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Abstract: Accurate quantification and characterization of a wind energy potential assessment and
forecasting is significant to optimal wind farm design, evaluation and scheduling. However, wind
energy potential assessment and forecasting remain difficult and challenging research topics at
present. Traditional wind energy assessment and forecasting models usually ignore the problem of
data pre-processing as well as parameter optimization, which leads to low accuracy. Therefore, this
paper aims to assess the potential of wind energy and forecast the wind speed in four locations in
China based on the data pre-processing technique and swarm intelligent optimization algorithms.
In the assessment stage, the cuckoo search (CS) algorithm, ant colony (AC) algorithm, firefly algorithm
(FA) and genetic algorithm (GA) are used to estimate the two unknown parameters in the Weibull
distribution. Then, the wind energy potential assessment results obtained by three data-preprocessing
approaches are compared to recognize the best data-preprocessing approach and process the original
wind speed time series. While in the forecasting stage, by considering the pre-processed wind speed
time series as the original data, the CS and AC optimization algorithms are adopted to optimize three
neural networks, namely, the Elman neural network, back propagation neural network, and wavelet
neural network. The comparison results demonstrate that the new proposed wind energy assessment
and speed forecasting techniques produce promising assessments and predictions and perform better
than the single assessment and forecasting components.

Keywords: wind energy assessment and forecasting; data pre-processing; swarm intelligent
optimization; neural network; error evaluation

1. Introduction

As a clean and renewable resource, wind energy is important in energy supply and, through wind
turbines, the green wind energy can be converted to electricity. However, not all locations are suitable
for wind turbine installation. As a result, wind energy assessment should be performed in advance.
Furthermore, to guarantee the safety of wind energy, the accuracy of wind speed forecasting should be
ensured. Wind energy assessment and wind speed forecasting are two challenging research topics
at present.

Wind energy assessment plays a significant role in wind turbine installation decisions in many
countries worldwide, and technologies used for wind energy potential are varied. Based on different
moment constraints, Liu and Chang [1] performed validity analysis of the maximum entropy
distribution for wind energy assessment in Taiwan. Nested ensemble Numerical Weather Prediction
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approach was proposed by Al-Yahyai et al. [2] to perform a wind energy assessment over Oman.
Wu et al. [3] proposed an assessment model based on the Weibull distribution and different particle
swarm optimization algorithms as well as differential evolution algorithms to assess the wind energy
potential at Inner Mongolia in China. Jung and Kwon [4] introduced artificial neural networks to
improve the wind energy potential estimation for four sites surrounding the Saemangeum Seawall.
The wind analysis model was adopted by Boudia et al. [5] to assess the wind energy of four locations
situated in the Algerian Sahara. Apart from the wind analysis model, Quan and Leephakpreeda [6]
also used economic analysis to assess the wind energy potential in Thailand. A GIS-based method was
applied by Siyal et al. [7] for wind energy assessment in Sweden.

One of the most vital factors used for wind energy assessment is the wind speed. The effect of
the wind energy assessment directly depends on the accuracy of the wind speed forecasting. Many
techniques have recently been proposed to forecast the wind speed, and the related techniques can
usually be divided into the following three categories: short-term wind speed forecasting [8–10],
medium-term wind speed forecasting [11] and long-term wind speed forecasting. One of the most
popular skills used for wind speed forecasting is to construct a hybrid model based on several single
forecasting approaches. For example, Wang et al. [12] presented a hybrid model with the assistance
of the phase space reconstruction algorithm and Markov algorithm. Based on the extreme learning
machine, Ljung-Box Q-test and seasonal auto-regressive integrated moving average (ARIMA) models,
a hybrid wind speed forecasting model is proposed by Wang et al. [13] to estimate the wind speed of
different sites in northwestern China. The ARIMA model was also used by Shukur and Lee [14] to
show a hybrid wind speed forecasting model with the Kalman filter and an artificial neural network.
Liu et al. [15] demonstrated a hybrid approach using the secondary decomposition model and Elman
neural networks. Fei [16] used a hybrid method that consists of the empirical mode decomposition
and multiple-kernel relevance vector regression technologies.

In this paper, based on the cuckoo search (CS) algorithm and ant colony (AC) algorithm, two
new wind energy assessment models and six wind speed forecasting models are proposed. In the
assessment process, the AC and CS algorithms are applied to optimize two unknown parameters of
the Weibull distribution. Then, four assessment error evaluation criteria are adopted to evaluate the
effectiveness of the two newly proposed assessment models. While in the forecasting process, the CS
and AC algorithms are used to optimize three neural networks, namely the Elman, back propagation
and wavelet neural networks, and the new proposed approaches are validated by three forecasting
error evaluation criteria.

The remaining part of this paper is organized as follows: A description of wind energy potential
assessment methodologies is given and the results are evaluated in Section 2. Section 3 presents the
connection between the energy assessment and forecasting to identify the best data pre-processing
approach. The proposed integrated forecasting framework and forecasting results are presented in
Section 4, and the last section presents the concluding remarks.

2. Wind Energy Potential Assessment Methodologies and Results

In this section, related single methodologies as well as the proposed hybrid methods used to assess
the wind energy potential are introduced; then, the assessment results are presented to demonstrate
the performance of the methods.

2.1. Related Methodologies

This subsection focuses on the related single and hybrid methodologies to assess the wind
energy potential.

2.1.1. Related Single Methodologies

The main content of two parameter optimization algorithms and the assessment approach will be
described in this section.
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Parameter Optimization Algorithms

(a) Cuckoo Search Algorithm

The cuckoo search (CS) algorithm [17] is derived from the behavior of the cuckoo in the process
of searching for nests. To simplify the CS algorithm, three idealized rules are hypothesized. The first is
that only one egg is laid by a cuckoo each time, and the cuckoo randomly selects a parasitic nest to
hatch the egg. The second is that among the randomly selected parasitic nests, the best parasitic nest
will be reserved for the next generation. The last is that the number of the available parasitic nests is
fixed, and the probability of the alien egg found by the host of the parasitic nest is pa, which is located
in the interval [0, 1]. Once the alien eggs have been found, the host birds will throw them or abandon
the nest, and build a new one in another place. For simplicity, we use the statement that one egg in a
nest represents a solution, and the new and potentially better solutions will replace the bad ones.

On the basis of these three ideal rules, the new solution is generated by:

x(t+1)= x(t) + α× Levy (1)

where α is the step size and, in most cases, it is set to α = 1; the symbol “×” represents the entry-wise
multiplication. In essence, Equation (1) is a random walk equation, and the future position is
determined by the current positon (the first term in Equation (1)) as well as the transition probability
(the second term in Equation (1)). Lévy in Equation (1) denotes the random search path, and the
random step length follows the Lévy distribution shows Equation (2), i.e.,

Lévy ∼ u = tλ (2)

where λ is set to values in the interval (1, 3].

(b) Ant Colony Algorithm

The ant colony (AC) algorithm is proposed by Italian scientist Dorigo M. etc. in 1991. To facilitate
the research, the following assumptions are proposed [18]: (1) The communication mediums that
ants used are the pheromone and environment; (2) The response of the ant to the environment is
determined by its internal mode; (3) The ant individuals are independent; and (4) the entire ant colony
shows a random characteristic.

Through adaptation and collaboration in two stages, ants transition to an ordered state from
the disordered one and obtain the optimum path. The key point of path selection is the probability
transition, i.e., the probability of the kth ant from the ith city to the jth city at time is calculated by the
Equation (3) [19]:

pk
ij (t) =


[τij (t)]

α ·[ηik (t)]β

∑
s∈allowedk

[τis (t)]α ·[ηis (t)]β
, if j ∈ allowedk

0, otherwise

(3)

where τij (t) and ηik (t) represent the intensity of the pheromone trail and visibility of edge (i, j),
respectively; allowedk is the set of cities to be visited by the kth ant in the Ith city, and α and β are two
coefficients that tune the relative importance of the trail versus visibility.

Assessment Approach

The Weibull distribution is introduced to this paper to assess the potential wind energy.
The probability density function (PDF) of the Weibull distribution can be expressed by Equation (4):

p (x; k, c) =
k
c

( x
c

)k−1
exp

[
−
( x

c

)k
]

(4)

where x is the random variable, which represents the wind speed in this paper; k and c are the shape
and scale parameters, respectively.
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2.1.2. Proposed Wind Energy Potential Assessment Model

In this paper, the CS algorithm is used to estimate the unknown parameters k and c in the Weibull
distribution. The new proposed novel model is abbreviated as the CS-Weibull model. The pseudo code
of this model is presented in Algorithm 1. Similarly, the AC algorithm is adopted to estimate the two
parameters. Correspondingly, this new model is abbreviated as the AC-Weibull model. The pseudo
code presented in Algorithm 2 is provided to help understand this novel model.

