulations. Sustainable air
monitoring systems will become increasingly feasible and reliable with the advances in communications
and environmental technologies. These convergent advances will improve the quality and coverage of
air quality monitoring systems globally.
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