Algorithm 1: CS-Weibull

Input:

x(0)s =
(

x(0) (1) , x(0) (2) , . . . , x(0) (q)
)

—a sequence of training data.

x(0)p =
(

x(0) (q + 1) , x(0) (q + 2) , . . . , x(0) (q + d)
)

—a sequence of verifying data

Output:

xb—the value of x with the best fitness value in population of nests

Fitness Function: f (x) = (k/c)× (x/c)k−1×exp[− (x/c)k]

Parameters:
Num Cuckoos = 50; number of initial population
Min Number Of Eggs = 2; minimum number of eggs for each cuckoo
Max Number Of Eggs = 4; maximum number of eggs for each cuckoo
Max Iter = 200; maximum iterations of the Cuckoo Algorithm
Knn Cluster Num = 1; number of clusters that we want to make
Motion Coeff = 20; Lambda variable in COA paper, default = 2
accuracy = 1.0 × 10−10; How much accuracy in answer is needed
Max Num Of Cuckoos = 20; maximum number of cuckoos that can live at the same time
Radius Coeff = 0.05; Control parameter of egg laying
Cuckoo Pop Variance = 1 × 10−10; Population variance that cuts the optimization

1: /* Initialize population of n host nests xi (i = 1, 2, ..., n) randomly*/
2: FOR EACH i: 1 ≤ i ≤ n DO
3: Evaluate the corresponding fitness function Fi
4: END FOR
5: WHILE (g < GenMax) DO
6: /* Get new nests by Lévy flights */
7: FOR EACH i: 1 ≤ i ≤ n DO
8: xL = xi + α⊕Levy(λ);
9: END FOR
10: FOR EACH i: 1 ≤ i ≤ n DO
11: Compute FL
12: IF (FL < Fi) THEN
13: xi←xL;
14: END IF
15: END FOR
16: Compute FL
17: /*Update best nest xp of the d generation*/
18: IF (Fp < Fb) THEN
19: xb←xp;
20: END IF
21: END WHILE
22: RETURN xb
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Algorithm 2: AC-Weibull

Input:

x(0)s =
(

x(0) (1) , x(0) (2) , . . . , x(0) (q)
)

—a sequence of training data.

x(0)p =
(

x(0) (q + 1) , x(0) (q + 2) , . . . , x(0) (q + d)
)

—a sequence of verifying data

Output:

xb—the value of x with the best fitness value in population of nests

Fitness Function: f (x) = (k/c)× (x/c)k−1×exp[− (x/c)k]

Parameters:
Maximum iterations:50
The number of ant:30
Parameters of the important degree of information elements:1
Parameters of the important degree of the Heuristic factor:5
Parameters of the important degree of the heuristic factor:0.1
Pheromone increasing intensity coefficient:100

NC_max—Maximum iterations:50
m—The number of ant:30
Alpha—Parameters of the important degree of information elements:1
Beta—Parameters of the important degree of the Heuristic factor:5
Rho—Parameters of the important degree of the heuristic factor:0.1
Q—Pheromone increasing intensity coefficient:100
1: /*Initialize popsize candidates with the values between 0 and 1*/
2: FOR EACH i: 1 ≤ i ≤ n DO
3: α1

i = rand (m, n)
4: END FOR
5: P =

{
αiter

i : 1 ≤ i ≤ popsize
}

6: iter = 1; Evaluate the corresponding fitness function Fi
7: /* Find the best value of repeatedly until the maximum iterations are reached. */
8: WHILE .(iter ≤ itermax) DO
9: /* Find the best fitness value for each candidates */
10: FOR EACH αiter

i ∈ P DO
11: Build neural network by using x(0)s with the αiter

i value

12: Calculate x̂(0)p =
(

x̂(0)p+1, x̂(0)p+2, . . . , x̂(0)p+3

)
by neural network

13: /* Choose the best fitness value of the ith candidate in history */
14: IF (pBesti > fitness(αiter

i )) THEN
15: pBesti = fitness(αiter

i )
16: END IF
17: END FOR
18: /* Choose the candidate with the best fitness value of all the candidates */
19: FOR EACH αiter

i ∈ P DO
20: IF (gBest > pBesti) THEN
21: gBest = pBesti = xk

t+1 = xgbest± : t = 1, 2, · · · , T
22: αbest = αiter

i
23: END IF
24: END FOR
25: /*Update the values of all the candidates by using ACO’s evolution equations.*/
26: FOR EACH αiter

i ∈ P DO
27: αt+1 = 0.1 × αt

28: xgbest = xgbest + (xgbest × 0.01)→
{

i f f (xgbest)− f (xgbest) ≤→ the sign is(+)

i f f (xgbest)− f (xgbest) ≤→ the sign is(−)
29: END FOR
30: P =

{
αiter

i : 1 ≤ i ≤ popsize
}

31: iter = iter + 1
32: END WHILE
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2.2. Wind Energy Potential Assessment Case Study

In this paper, wind speed data from 2009 to 2013 are adopted to assess the wind energy in four
locations—[125, 40], [122.5, 40], [125, 42.5], and [120, 40]—where the first component represents the
longitude and the second one denotes the location latitude. The collected wind speed data will be
applied from two aspects, 1. Single year data application: Wind speed data in the single year will be
analyzed to obtain the yearly assessment results and 2. Whole five-year data application: Wind speed
data in each season of the five years will be analyzed to obtain the seasonal assessment results as well
as the whole five-year assessment results.

In addition, beyond the CS-Weibull and AC-Weibull models, an original Weibull model and two
other models related to the Firefly Algorithm (FA) and the Genetic Algorithm (GA) are introduced
to compare the assessment effectiveness. The two models are abbreviated as the FA-Weibull and
GA-Weibull models, respectively.

2.2.1. Assessment Results in a Single Year

The wind energy assessment is an important indicator to determine the potential of wind resources
and describe the amount of wind energy at various wind speed values in a particular location. In a
study of the wind energy assessment, the common parameter estimation methods include the method
of moments estimate, maximum likelihood estimate, and least squares estimate, which have some
disadvantages and limitations. For example, the method of moments estimate is simple where
only knowing the moment of the population is sufficient and does not require knowledge of the
population distribution. However, it can only be used in the distribution when the population origin
moment exists, and the moment only has some of the information. This method only has good
performance when the sample size is large. The maximum likelihood estimation (MLE) is a method of
estimating the parameters of a statistical model according to observations by finding the parameter
values that maximize the likelihood of making the observations given the parameters. However, the
maximum likelihood estimation must incorporate the sample distribution. It is more complicated
to incorporate the likelihood equations, which often obtains the approximate solution by computer
iterative computation. The maximum likelihood estimation is complex and may lead to multi-optimal
solutions or non-optimal solutions. The least squares can be applied to estimate linear and nonlinear
relationships. When applying the least square to estimate the parameters of models, the observed data
do not require information about the probability and statistics method. However, the least square
has two kinds of defects. If the noise of model is colored noise, the estimation result of the least
square is a biased estimation; with increasing data size, “data saturation” will appear. The Bayesian
parameter estimation must know the distribution of the random error. When the sample size is
small, prior probability has a significant influence on the estimation result (the result of maximum
likelihood estimation, method of moments estimate, least square estimate and Bayesian parameter
estimation in Appendix A). In summary, in this paper, the effectiveness of four optimization algorithms
(Firefly Algorithm, Genetic Algorithm, Ant Colony Algorithm and Cuckoo Search Algorithm) is
evaluated to determine the shape (k) and scale (c) parameters of the Weibull distribution function
for calculating the wind power density. By comparing the assessment results, the swarm intelligent
algorithm showed an effective assessment performance.

The parameter estimation results in a single year, from 2009 to 2013, of the five models are listed
in Table 1. According to the estimated parameters given in Table 1, the five models can be determined,
and Figure 1 is the indication of the PDF fitting results in a single year from 2009 to 2013.
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Figure 1. PDF fitting results in the single year from 2009 to 2013

With the PDF fitting results, in this paper, the following four error evaluation criteria (showed in
Equations (5)–(7)) are adopted to evaluate the assessment performance:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (5)
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SSE =
n

∑
i=1

(yi − ŷi)
2 (6)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (7)

R2 =

n
∑

i=1
(yi − y)2 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(8)

where yi is the observed value, ŷi means the forecasted value, and y is calculated by y =
n
∑

i=1
yi/n .

Table 2 provides the assessment performance evaluation results in a single year from 2009 to 2013
of the four optimization algorithms on a yearly basis in terms of MAE, RMSE, SSE and R2, respectively.
As seen from Table 2, although the presented descriptive statistics provide meaningful statistical
analysis, especially regarding the distribution of the wind speed, they cannot be solely used to judge
the precision level of each optimization algorithm for estimating the parameters of Weibull distribution.
Therefore, the different evaluation criteria introduced by Equations (5)–(8) are employed to appraise the
performances of the four selected parameter estimation optimization algorithms. It is meaningful that
different statistical criterion supplies different useful views for comparing the optimization algorithms.
As a result, the combination of all statistical indicators provides an effective way to compare the
different parameter estimation optimization algorithms for wind power assessment. The effectivity
of the assessed wind power density values changes when the parameter estimation optimization
algorithms change. This is apparent for each research site when the four optimization algorithms of
CS, GA, FA and AC are utilized to estimate the parameters of Weibull distribution. This conclusion is
drawn from the low error values and high R2 and SSE values. On the other hand, the lowest agreement
levels are attained when the four algorithms are applied for k and c parameter calculations. According
to the statistical results in Table 2, for the four sites Chinese wind farm sites, the best results for
calculating the wind speed density are achieved when the four optimization algorithms are employed
to compute the k and c parameters. For each gate station site, the most precise results are obtained
using the different optimization algorithms [20].

2.2.2. Seasonal and Whole Five-Year Assessment Results

Considering that wind speed data may be vastly different in different years, this section provides
seasonal and whole five-year wind energy assessment results by comprehensively using the wind
speed data in the five years from 2009 to 2013. Similarly, Table 3 lists the seasonal and whole five-year
parameter estimation results, and Figure 2 and Table 4 present the PDF fitting and corresponding
error results.

The same conclusion can be obtained from these results; i.e., the four new proposed models based
on the FA, GA, CS algorithm and AC algorithm are superior to the original Weibull model.
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Table 1. Parameter estimation results in a single year from 2009 to 2013.

Year Location
Weibull FA-Weibull GA-Weibull CS-Weibull AC-Weibull

k c k c k c k c k c

2009

[125, 40] 8.7640 2.4639 8.8335 2.4720 8.6774 2.3610 8.7977 2.5163 8.6647 2.3911
[122.5, 40] 8.9071 2.2820 8.9486 2.3102 8.9575 2.3271 8.9068 2.2727 9.0692 2.2952
[125, 42.5] 9.3749 2.3343 9.3496 2.3395 9.4958 2.3334 9.2328 2.3137 9.5514 2.2632
[120, 40] 9.1034 2.2975 9.0616 2.2924 9.0640 2.2824 9.0777 2.2848 9.0771 2.2464

2010

[125, 40] 8.5128 2.5368 8.4264 2.5082 8.5374 2.4931 8.4146 2.6055 8.4698 2.5977
[122.5, 40] 8.8703 2.4150 8.8024 2.3689 8.9940 2.4491 8.8427 2.3433 8.8317 2.3450
[125, 42.5] 9.3758 2.3384 9.4127 2.4018 9.4375 2.2186 9.1811 2.3137 9.2791 2.3050
[120, 40] 9.2529 2.3407 9.3029 2.3145 9.2146 2.2642 9.2177 2.3221 9.2638 2.2973

2011

[125, 40] 8.6536 2.3900 8.5027 2.4063 8.7914 2.4158 8.7627 2.3635 8.4863 2.4199
[122.5, 40] 8.8432 2.4407 8.9470 2.3791 8.6923 2.5384 8.7069 2.4521 8.7714 2.4255
[125, 42.5] 9.4285 2.4654 9.4127 2.4018 9.4375 2.2186 9.1811 2.3137 9.2791 2.3050
[120, 40] 9.3535 2.3933 9.3490 2.4015 9.4402 2.4068 9.2729 2.3980 9.4762 2.3849

2012

[125, 40] 8.7022 2.6191 8.8743 2.6429 8.7155 2.7055 8.6536 2.6316 8.5899 2.6867
[122.5, 40] 8.7489 2.3077 8.8006 2.2135 8.6432 2.3733 8.6839 2.3543 8.7321 2.3135
[125, 42.5] 9.4797 2.2912 9.6149 2.2855 9.6716 2.3484 9.3894 2.2559 9.3296 2.2571
[120, 40] 9.5509 2.3681 9.5599 2.3318 9.6412 2.3350 9.4275 2.3973 9.5487 2.3346

2013

[125, 40] 9.1047 2.4338 9.3672 2.5225 8.9671 2.4108 9.0099 2.4329 9.0650 2.4348
[122.5, 40] 9.3218 2.3288 9.2955 2.3155 9.2901 2.3395 9.3866 2.2920 9.3724 2.4228
[125, 42.5] 9.9150 2.3428 9.6149 2.2855 9.6716 2.3484 9.3894 2.2559 9.3296 2.2571
[120, 40] 9.8089 2.3211 9.7684 2.3783 9.8906 2.3387 9.9891 2.3479 9.4410 2.2976
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Table 2. Assessment error results in a single year from 2009 to 2013.

Year Metric
Location [125, 40] Location [122.5, 40]

Weibull FA-Weibull GA-Weibull CS-Weibull AC-Weibull Weibull FA-Weibull GA-Weibull CS-Weibull AC-Weibull

2009

MAE 0.01 0.008 0.0166 0.0079 0.0114 0.0127 0.0122 0.0124 0.014 0.0117
SSE 0.1752 0.1615 0.1697 0.1688 0.1665 0.2856 0.0283 0.0278 0.0274 0.02

RMSE 0.011 0.0096 0.0167 0.0095 0.0133 0.014 0.0131 0.013 0.0129 0.011
R2 0.9594 0.9689 0.9677 0.9689 0.969 0.9638 0.9677 0.9679 0.9675 0.9693

2010

MAE 0.0089 0.0086 0.014 0.0098 0.0095 0.01 0.0096 0.007 0.008 0.0094
SSE 0.1366 0.1163 0.0977 0.1315 0.1751 0.1744 0.162 0.1434 0.1081 0.1546

RMSE 0.0097 0.017 0.015 0.0219 0.021 0.0109 0.01 0.0094 0.0082 0.0098
R2 0.9812 0.9836 0.9837 0.9852 0.9824 0.9723 0.9735 0.975 0.9758 0.9738

2011

MAE 0.0098 0.0081 0.0075 0.0074 0.0071 0.0155 0.0145 0.0152 0.0154 0.0156
SSE 0.1684 0.0137 0.0102 0.0098 0.0102 0.4313 0.3707 0.4039 0.3945 0.3968

RMSE 0.0107 0.0107 0.0093 0.0091 0.0093 0.0172 0.0153 0.0152 0.0168 0.0172
R2 0.9732 0.9864 0.9871 0.9865 0.9878 0.9612 0.974 0.9726 0.9732 0.9726

2012

MAE 0.0112 0.0102 0.0101 0.0088 0.0098 0.0127 0.0122 0.0117 0.011 0.0107
SSE 0.2196 0.2012 0.1727 0.1568 0.1957 0.2939 0.2633 0.2509 0.2767 0.2603

RMSE 0.0122 0.0107 0.0116 0.0109 0.0106 0.0142 0.0141 0.0098 0.0145 0.0089
R2 0.9611 0.9679 0.9689 0.9675 0.9677 0.9621 0.9719 0.973 0.9702 0.973

2013

MAE 0.012 0.0115 0.0109 0.0107 0.0106 0.0098 0.0091 0.0091 0.0096 0.0096
SSE 0.2509 0.2404 0.2406 0.2477 0.2408 0.1691 0.1472 0.1584 0.1353 0.1193

RMSE 0.0131 0.0114 0.0114 0.0109 0.0108 0.0108 0.0092 0.0095 0.0088 0.0083
R2 0.9588 0.9679 0.9672 0.9688 0.9685 0.9598 0.9629 0.9625 0.963 0.9638
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Table 2. Cont.

Year Metric
Location [125, 42.5] Location [120, 40]

Weibull FA-Weibull GA-Weibull CS-Weibull AC-Weibull Weibull FA-Weibull GA-Weibull CS-Weibull AC-Weibull

2009

MAE 0.0086 0.0077 0.0078 0.0079 0.0095 0.0104 0.0104 0.0081 0.0084 0.012
SSE 0.1285 0.1181 0.1043 0.1352 0.1801 0.189 0.0186 0.0139 0.0128 0.024

RMSE 0.0094 0.0089 0.0084 0.0096 0.011 0.0114 0.0113 0.0098 0.0094 0.0128
R2 0.9667 0.977 0.9772 0.9772 0.9753 0.9603 0.9671 0.9678 0.968 0.9671

2010

MAE 0.0104 0.0082 0.017 0.0156 0.0111 0.0111 0.011 0.0112 0.0099 0.0109
SSE 0.1891 0.0179 0.0179 0.0292 0.018 0.2185 0.0198 0.0226 0.0171 0.0205

RMSE 0.0114 0.0085 0.0154 0.0138 0.0109 0.0122 0.0104 0.0111 0.0097 0.0106
R2 0.96 0.9689 0.9675 0.9681 0.9682 0.9629 0.9779 0.9783 0.9783 0.9779

2011

MAE 0.0087 0.008 0.0081 0.0081 0.0087 0.0106 0.0086 0.0103 0.0114 0.0114
SSE 0.1311 0.115 0.1146 0.1145 0.1159 0.1968 0.1631 0.1637 0.1681 0.1598

RMSE 0.0095 0.0089 0.013 0.0112 0.0089 0.0116 0.0085 0.011 0.0111 0.0108
R2 0.972 0.9791 0.9777 0.9768 0.9777 0.9709 0.9792 0.9791 0.9787 0.979

2012

MAE 0.0117 0.01 0.012 0.0075 0.0089 0.0118 0.01 0.0104 0.0105 0.0108
SSE 0.2454 0.2202 0.2079 0.2074 0.2106 0.2459 0.202 0.2143 0.241 0.2395

RMSE 0.0129 0.01 0.0118 0.0085 0.0098 0.013 0.0117 0.0121 0.0129 0.0126
R2 0.9555 0.9677 0.9678 0.9688 0.9688 0.9527 0.9616 0.9612 0.9597 0.9606

2013

MAE 0.008 0.0079 0.007 0.0071 0.0071 0.0094 0.009 0.009 0.009 0.009
SSE 0.1141 0.1094 0.1007 0.1101 0.1075 0.1605 0.1573 0.1496 0.1487 0.165

RMSE 0.0088 0.0082 0.0081 0.0082 0.0082 0.0105 0.0101 0.0101 0.0101 0.0102
R2 0.9695 0.9724 0.9708 0.9719 0.9711 0.9683 0.9757 0.9758 0.977 0.9765
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Table 3. Seasonal and whole five-year parameter estimation results.

Year Location
Weibull FA-Weibull GA-Weibull CS-Weibull AC-Weibull

k c k c k c k c k c

First season

[125, 40] 8.8783 2.4995 8.7346 2.4672 8.8899 2.4843 8.9504 2.5312 9.0739 2.5050
[122.5, 40] 8.4810 2.4155 8.5773 2.4602 8.5504 2.4739 8.4547 2.3004 8.4565 2.4358
[125, 42.5] 8.3325 2.3793 8.2784 2.3348 8.4630 2.3661 8.3952 2.4016 8.3189 2.4561
[120, 40] 8.3127 2.4108 8.1171 2.3689 8.1427 2.3983 8.3542 2.4110 8.3612 2.5259

Second season

[125, 40] 8.8763 2.4987 8.9835 2.5008 9.0052 2.5024 8.8521 2.5184 8.8892 2.5043
[122.5, 40] 8.4767 2.4164 8.4805 2.3422 8.5348 2.4547 8.4797 2.4253 8.4911 2.3732
[125, 42.5] 8.3273 2.3814 8.4297 2.4016 8.4137 2.3879 8.3766 2.3781 8.2740 2.3765
[120, 40] 8.3089 2.4112 8.4085 2.4653 8.2526 2.4110 8.2994 2.3859 8.2654 2.3733

Third season

[125, 40] 8.8758 2.4979 8.7143 2.4186 8.8830 2.5541 8.8317 2.5629 8.9194 2.5700
[122.5, 40] 8.4756 2.4155 8.4651 2.4173 8.4580 2.4278 8.3614 2.3911 8.3312 2.4068
[125, 42.5] 8.3253 2.3807 8.4535 2.4995 8.1392 2.3061 8.4979 2.4102 8.1919 2.2587
[120, 40] 8.3071 2.4105 8.3858 2.3251 8.3593 2.3892 8.2110 2.3520 8.2030 2.3716

Fourth season

[125, 40] 8.5040 2.5343 8.5563 2.5138 8.4628 2.5109 8.4846 2.4697 8.5909 2.6049
[122.5, 40] 8.4873 2.3548 8.6227 2.3595 8.3183 2.3839 8.6632 2.3741 8.4646 2.3547
[125, 42.5] 9.1023 2.4282 8.9945 2.3896 9.2803 2.4511 9.0967 2.5114 8.9921 2.4545
[120, 40] 8.9880 2.4722 9.0008 2.4356 8.9397 2.4269 9.0066 2.5159 9.0729 2.4519

Whole five year

[125, 40] 8.7459 2.4777 8.7803 2.5185 8.6852 2.4593 8.7637 2.4517 8.7309 2.5006
[122.5, 40] 8.9356 2.3463 8.9927 2.3533 8.9114 2.3423 8.9625 2.3901 8.9716 2.3568
[125, 42.5] 9.5135 2.3473 9.5286 2.3890 9.5193 2.3575 9.5760 2.3962 9.4849 2.3152
[120, 40] 9.4131 2.3379 9.4744 2.3499 9.3931 2.2968 9.5049 2.3542 9.3308 2.3495
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Table 4. Seasonal and whole five-year assessment error results.

Year Metric Location [125, 40] Location [122.5, 40]

Weibull FA-Weibull GA-Weibull CS-Weibull AC-Weibull Weibull FA-Weibull GA-Weibull CS-Weibull AC-Weibull

First season

MAE 0.01 0.0096 0.0071 0.0088 0.0093 0.0171 0.0162 0.0165 0.0164 0.0167
SSE 0.2175 0.02 0.0192 0.0207 0.0205 0.641 0.6625 0.6353 0.6556 0.6049

RMSE 0.0109 0.01 0.0087 0.0073 0.0106 0.0187 0.0151 0.0176 0.017 0.0174
R2 0.9734 0.9785 0.9781 0.9793 0.979 0.9572 0.9635 0.9612 0.9627 0.963

Second season

MAE 0.01 0.0091 0.0095 0.0091 0.0097 0.0172 0.0127 0.0109 0.0102 0.0167
SSE 0.2177 0.1976 0.2981 0.14 0.1428 0.6421 0.5993 0.35 0.4908 0.613

RMSE 0.0109 0.0085 0.0104 0.0072 0.0072 0.0188 0.0167 0.0127 0.0151 0.0147
R2 0.9733 0.9792 0.9789 0.9792 0.979 0.9572 0.9609 0.9613 0.9605 0.958

Third season

MAE 0.01 0.0897 0.0666 0.0651 0.0585 0.0172 0.016 0.0128 0.0149 0.0159
SSE 0.2176 0.2109 0.1801 0.1298 0.1574 0.6423 0.0626 0.0454 0.0481 0.058

RMSE 0.0109 0.0102 0.0094 0.008 0.0088 0.0188 0.0169 0.0144 0.0148 0.0163
R2 0.9733 0.9737 0.9734 0.9739 0.9738 0.9571 0.9619 0.9627 0.9636 0.9634

Fourth season

MAE 0.0122 0.0114 0.0108 0.0115 0.0104 0.0105 0.0097 0.0095 0.0095 0.01
SSE 0.3312 0.273 0.2068 0.2739 0.236 0.2397 0.1982 0.1979 0.1291 0.1055

RMSE 0.0135 0.0104 0.009 0.0104 0.0115 0.0115 0.0105 0.0105 0.0085 0.0077
R2 0.9691 0.9693 0.9697 0.9693 0.9703 0.977 0.9813 0.9825 0.9832 0.9826

Whole five year

MAE 0.0131 0.0114 0.0129 0.0115 0.0106 0.015 0.0141 0.013 0.0116 0.0198
SSE 1.4982 1.4616 1.3454 1.2164 1.1307 1.9688 1.7822 1.5466 1.6229 1.7183

RMSE 0.0143 0.014 0.0134 0.0127 0.0123 0.0164 0.0153 0.0118 0.0134 0.0183
R2 0.9645 0.9785 0.9786 0.9784 0.9786 0.9568 0.9688 0.9693 0.9694 0.9681
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Table 4. Cont.

Year Metric
Location [125, 42.5] Location [120, 40]

Weibull FA-Weibull GA-Weibull CS-Weibull AC-Weibull Weibull FA-Weibull GA-Weibull CS-Weibull AC-Weibull

First season

MAE 0.0126 0.0126 0.0122 0.011 0.0087 0.0151 0.0133 0.0114 0.0118 0.0072
SSE 0.3507 0.0288 0.0323 0.0234 0.0186 0.4995 0.4634 0.3285 0.3661 0.2851

RMSE 0.0139 0.0109 0.0116 0.0098 0.0088 0.0165 0.0159 0.0134 0.0142 0.0125
R2 0.9644 0.9688 0.9679 0.9684 0.969 0.9589 0.9652 0.9658 0.9631 0.966

Second season

MAE 0.0127 0.0114 0.0118 0.0096 0.0125 0.0151 0.0138 0.0147 0.0131 0.0149
SSE 0.3517 0.0308 0.0367 0.0319 0.0333 0.5005 0.4468 0.4697 0.3217 0.4802

RMSE 0.0139 0.0115 0.0126 0.0117 0.012 0.0166 0.0127 0.0155 0.0107 0.0147
R2 0.9645 0.967 0.9664 0.9665 0.9665 0.9589 0.9631 0.9613 0.9631 0.9624

Third season

MAE 0.0127 0.0113 0.0141 0.0098 0.0135 0.0151 0.0115 0.008 0.0139 0.0109
SSE 0.3521 0.3095 0.3336 0.2939 0.3497 0.5009 0.4929 0.4391 0.4979 0.4929

RMSE 0.0139 0.0108 0.0128 0.0088 0.013 0.0166 0.0162 0.0113 0.0165 0.0169
R2 0.9644 0.9669 0.9666 0.9673 0.966 0.9588 0.9618 0.9631 0.9596 0.9617

Fourth season

MAE 0.0091 0.0089 0.0074 0.0075 0.0881 0.0096 0.0084 0.0084 0.0087 0.0085
SSE 0.1803 0.1769 0.1031 0.1033 0.1717 0.202 0.1568 0.157 0.1701 0.1853

RMSE 0.0099 0.0962 0.0081 0.0081 0.0946 0.0105 0.0099 0.0099 0.0101 0.0101
R2 0.9712 0.976 0.9786 0.9784 0.9762 0.9712 0.9796 0.9791 0.9779 0.9785

Whole five year

MAE 0.0116 0.0112 0.0101 0.0118 0.0143 0.012 0.0103 0.013 0.0104 0.0124
SSE 1.1793 1.6723 1.3886 1.7188 1.6658 1.2646 0.9585 1.3108 0.9469 1.2449

RMSE 0.0127 0.0126 0.0115 0.0128 0.0159 0.0132 0.0119 0.0139 0.0118 0.0136
R2 0.9608 0.9692 0.9692 0.9693 0.9687 0.9602 0.9688 0.9687 0.969 0.9687
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Figure 2. Seasonal PDF and whole five-year fitting results.

The two -parameter Weibull distribution function has been widely applied to different kinds
of wind energy-related investigations due to its briefness, flexibility and effectiveness. In this paper,
the performance of four optimization algorithms, including the FA, GA, CS, and AC algorithms,
was assessed to optimize the k and c parameters of the Weibull probability distribution function
when calculating the wind power density at four sites in China. The assessments were conducted
on both a seasonal and annual basis to offer a more complete analysis. Both the annual and seasonal
results showed that by using different parameter estimation methods through different optimization
algorithms for determining the k and c parameters of the Weibull distribution, the accuracy of the
calculated wind power density values would change. According to the wind energy assessment
results from the statistical analysis, the FA, GA, CS, and AC algorithms provided a very desirable
performance for each site. Another discovery showed the CS and AC algorithms’ approach in terms of
the efficiency. The assessment results show that the more appropriate parameter estimation algorithm
was not universal among all examined sites. As a matter of fact, the wind energy properties could be a
significant factor in wind energy assessment. Annually and seasonally for Site 1, the CS algorithm was
recognized as a more appropriate algorithm, while the FA showed weak performance for wind power
assessment. For Site 2, the four optimization algorithms were determined as a more effective Weibull
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parameter estimation algorithm for optimizing the wind power density in each year and season.
For Site 3, the AC showed poor performance for the annual wind power density distribution, and
the FA was recognized as a more appropriate method. For Site 4, both the FA and GA perform better
for the seasonal wind power density. The suggested parameter estimation methods have excellent
performance for representing the distribution of seasonal and annual wind power density as well as
determining different statistical properties of the power density [20].

3. Connection between Energy Assessment and Forecasting

In recent years, the de-noising method is widely used to preprocess wind speed time series,
such as the Ensemble Empirical Mode Decomposition (EEMD), Singular Spectrum Analysis (SSA),
and the Wavelet decomposition (WD). Thus far, there is no effective way to choose which de-noising
methods should be used to address the original wind speed time series. In this section, the wind
energy assessment method with the smallest error values is used to choose the best de-nosing method
to pre-process the wind speed time series.

Figure 3 presents the PDF fitting results obtained by three different de-noising methods for the
four sites, and Table 5 shows the parameter estimation and error results of the different de-nosing
wind speed time series. As seen from Figure 3 and Table 5, the R2 values from Site 1 to Site 4 in the WD
de-noising method are all closest to 1. Assessment results obtained by the three de-noising models show
that the MAE values of the WD de-noising method is the smallest. In this paper, the WD de-noising
method is adopted to preprocess the original wind speed to improve the forecasting accuracy.
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Table 5. Assessment results of each de-noising wind speed time series.

Metric
Location [125, 40] Location [122.5, 40]

EEMD-WeibullSSA-Weibull WD-Weibull EEMD-WeibullSSA-Weibull WD-Weibull

k 8.6156 8.6133 8.7345 8.8592 8.8369 8.9252
c 3.3543 3.5266 2.2940 3.4234 3.2418 2.1892
MAE 0.0044 0.0048 0.0043 0.0053 0.0046 0.0045
SSE 0.2787 0.3299 0.3142 0.4161 0.3233 0.3133
RMSE 0.0062 0.0067 0.0061 0.0075 0.0067 0.0063
R2 0.9861 0.9870 0.9897 0.9767 0.9826 0.9857

Metric
Location [125, 42.5] Location [120, 40]

EEMD-WeibullSSA-Weibull WD-Weibull EEMD-WeibullSSA-Weibull WD-Weibull

k 9.4236 9.4138 9.5075 9.2853 9.3002 9.4049
c 3.1842 3.1809 2.2305 3.1982 3.2783 2.2173
MAE 0.0042 0.0041 0.0041 0.0043 0.0044 0.0045
SSE 0.2500 0.2423 0.2454 0.2559 0.2762 0.2463
RMSE 0.0059 0.0058 0.0059 0.0059 0.0061 0.0009
R2 0.9879 0.9876 0.9899 0.9884 0.9885 0.9898

4. Proposed Integrated Forecasting Framework and Forecasting Results

In this section, three basic neural network forecasting models are first introduced; then,
the integrated forecasting framework proposed in this paper is shown. Finally, the forecasting results
obtained by the new proposed forecasting framework are analyzed.

4.1. Basic Neural Network Forecasting Models

Artificial neural networks are usually used to forecast fields as they can approximate nonlinear
functions with arbitrary accuracy. Three neural network models are introduced in this paper for the
wind speed forecasting application.

4.1.1. Back Propagation Neural Network

The back propagation neural network (BPNN) [21] is a multilayer feed-forward neural network.
The two main features that should be considered in BPNN are the feed-forward signal and back
propagated error. In the feed-forward process, the signal is passed layer-by-layer from the input layer
to the hidden layer and then to the output layer. The state of the neurons only impacts the neurons in
the adjacent next layer. If the output in the output layer is not expected, back propagation starts.

Suppose X1, X2, . . . , Xn are the input values of the BPNN; Y1, Y2, . . . , Ym are the corresponding
output values; and ωij and ωjk are the weights, the BPNN can be viewed as a non-linear function
and the input values and output values can be regarded as the independent and dependent variables.
The BPNN structure in Figure 4 is the expression of the function mapping relation from n independent
variables to m dependent variables.

The network training is the main task of the BPNN. Through the training operation, the BPNN
has capacity for associative memory and forecasting. The training process of the BPNN includes the
following steps:

Step 1: Network initialization. Based on the practical problem, determine the number of nodes in
the input, hidden and output layers. Then, initialize the following values: the connection weights ωij
and ωjk, threshold values θj and θk in the hidden and output layers, respectively, and the learning rate
η and the transfer functions.
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Step 2: The output calculation of the hidden layer. According to the input vector
X = (X1, X2, . . . , Xn), the connection weights ωij between the input and hidden layers and the
threshold value θj in the hidden layer as well as the output of the hidden layer can be calculated by
Equation(9):

Hj = f

(
l

∑
i=1

ωijxi − θj

)
(9)

where l is the number of nodes in the hidden layer and f (·) is the transfer function of the hidden
layer, which has a variety of expression forms. In this research, the following form is adopted in
Equation (10):

f (x) =
1

1 + e−x (10)

Step 3: The output calculation of the output layer. According to the output Hj of the hidden layer,
the connection weights ωjk between the hidden layer and output layer, and the threshold value θj in
the output layer, the forecasting output of the BPNN can be expressed as Equation (11):

Yk = g

(
∑

j
ωjk Hj − θk

)
(11)

where g (·) is the transfer function from the hidden layer to the output layer, which is defined as
Equation (12) in this research:

g (x) =
1

1 + e−x (12)

Step 4: Error calculation. With the predicted output Y = (Y1, Y2, . . . , Ym) and the desired output
DY = (DY1, DY2, . . . , DYm), the forecasting error of the network is computed by Equation (13):

e =
1

2P

P

∑
p=1

m

∑
j=1

(
DYp

j −Yp
j

)2
(13)

where P is the number of the input and output pairs.
Step 5: Weights update. Update the connection weights ωij and ωjk by Equations (14) and (15):

ωjk = ωjk + ηδk Hj (14)

ωij = ωij + ηδjXi (15)

where η is the learning rate, and shows Equations (16) and (17)

δk = Yk (1−Yk) (DYk −Yk) (16)

δj = Hj
(
1− Hj

)
∑
k

ωjkδk (17)

Step 6: Threshold update. By using the forecasting error of the network, the threshold is updated
by Equations (18) and (19):

θk = θk − ηδk (18)

θj = θj − ηδj (19)

Step 7: Termination determination. Determine whether the termination requirement is achieved,
if so, ended, otherwise, return to Step 2.
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4.1.2. Wavelet Neural Network

The Wavelet Neural Network (WNN) [22] is a neural network type that is constructed on the
basis of the BPNN topology, and the wavelet basis function is regarded as the transfer function of the
hidden layer nodes. In this type of network, the signal is transferred feed-forward, while the error is
transferred back-forward. Suppose X1, X2, . . . , Xn are the inputs of the network, Y1, Y2, . . . , Ym are the
forecasted output, and ωij and ωjk are the weights, the output of the hidden layer can be represented
by Equation (20)

hj = h


n
∑

i=1
ωijXi − bj

aj

 (20)

where hj is the output of the jth hidden layer node, ωij is the connection weight between the input and
hidden layers, h (·) is the wavelet function, bj is the shift factor of the wavelet function, and aj is the
stretch factor wavelet function.

The forecasted value of the output layer can be calculated by Equation (21):

yk =
l

∑
j=1

ωjkhj, k = 1, 2, . . . , m (21)

where ωjk is the weight between the hidden and output layers, hj is the output of the jth hidden
layer nodes, l is the number of the nodes in the hidden layer, and m is number of the nodes in the
output layer.
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The process of the WNN algorithm is as follows:
Step 1: Network initialization. Randomly initialize the stretch factor ak, shift factor bk, network

connection weights ωij and ωjk, and network learning rate η.
Step 2: Sample classification. Divide the samples into the training and testing samples, which are

used to train the network and test the forecasting accuracy of the network, respectively.
Step 3: Output prediction. Input the training sample into the network and calculate the predicted

output of the network as well as the error between the network output and desired output.
Step 4: Weight correction. Correct the network weights and parameters in the wavelet

function according to the calculated error values, helping the network predicted values approach the
expected values.

Step 5: Algorithm termination judgment. Determine whether the algorithm termination is
satisfied; if not, return to Step 3.

4.1.3. Elman Neural Network

ENN [23] is generally divided into four layers, input, hidden, context and output layers.
The connections between the input, hidden and output layers are similar to the feed-forward network.
The nodes in the input layer only play a signal transmission role, while those in the output layer have
a linear weighted effect. The transfer function of the hidden layer can be either linear or nonlinear,
and the context layer, which is also known as the undertake or state layer, is used to remember the
previous output of the hidden layer and return it to the network input so it can be considered a
single-step delay operator.

Through the delay and storage of the context layer, the output of the hidden layer can be
self-connected to the input of the hidden layer. This self-connection approach makes the network
sensitive to the historical data and increases the capacity of the network to address the dynamic
information, which can then achieve the dynamic modeling purpose. In addition, the ENN can
approximate any nonlinear map with arbitrary precision without considering the specific form of
the external noise impact on the system. Therefore, given the input and output pair of the system,
the system can be modeled.

4.2. Structure of the Proposed Integrated Forecasting Framework

In this paper, neural network models based on the three artificial intelligent neural networks
mentioned in Section 4.1—i.e., the ENN, BPNN and WNN—are used to forecast the wind speed;
the integrated forecasting framework is shown in Figure 5 and can be decomposed into the following
three main procedures. First, the wavelet decomposition (WD) [24] is used to decompose the original
wind speed data. As seen from Section 3, the WD method is the best pre-processing method selected
according to the wind energy assessment results, and it is used to preprocess the original wind
speed. With this operation, three new models, abbreviated as WD-ENN, WD-BPNN and WD-WNN,
are gained. Second, the CS and the AC algorithms are adopted to optimize the unknown weight and
bias matrices between hidden and output layers in the three neural network models obtained in the
first step, respectively. Additionally, with this implementation, in addition to the three neural networks
optimized by the CS algorithm, named the WD-CS-ENN, WD-CS-BPNN and WD-CS-WNN, three
neural networks optimized by the AC algorithm, abbreviated as the WD-AC-ENN, the WD-AC-BPNN
and the WD-AC-WNN, are obtained as well (shown in Figure 4). The related pseudo codes are
presented in Algorithms 3 and 4.
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Algorithm 3: Three Neural Networks Optimized by the CS Algorithm

Input:

x(0)s =
(

x(0) (1) , x(0) (2) , . . . , x(0) (q)
)

—a sequence of training data.

x(0)p =
(

x(0) (q + 1) , x(0) (q + 2) , . . . , x(0) (q + d)
)

—a sequence of verifying data

Output:

xb—the value of x with the best fitness value in population of nests
Fitness Function: x(k) = f (ω1xc(k) + ω2(u(k− 1))) (ENN)

f (net) = 1
1+e−net (BPNN)

h(j) = hj


k
∑

i=1
ωijx−bj

aj

 (WNN)

Parameters:
Num Cuckoos = 50 number of initial population
Min Number Of Eggs = 2; minimum number of eggs for each cuckoo
Max Number Of Eggs = 4; maximum number of eggs for each cuckoo
Max Iter = 200; maximum iterations of the Cuckoo Algorithm
Knn Cluster Num = 1; number of clusters that we want to make
Motion Coeff = 20; Lambda variable in COA paper, default = 2
accuracy = 0 × 10−10; How much accuracy in answer is needed
Max Num Of Cuckoos = 20; maximum number of cuckoos that can live at the same time
Radius Coeff = 0.05; Control parameter of egg laying
Cuckoo Pop Variance = 1 × 10−10; population variance that cuts the optimization

1: /* Initialize population of n host nests xi (i = 1, 2, ..., n) randomly*/
2: FOR EACH i: 1 ≤ i ≤ n DO
3: Evaluate the corresponding fitness function Fi
4: END FOR
5: WHILE (g< GenMax) DO
6: /* Get new nests by Lévy flights */
7: FOR EACH i: 1 ≤ i ≤ n DO
8: xL=xi+α⊕Levy(λ);
9: END FOR
10: FOR EACH i: 1 ≤ i ≤ n DO
11: Compute FL
12: IF (FL < Fi) THEN
13: xi←xL;
14: END IF
15: END FOR
16: Compute FL
17: /*Update best nest xp of the d generation*/
18: IF (Fp < Fb) THEN
19: xb←xp;
20: END IF
21: END WHILE
22: RETURN xb



Sustainability 2016, 8, 1191 22 of 32

Algorithm 4: Three Neural Networks Optimized by the AC Optimization Algorithm

Input:

x(0)s =
(

x(0) (1) , x(0) (2) , . . . , x(0) (q)
)

—a sequence of training data.

x(0)p =
(

x(0) (q + 1) , x(0) (q + 2) , . . . , x(0) (q + d)
)

—a sequence of verifying data

Output:

xb—the value of x with the best fitness value in population of nests
Fitness Function: x(k) = f (ω1xc(k) + ω2(u(k− 1))) (ENN)

f (net) = 1
1 + e−net (BPNN)

h(j) = hj


k
∑

i=1
ωijx−bj

aj

 (WNN)

Parameters:
Maximum iterations:50
The number of ant:30
Parameters of the important degree of information elements:1
Parameters of the important degree of the Heuristic factor:5
Parameters of the important degree of the heuristic factor:0.1
Pheromone increasing intensity coefficient:100
NC_max—Maximum iterations:50
m—The number of ant:30
Alpha—Parameters of the important degree of information elements:1
Beta—Parameters of the important degree of the Heuristic factor:5
Rho—Parameters of the important degree of the heuristic factor:0.1
Q—Pheromone increasing intensity coefficient:100

1: /*Initialize popsize candidates with the values between 0 and 1*/
2: FOR EACH i 1 ≤ i ≤ n DO
3: α1

i = rand (m, n)
4: END FOR
5: P =

{
αiter

i : 1 ≤ i ≤ popsize
}

6: iter = 1; Evaluate the corresponding fitness function Fi
7: /* Find the best value of repeatedly until the maximum iterations are reached. */
8: WHILE .(iter ≤ itermax) DO
9: /* Find the best fitness value for each candidates */
10: FOR EACH αiter

i ∈ P DO
11: Build neural network by using x(0)s with the αiter

i value

12: Calculate x̂(0)p =
(

x̂(0)p+1, x̂(0)p+2, . . . , x̂(0)p+3

)
by neural network

13: /*Choose the best fitness value of the ith candidate in history */
14: IF (pBesti > fitness(αiter

i )) THEN
15: pBesti = fitness(αiter

i )
16: END IF
17: END FOR
18: /* Choose the candidate with the best fitness value of all the candidates */
19: FOR EACH αiter

i ∈ P DO
20: IF (gBest > pBesti) THEN
21: gBest = pBesti = xk

t+1 = xgbest± : t = 1, 2, · · · , T
22: αbest = αiter

i
23: END IF
24: END FOR
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Algorithm 4: Cont.

25: /*Update the values of all the candidates by using ACO’s evolution equations.*/
26: FOR EACH αiter

i ∈ P DO
27: αt+1 = 0.1 × αt

28: xgbest = xgbest + (xgbest × 0.01)→
{

i f f (xgbest) − f (xgbest) ≤→ the sign is(+)

i f f (xgbest) − f (xgbest) ≤→ the sign is(−)
29: END FOR
30: P =

{
αiter

i : 1 ≤ i ≤ popsize
}

31: iter = iter + 1
32: END WHILE
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4.3. Wind Speed Forecasting Case Study

When the original wind speed time series is disposed by the WD method, the pre-processed
wind speed time series is considered as the input of the optimized BPNN, ENN and WNN models.
It is worth noting that the method for dividing the original wind speed time series into the training
and testing sets is quite important. Moreover, in the network training procedure, the training inputs
are de-noised data, while the training output is the original training time series. In the testing step,
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the inputs are also the de-noised wind speed data, and the output is the original testing output.
However, the testing output is assumed to be unknown.

Figure 6 presents the data division results; in this paper, the training dataset window with length
N = 1008 is fixed according to the original time series. For example, suppose a study of the wind
speed time series will be forecasted. Apart from the data division, the forecasting horizon is also an
important index. In this paper, multi-step ahead forecasting with values h = 1, 2, and 3 are analyzed,
where h is a prediction step.
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Related parameter initialization values in different neural networks are shown in Table 6. Based
on the error evaluation criteria, MAE, defined in Equation (5) and the following two forecasting error
evaluation criteria shows in Equations (22) and (23), forecasting error values obtained by different
neural networks are listed in Table 7.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (22)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (23)

where yi and ŷi are the actual and forecasted wind speed values, and n is the number of the
data samples.

Table 7 provides the forecasting error results with three different horizons, one-step-ahead,
two-steps-ahead and three-steps-ahead. As seen, under the same horizon conditions, performances
of the optimized nine neural networks are all better than those of the three single neural networks.
Additionally, models optimized by the WD and CS or WD and AC are all superior to those that
were only optimized by the WD algorithm. While the models optimized by the WD and CS are
compared with the models optimized by the WD and AC, for the one-step-ahead horizon forecasting
results shows in Figure 7, error values obtained by the WD and CS algorithms are all smaller than
the corresponding models optimized by the WD and AC algorithms. For the two-step-ahead horizon
forecasting results shows in Figure 8, the BPNN model optimized by the WD and CS is worse than
that optimized by the WD and AC algorithms. For the three-steps-ahead horizon forecasting results
shows in Figure 9, the ENN and BPNN models optimized by the WD and CS are both worse than the
one optimized by the WD and AC algorithms. In conclusion, the novel optimized models proposed in
this paper are all better than the original models.



Sustainability 2016, 8, 1191 25 of 32

Table 6. Related parameter initialization values in the neural networks.

WD-CS/AC-ENN Model WD-CS/AC-BPNN Model WD-CS/AC-WNN Model

WD-CS-ENN WD-AC-ENN WD-CS-BPNN WD-AC-BPNN WD-CS-WNN WD-AC-WNN

Number of input
neurons Ni: 3

Number of input
neurons Ni: 4

Number of input
neurons Ni: 5

Number of input
neurons Ni: 5

Number of input
neurons Ni: 5

Number of input
neurons Ni: 3

Number of hidden layer
neurons Nj: 16

Number of hidden layer
neurons Nj: 22

Number of hidden layer
neurons Nj: 15

Number of hidden layer
neurons Nj: 16

Number of hidden layer
neurons Nj: 19

Number of hidden layer
neurons Nj: 20

Number of output
neurons Nk: 1

Number of output
neurons Nk: 1

Number of output
neurons Nk: 1

Number of output
neurons Nk: 1

Number of output
neurons Nk: 1

Number of output
neurons Nk: 1

Maximum of iterative
steps:1000

Maximum of iterative
steps: 1000

Maximum of iterative
steps: 1000

Maximum of iterative
steps: 1000

Maximum of iterative
steps: 1000

Maximum of iterative
steps: 1000

Value of the learning
rate: 0.01

Value of the learning
rate: 0.01

Value of the learning
rate: 0.01

Value of the learning
rate: 0.01

Value of the learning
rate: 0.01

Value of the learning
rate: 0.01

Table 7. Forecasting error values of each model.

Horizon Criterion
Single Model Model Optimized by the WD Model Optimized by the WD and CS Model Optimized by the WD and AC

ENN BPNN WNN WD-ENN WD-BPNN WD-WNN WD-CS-ENN WD-CS-BPNN WD-CS-WNN WD-AC-ENN WD-AC-BPNN WD-AC-WNN

One-step-ahead
MAE 0.6387 0.5164 0.5424 0.5579 0.4067 0.2769 0.2842 0.2681 0.2168 0.3612 0.2845 0.3131
MSE 0.6951 0.4561 0.5503 0.5554 0.2913 0.1484 0.1545 0.1376 0.0851 0.2203 0.1636 0.1755

MAPE 0.0961 0.0770 0.0788 0.0832 0.0619 0.0593 0.0402 0.0379 0.0383 0.0534 0.0361 0.0371

Two-steps-ahead
MAE 0.6941 0.5360 0.5431 0.6405 0.4084 0.3622 0.3037 0.2844 0.2370 0.3793 0.3408 0.3489
MSE 0.8167 0.4987 0.5335 0.7155 0.4541 0.4546 0.506 0.4585 0.4557 0.4895 0.4399 0.4469

MAPE 0.1038 0.0790 0.0792 0.0953 0.0698 0.0646 0.0744 0.0698 0.0634 0.0728 0.0682 0.0684

Three-steps-ahead
MAE 0.7199 0.5535 0.5814 0.6815 0.4620 0.5285 0.3556 0.3192 0.3153 0.3553 0.2624 0.2850
MSE 0.9084 0.7310 0.7546 0.8149 0.7046 0.6995 0.6527 0.6042 0.6059 0.2117 0.1310 0.1569

MAPE 0.1065 0.0818 0.0850 0.1007 0.0786 0.0755 0.0845 0.0792 0.0781 0.0838 0.0677 0.0704
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5. Conclusions

Effective wind energy potential assessment and forecasting for a particular site plays an
indispensable role in the design, evaluation and scheduling of wind farms. In this paper, based
on the CS and AC algorithms, two new wind energy assessment models, as well as six wind speed
forecasting models, are proposed. First, the CS and AC algorithms are introduced to estimate the two
unknown parameters in the Weibull distribution as well as improve the assessment accuracy. The four
assessment error evaluation criteria sets of results demonstrate that the two newly proposed assessment
models are effective and meaningful. Then, the best data pre-processing approach is selected according
to the wind energy potential evaluation results and is adopted to process the wind speed time series.
Finally, the CS and AC algorithms are used to optimize three neural networks—namely the ENN,
BPNN and WNN—and the three sets of forecasting error evaluation criteria results demonstrate that
the six newly proposed assessment models perform better than the original ones. Therefore, forecasting
researchers can greatly benefit from data pre-processing and swarm intelligent optimization techniques
and these data allow for significant improvements in accuracy.
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Appendix A

Table A1. The result of method of moments estimate, maximum likelihood estimate, least squares estimate, Bayesian prior estimate and Bayesian posterior estimate.

[125, 40] [122.5, 40]

Parameter MM MLE LSE Bayesian Prior Bayesian Posterior MM MLE LSE Bayesian Prior Bayesian Posterior

2009

k 8.7667 8.7684 8.7686 8.775 8.7602 8.9165 8.9194 8.917 8.928 8.916
c 2.482 2.482 2.4575 2.4523 2.5002 2.3113 2.3113 2.3021 2.2635 2.3293

MAE 0.0115 0.0092 0.0206 0.008 0.0145 0.0128 0.0157 0.0153 0.0177 0.0133
SSE 0.1992 0.1649 0.2123 0.1696 0.1976 0.3635 0.0363 0.0309 0.0322 0.0224

RMSE 0.0121 0.0122 0.0216 0.011 0.0164 0.018 0.0161 0.0139 0.014 0.0127
R2 0.9439 0.9441 0.9419 0.942 0.9447 0.9511 0.9514 0.9503 0.9466 0.9527

2010

k 8.5254 8.5267 8.525 8.5162 8.5189 8.906 8.9078 8.9062 8.9055 8.8965
c 2.5432 2.5432 2.5484 2.5332 2.5607 2.4737 2.4737 2.4714 2.3815 2.4949

MAE 0.0101 0.0086 0.0145 0.0109 0.0111 0.0123 0.0097 0.0078 0.0094 0.0106
SSE 0.1472 0.134 0.1083 0.1505 0.1851 0.1979 0.166 0.1644 0.1116 0.1758

RMSE 0.0116 0.0209 0.0193 0.0229 0.021 0.0119 0.0109 0.0111 0.0092 0.011
R2 0.8905 0.8908 0.8907 0.8885 0.8902 0.9056 0.9058 0.9054 0.8923 0.9068

2011

k 8.6657 8.6678 8.6657 8.6688 8.6579 8.8481 8.85 8.8499 8.8562 8.8493
c 2.4147 2.4147 2.4153 2.3754 2.437 2.4617 2.4617 2.4396 2.4272 2.4713

MAE 0.0156 0.0136 0.0122 0.0138 0.013 0.0114 0.0118 0.0114 0.0107 0.0111
SSE 0.2727 0.2412 0.2745 0.2872 0.3014 0.2065 0.1801 0.1646 0.1663 0.1287

RMSE 0.015 0.012 0.0134 0.0131 0.0137 0.0125 0.011 0.012 0.0092 0.0084
R2 0.9386 0.9389 0.9386 0.935 0.9393 0.9615 0.9617 0.9604 0.96 0.9621

2012

k 8.6999 8.7006 8.707 8.7159 8.6974 8.7481 8.7507 8.7494 8.7627 8.7487
c 2.6504 2.6504 2.5806 2.5914 2.6551 2.3396 2.3396 2.3128 2.2814 2.3555

MAE 0.0171 0.0153 0.013 0.0145 0.014 0.0128 0.0114 0.0116 0.0139 0.0129
SSE 0.3563 0.3237 0.279 0.3263 0.304 0.1998 0.2063 0.1957 0.205 0.1392

RMSE 0.0189 0.0178 0.0176 0.0146 0.0118 0.014 0.0127 0.0118 0.0108 0.0123
R2 0.9522 0.9522 0.9451 0.9467 0.9525 0.9464 0.9466 0.9427 0.9386 0.9486

2013

k 9.1137 9.1155 9.1173 9.1303 9.1136 9.3264 9.3291 9.328 9.3426 9.3066
c 2.4728 2.4728 2.4282 2.4069 2.4829 2.3573 2.3573 2.3302 2.3099 2.3895

MAE 0.015 0.0196 0.0156 0.0172 0.019 0.0122 0.0163 0.0151 0.0112 0.0154
SSE 0.3543 0.342 0.4021 0.3286 0.3146 0.3301 0.221 0.2597 0.2208 0.1968

RMSE 0.0196 0.0123 0.016 0.0154 0.0196 0.0157 0.0156 0.014 0.0124 0.0141
R2 0.9603 0.9604 0.9549 0.9527 0.9614 0.9534 0.9535 0.9494 0.9469 0.9563

Frist season

k 8.8812 8.8827 8.8828 8.8854 8.8741 8.7847 8.786 8.7892 8.7987 8.7844
c 2.5116 2.5116 2.4928 2.4921 2.5293 2.5463 2.5463 2.4959 2.4757 2.5485

MAE 0.0149 0.0117 0.0138 0.0132 0.0106 0.0127 0.0108 0.0121 0.0104 0.0109
SSE 0.3556 0.3537 0.2258 0.3241 0.2447 0.296 0.2494 0.2022 0.1519 0.1361

RMSE 0.0164 0.0105 0.0112 0.0126 0.0143 0.0118 0.0118 0.0132 0.0108 0.0095
R2 0.9431 0.9433 0.9421 0.9424 0.9432 0.9624 0.9625 0.9573 0.9552 0.9626
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Table A1. Cont.

[125, 40] [122.5, 40]

Parameter MM MLE LSE Bayesian Prior Bayesian Posterior MM MLE LSE Bayesian Prior Bayesian Posterior

Second season

k 8.4894 8.4913 8.4912 8.499 8.4896 9.1952 9.1979 9.1971 9.2135 9.1931
c 2.4451 2.4451 2.4199 2.3963 2.4474 2.3463 2.3463 2.3114 2.2909 2.3632

MAE 0.0138 0.0163 0.0159 0.0143 0.0142 0.0148 0.015 0.0108 0.0108 0.0152
SSE 0.4155 0.3622 0.2766 0.4315 0.2447 0.2865 0.2507 0.2978 0.1967 0.162

RMSE 0.0162 0.0141 0.0102 0.0134 0.0144 0.0151 0.0123 0.0142 0.0121 0.0102
R2 0.9688 0.9689 0.9674 0.966 0.969 0.9416 0.9417 0.9361 0.9333 0.9439

Third season

k 8.3375 8.3396 8.3387 8.3478 8.3338 10.0181 10.0205 10.19 10.0272 10.0131
c 2.404 2.404 2.3842 2.3635 2.4117 2.4104 2.4104 2.3981 2.37 2.4253

MAE 0.0185 0.0163 0.0154 0.0203 0.0147 0.0174 0.015 0.0145 0.0162 0.0139
SSE 0.5327 0.4134 0.2902 0.3252 0.3152 0.3496 0.336 0.2731 0.1733 0.1516

RMSE 0.0211 0.0123 0.0098 0.0125 0.0165 0.0161 0.019 0.0174 0.0139 0.0138
R2 0.9654 0.9655 0.9638 0.9623 0.9658 0.968 0.9682 0.967 0.9646 0.9689

Fourth season

k 8.3236 8.3255 8.3257 8.3346 8.3236 9.8607 9.8634 9.8613 9.8691 9.8567
c 2.4474 2.4474 2.4174 2.3868 2.4502 2.3862 2.3862 2.3791 2.3379 2.4014

MAE 0.0204 0.0206 0.0214 0.0202 0.0153 0.0231 0.0148 0.0126 0.0164 0.0201
SSE 0.5769 0.3247 0.3222 0.7405 0.3709 0.4212 0.277 0.323 0.2356 0.1386

RMSE 0.0229 0.0193 0.0148 0.0177 0.0169 0.0226 0.0136 0.016 0.0149 0.0143
R2 0.9623 0.9624 0.9594 0.9563 0.9625 0.9515 0.9517 0.9509 0.947 0.9525

[125, 42.5] [120, 40]

Parameter MM MLE LSE Bayesian Prior Bayesian Posterior MM MLE LSE Bayesian Prior Bayesian Posterior

2009

k 9.3913 9.3939 9.3917 9.3997 9.3705 9.116 9.1188 9.1168 9.1292 9.1008
c 2.3695 2.3695 2.3637 2.3129 2.4019 2.3332 2.3332 2.3168 2.2747 2.3632

MAE 0.0091 0.009 0.0085 0.0083 0.0111 0.0129 0.0118 0.0102 0.0106 0.0144
SSE 0.153 0.1415 0.1098 0.1377 0.2181 0.2284 0.0192 0.0148 0.0158 0.0273

RMSE 0.0105 0.01 0.0088 0.0114 0.0115 0.0143 0.0121 0.0113 0.0121 0.0164
R2 0.9483 0.9485 0.9476 0.9414 0.9496 0.9515 0.9517 0.9491 0.9425 0.9546

2010

k 9.3789 9.3816 9.3804 9.3937 9.3694 9.2611 9.2637 9.2621 9.2731 9.2589
c 2.3631 2.3631 2.3398 2.3223 2.3857 2.3693 2.3693 2.3525 2.3225 2.3851

MAE 0.0106 0.0098 0.0174 0.0197 0.0122 0.0135 0.0134 0.0132 0.0106 0.0123
SSE 0.2211 0.0192 0.0219 0.0352 0.0228 0.2617 0.0203 0.0228 0.0207 0.026

RMSE 0.0116 0.0103 0.0166 0.0166 0.012 0.0155 0.0128 0.0134 0.0112 0.013
R2 0.9563 0.9565 0.9532 0.9513 0.9586 0.9521 0.9523 0.95 0.9465 0.9538

2011

k 9.4401 9.4418 9.441 9.4427 9.4286 9.3573 9.3596 9.3576 9.3635 9.3551
c 2.4878 2.4878 2.4768 2.4519 2.5089 2.4081 2.4081 2.4034 2.3843 2.4221

MAE 0.0084 0.0081 0.0084 0.0088 0.0072 0.0122 0.0103 0.0099 0.0094 0.0114
SSE 0.135 0.1316 0.116 0.1334 0.1318 0.1997 0.1684 0.1908 0.164 0.1707

RMSE 0.0091 0.0085 0.0092 0.0099 0.0085 0.0128 0.0127 0.0126 0.0124 0.0106
R2 0.9435 0.9437 0.9427 0.9406 0.9439 0.9523 0.9525 0.9522 0.9516 0.9527
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Table A1. Cont.

[125, 42.5] [120, 40]

Parameter MM MLE LSE Bayesian Prior Bayesian Posterior MM MLE LSE Bayesian Prior Bayesian Posterior

2012

k 9.474 9.477 9.4752 9.491 9.4718 9.5578 9.5602 9.5604 9.5754 9.5567
c 2.3138 2.3138 2.2888 2.2702 2.3311 2.4041 2.4041 2.3672 2.3377 2.4165

MAE 0.0115 0.0114 0.0097 0.0078 0.0097 0.0113 0.0123 0.0114 0.0124 0.0115
SSE 0.1659 0.1368 0.1236 0.1678 0.1288 0.1955 0.1764 0.1677 0.1943 0.2051

RMSE 0.0117 0.0113 0.0089 0.0089 0.011 0.0153 0.0128 0.0136 0.0128 0.0139
R2 0.9501 0.9502 0.9465 0.9443 0.9523 0.9451 0.9452 0.9392 0.9346 0.9469

2013

k 9.9172 9.92 9.9183 9.9305 9.8908 9.8139 9.8168 9.815 9.8281 9.8021
c 2.3632 2.3632 2.3463 2.3296 2.3979 2.3461 2.3461 2.3276 2.3049 2.3697

MAE 0.0088 0.0126 0.0101 0.0108 0.011 0.0128 0.0133 0.012 0.0156 0.0143
SSE 0.1737 0.1448 0.1612 0.1798 0.1817 0.2652 0.1911 0.2227 0.1907 0.284

RMSE 0.0129 0.0097 0.0145 0.0152 0.0107 0.0154 0.0113 0.0163 0.0139 0.0135
R2 0.9099 0.9101 0.9075 0.9056 0.9126 0.9352 0.9354 0.9328 0.9304 0.9371

Frist season

k 8.8483 8.8504 8.8494 8.8555 8.8373 8.5098 8.511 8.512 8.5129 8.5088
c 2.4295 2.4295 2.415 2.3759 2.4538 2.5505 2.5505 2.5258 2.5243 2.5537

MAE 0.0108 0.0098 0.0076 0.0092 0.0909 0.0115 0.0104 0.0095 0.0111 0.0086
SSE 0.233 0.2075 0.1337 0.1205 0.2132 0.256 0.1912 0.1854 0.2061 0.2218

RMSE 0.0126 0.119 0.009 0.0086 0.1062 0.0134 0.0126 0.0116 0.0125 0.0107
R2 0.938 0.9382 0.9362 0.931 0.9397 0.9598 0.9599 0.9589 0.9589 0.9598

Second season

k 9.6043 9.6064 9.6055 9.6124 9.6005 8.512 8.5142 8.5111 8.5123 8.506
c 2.4357 2.4357 2.4202 2.3852 2.4497 2.3962 2.3962 2.4099 2.3319 2.4178

MAE 0.0097 0.0114 0.0092 0.0106 0.1252 0.0142 0.0086 0.0118 0.0111 0.0108
SSE 0.2289 0.2304 0.1575 0.1511 0.2289 0.2775 0.194 0.2431 0.2149 0.2718

RMSE 0.0131 0.126 0.0094 0.0091 0.1431 0.0138 0.0108 0.0154 0.0114 0.0112
R2 0.96 0.9602 0.9584 0.9544 0.9612 0.941 0.9412 0.9414 0.9367 0.941

Third season

k 10.6024 10.6045 10.6047 10.6118 10.5606 9.1138 9.1158 9.1144 9.1175 9.097
c 2.4809 2.4809 2.4578 2.4353 2.5237 2.4523 2.4523 2.4452 2.4137 2.4805

MAE 0.0152 0.0158 0.0111 0.0099 0.1236 0.0133 0.0103 0.0122 0.0159 0.0168
SSE 0.2674 0.2676 0.1401 0.1755 0.2621 0.3613 0.2327 0.2206 0.2689 0.2856

RMSE 0.0125 0.1726 0.0141 0.0141 0.1475 0.0152 0.0134 0.0187 0.0159 0.0137
R2 0.9241 0.9242 0.9208 0.9177 0.9268 0.9434 0.9436 0.9427 0.9392 0.9443

Fourth season

k 10.4945 10.4971 10.4953 10.5032 10.4674 8.9929 8.9946 8.9945 8.9987 8.9824
c 2.4081 2.4081 2.3979 2.3609 2.4402 2.4898 2.4898 2.4709 2.4613 2.5114

MAE 0.0223 0.0155 0.0122 0.0137 0.1556 0.018 0.016 0.0121 0.0187 0.0114
SSE 0.2982 0.2365 0.1894 0.1714 0.3003 0.3541 0.2217 0.2847 0.3054 0.3246

RMSE 0.0163 0.1347 0.017 0.0142 0.1822 0.0214 0.0175 0.0206 0.0178 0.0137
R2 0.9404 0.9406 0.9393 0.9349 0.9417 0.9403 0.9405 0.9385 0.9379 0.9412
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